Numerical Linear Algebra for CS and IE

Chair of Computational Mathematics
Technical University of Munich
Nicolas Venkovic

nicolas.venkovic@tum.edu

Jacobi-Davidson Methods

[1]: using LinearAlgebra, Printf, SparseArrays, LinearOperators, Random
using MatrixMarket: mmread
using IterativeSolvers: gmres!
using IncompletelLU: ilu
using Plots
using Plots.PlotMeasures
Random.seed! (1) ;

Exercise 1: Rayleigh-Ritz Arnoldi

[2]: function RR_Arnoldi(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2)

, _ = size(A)

= zeros(Float64, (n, k+1))

= zeros(Float64, (n, k+1))

zeros (Float64, (k+1, k+1))

= zeros(Float64, n)

= zeros(Float64, n)

= zeros(Float64, n)

res = zeros(Float64, k+1)

rho = zeros(Float64, k+1)

t .= q

j=0

while true

adR<S W =023
I

Orthogonalize t against §[1:7]

if ortho == :MGS
for i in 1:j
h = Q[:, il't
t .-=h .x Q[:, i]
end
elseif ortho == :CGS2

t .-=Q[:, 1:31 * (Q[:, 1:31't)
t .-=Q[:, 1:31 * @Q[:, 1:31't)
end
Ql:, j+11 = t ./ norm(t)
j+=1
Wl:, j1 = A = Ql[:, j]
Update projected matrixz B for RR procedure
B[1:j, j1 =Ql[:, 1:31'Wl:, j]
B(j, 1:j-11 = Q[:, j1'W[:, 1:j-1]
B[1:5, 1:9] = Q[:,1:5]'W[:,1:5] = Q[:, 1:5]'A*Q[:, 1:7]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= Q[:, 1:3] * vecs[:, j]
r .= Wl:, 1:j] * vecsl[:, jl - rhol[jl .* y
res[j] = norm(r) / norm(rhol[jl)
if ((res[j]l < tol) || (G > k))
break
end
Expanston vector set along eigenresidual <=> RR Arnoldz
t .=r
end
return res[1:j], rho[l:j], vy
end;

[3]:

mmread ("matrices/Kuu.mtx")
An

rand(n) ;

= 200;

tol = 1e-8;

xQa B =
]

[4]: res_RR_Arnoldi, val_RR_Arnoldi, _ = RR_Arnoldi(A, q, k, tol);

Exercise 2: Rayleigh-Ritz Davidson

[5]: function RR_Davidson(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2)

n, _ = size(4)

Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)

r = zeros(Float64, n)

t = zeros(Float64, n)

res = zeros(Float64, k+1)
rho = zeros(Float64, k+1)

t .= q

j=20

DA = spdiagm(diag(A, 0))

while true

Orthogonalize t against §[1:7]

if ortho == :MGS
for i in 1:j
h =Q[:, il't
t .-=h .x Q[:, il
end
elseif ortho == :CGS2

t .-=Q[:, 1:31 * @Q[:, 1:31'%)
t .-=Q[:, 1:31 * (QC:, 1:31't)

end

Ql:, j+11 = t ./ norm(t)
ja=1

Wl:, j1 = A * Q[:, jl

Update projected matrixz B for RR procedure

B[1:j, j1 = QL:, 1:31'W[:, j]

B[j, 1:3-11 = Q[:, j1'Wl:, 1:j-1]
B[1:5, 1:5] = Q[:,1:5]1'W[:,1:5] = Q[:, 1:5]'4*Q[:, 1:35]

vals, vecs =

eigen(B[1:j, 1:j], sortby=norm)

rho[j] = vals[j]

y .= Ql:, 1:j] * vees[:, jl

r .= Wl:, 1:3] * vecs[:, jl - rholj]

res[j] = norm(r) / norm(rhol[j])

if ((res[j] < tol) || (j > k))
break

end

Compute expansion vector
t .= (DA - rhol[j] * I) \'r

end
return res[1:j], rho[l:j], vy
end;
[6]: res_RR_Davidson, val_RR_Davidson,
[7]:

_ = RR_Davidson(A, g, k, tol);

pl = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="RR Arnoldi",
—linewidth=2, color=:black)

plot! ([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:1ogl0,
—label="RR Davidson", linewidth=2, color=:red)

p2 = plot([i for i in 1:length(val RR_Arnoldi)], val_RR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="RR Arnoldi", linewidth=2, color=:
—black)

plot!([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR
—Davidson", linewidth=2, color=:red, ylims=(val_RR_Davidson[end]-2,
—val_RR_Davidson[end]+.1))

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

10° ——RR Amnoldi 540 -
——RR Davidson

[7]1:

5}
£ 53.5
~
= o
e <
(o) —
2 53.0
; 10—5 L
<
52.5
——RR Arnoldi
——RR Davidson
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Iteration Iteration

Exercise 3: Rayleigh-Ritz generalized Davidson

[8]: function RR_GD(A,
q::Vector{Float64},
k::Int,
tol: :Float64;
ortho=:CGS2,
inner_precond=:Tridiagonal,
inner_iters=5)

n, _ = size(A)

Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))

B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)

r = zeros(Float64, n)

t = zeros(Float64, n)

res = zeros(Float64, k+1)
rho = zeros(Float64, k+1)
M = if inner_precond == :Diagonal

Diagonal (A)

elseif inner_precond == :Tridiagonal
Tridiagonal (A)

elseif inner_precond ==:ILU
ilu(h)

end

t .= q

j=20

while true
Orthogonalize t against @[1:7]

if ortho == :MGS
for i in 1:j
h =Q[:, i]'t
t .-=h .*x Q[:, il
end
elseif ortho == :CGS2

t .-=Q[:, 1:31 * Q[:, 1:31'%)
t .-=Q[:, 1:31 * @Q[:, 1:31't)

end
QL:, j+11 = t ./ norm(t)
j =1

wl:, j1 = A * Q[:, j]
Update projected matrixz B for RR procedure
B[1:j, j1 =Ql[:, 1:31'Wl:, j]
B[j, 1:j-11 = Ql:, jl'w[:, 1:j-1]
B[1:5, 1:9] = Q[:,1:5]'W[:,1:5] = Q[:, 1:5]'A*Q[:, 1:7]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= QL:, 1:j3]1 * vecs[:, j]
r .= W[:, 1:j] * vecs[:, jl - rho[j]l .*y
r_norm = norm(r)
res[j] = r_norm / norm(rho[j])
if ((res[j] < tol) || (j > k))
break
end
Update preconditioner for correction equation
if inner_precond == :Diagonal
M .= Diagonal(A - rho[j] * I)
elseif inner_precond == :Tridiagonal
M .= Tridiagonal(A - rho[j] * I)
end
Approzimate solve of correction equation
t .=r
gmres! (t, A - rho[j] * I , -r, P1=M, maxiter=inner_iters)
end
return res[1:j], rho[l:j], vy
end;

[9]:

[10]:

[10]:

res_RR_GD_2, val_RR_GD_2, _ = RR_GD(A, q, k, tol, inner_iters=2);
res_RR_GD_5, val_RR_GD_5, _ = RR_GD(A, q, k, tol, inner_iters=5);
res_RR_GD_10, val_RR_GD_10, _ = RR_GD(A, q, k, tol, inner_iters=10);
res_RR_GD_20, val_RR_GD_20, _ = RR_GD(A, q, k, tol, inner_iters=20);

pl = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="RR Arnoldi",
—linewidth=2, color=:black)

plot! ([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:1o0gl0,
<»label="RR Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(res_RR_GD_2)], res_RR_GD_2, yscale=:1loglO, label="RR
—GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_RR_GD_5)], res_RR_GD_5, yscale=:1logl0O, label="RR
—GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_RR_GD_10)], res_RR_GD_10, yscale=:1ogl0,,
—label="RR GD (10 inner iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(res_RR_GD_20)], res_RR_GD_20, yscale=:loglO,,
—label="RR GD (20 inner iters)", linewidth=2, color=:green)

p2 = plot([i for i in 1:length(val_RR_Arnoldi)], val_RR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
—black)

plot! ([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR
—Davidson", linewidth=2, color=:red)

plot! ([i for i in 1:length(val_RR_GD_2)], val_RR_GD_2, label="RR GD (2 inner,
—iters)", linewidth=2, color=:blue)

plot! ([i for i in 1:length(val_RR_GD_5)], val_RR_GD_5, label="RR GD (5 inner,
—iters)", linewidth=2, color=:magenta)

plot! ([i for i in 1:length(val_RR_GD_10)], val_RR_GD_10, label="RR GD (10 inner,
—iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_RR_GD_20)], val_RR_GD_20, label="RR GD (20 inner,
—iters)", linewidth=2, color=:green,
—ylims=(val_RR_GD_20[end]-2,val_RR_GD_20[end]+.1))

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

100 —RR Arnoldi 54.0 F

——RR Davidson

——RR GD (2 inner iters)
——RR GD (5 inner iters)
5 ——RR GD (10 inner iters)
2 RR GD (20 inner iters) 535 |
=
-
= o)
c 10 r 53.0
T
>
< ——HR Arnoldi
- ——RR Davidson
525 ——RR GD (2 inner iters)
——RR GD (5 inner iters)
——RR GD (10 inner iters)
——RR GD (20 inner iters)
1 1 1 1 1 1 1 1 1 f 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Iteration Iteration

Forming the expansion vector ¢ by approximately solving the correction equation (A — pI,)t = —r
with 5 GMRES iterations accelerates the convergence. But solving it too precisely, e.g., with 20
GMRES iterations leads to delay, or even stagnation.

Exercise 4: Rayleigh-Ritz Jacobi-Davidson

[11]: function mul_tA(A, 1lbda, y, x, tAx)
tdx .= (I - yxy')*(4 - lbdaxI)*(I - y*y')*z

tAx .= x
c=y'x
tAx .-=c *x y
tAx .= (A - lbda * I) * tAx
c = y'tAx
tAx .-=c *xy
end;

mutable struct OrthoPrecond
T
y::Vector{Float64}

end;

function LinearAlgebra.ldiv! (M::0rthoPrecond, z)

z .= M.T\ z
z .-= (M.y'z) * z
end;

function LinearAlgebra.ldiv!(Z, M::0rthoPrecond, R)

1div! (M, R)
Z .= R
end;

[12]: function RR_JD(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2,
inner_precond=:Tridiagonal,
inner_iters=5)

n, _ = size(A)

= zeros(Float64, (n, k+1))

= zeros(Float64, (n, k+1))

zeros (Float64, (k+1, k+1))

= zeros(Float64, n)

= zeros(Float64, n)

= zeros(Float64, n)

res = zeros(Float64, k+1)

¢ < W= 0o
1l

rho = zeros(Float64, k+1)

M = if inner_precond == :Diagonal
OrthoPrecond(Diagonal(A), copy(q))

elseif inner_precond == :Tridiagonal
OrthoPrecond(Tridiagonal (A), copy(q))

end

t .=gq

j=20

while true
Orthogonalize t against @[1:7]

if ortho == :MGS
for i in 1:j
h =Q[:, i]'t
t .-=h .*x Q[:, il
end
elseif ortho == :CGS2

t .-=Q[:, 1:31 * Q[:, 1:31'%)
t .-=Q[:, 1:31 = (Q[:, 1:31't)
end
Ql:, j+11 = t ./ norm(t)
j += 1
wl:, j1 = A * Q[:, j]
Update projected matrixz B for RR procedure
B[1:j, j1 =Ql[:, 1:31'Wl:, j]
B[j, 1:j-11 = Q[:, j1'wl:, 1:j-1]
B[1:5, 1:9] = Q[:,1:5]'W[:,1:5] = Q[:, 1:5]'A*Q[:, 1:7]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= QL:, 1:3] * vecs[:, jl
r .= W[:, 1:j] * vecs[:, jl - rho[j]l .*y
res[j] = norm(r) / norm(rhol[jl)
if ((res[j]l < tol) || (G > k))
break
end
td*z = (I - y*y')*(4 - rho[j]*I)*(I - y*y')+z
tA = LinearOperator(Float64, n, n, false, false,
(tAx, x) -> mul_tA(A, rholjl, y, x, tAx),
nothing, nothing)
Update preconditioner for correction equation
if inner_precond == :Diagonal
M.T .= Diagonal(A - rho[j] * I)
elseif inner_precond == :Tridiagonal
M.T .= Tridiagonal(A - rho[j] * I)
end
My .=y
Approzimate solve of correction equation
t .=r

[13]:

[14]:

gmres! (t, tA, -r, P1=M, maxiter=inner_iters)

end

return res[1:j], rholl:j], y
end;
res_RR_JD_2, val_RR_JD_2, _ = RR_JD(A, q, k, tol, inner_iters=2);
res_RR_JD_5, val _ RR_JD_5, _ = RR_JID(A, q, k, tol, inner_iters=5);
res_RR_JD_10, val_RR_JD_10, _ = RR_JD(A, q, k, tol, inner_iters=10);
res_RR_JD_20, val_RR_JD_20, _ = RR_JD(A, q, k, tol, inner_iters=20);

pl = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*y|| / |rhol|", label="RR Arnoldi",
—linewidth=2, color=:black)

plot! ([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:1logl0,
—label="RR Davidson'", linewidth=2, color=:red)

plot! ([i for i in 1:length(res_RR_GD_2)], res_RR_GD_2, yscale=:1logl0O, label="RR,
—GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_RR_GD_5)], res_RR_GD_5, yscale=:1ogl0O, label="RR
—GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_RR_GD_10)], res_RR_GD_10, yscale=:1logl0,,
—label="RR GD (10 inner iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(res_RR_GD_20)], res_RR_GD_20, yscale=:1logl0,
—label="RR GD (20 inner iters)", linewidth=2, color=:green)

plot! ([i for i in 1:length(res_RR_JD_2)], res_RR_JD_2, yscale=:1ogl0, label="JD
(2 inner iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(res_RR_JD_5)], res_RR_JD_5, yscale=:1ogl0, label="JD
— (5 inner iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot! ([i for i in 1:length(res_RR_JD_10)], res_RR_JD_10, yscale=:loglO,
—label="JD (10 inner iters)", linewidth=2, color=:gray, linestyle=:dot)

plot! ([i for i in 1:length(res_RR_JD_20)], res_RR_JD_20, yscale=:loglO,,
—label="JD (20 inner iters)", linewidth=2, color=:green, linestyle=:dot)

p2 = plot([i for i in 1:length(val RR_Arnoldi)], val_RR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
—black)

plot!([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR
—Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val _RR_GD_2)], val_RR_GD_2, label="RR GD (2 inner
—iters)", linewidth=2, color=:blue)

plot! ([i for i in 1:length(val_RR_GD_5)], val_RR_GD_5, label="RR GD (5 inner,
—iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_RR_GD_10)], val_RR_GD_10, label="RR GD (10 inner,
—iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_RR_GD_20)], val_RR_GD_20, label="RR GD (20 inner,
—iters)", linewidth=2, color=:green)

plot! ([i for i in 1:length(val_RR_JD_2)], val_RR_JD_2, label="RR JD (2 inner,
—iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(val_RR_JD_5)], val_RR_JD_5, label="RR JD (5 inner,
—iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(val_RR_JD_10)], val_RR_JD_10, label="RR JD (10 inner,
—iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(val_RR_JD_20)], val_RR_JD_20, label="RR JD (20 inner,
—iters)", linewidth=2, color=:green, linestyle=:dot,,
—ylims=(val_RR_GD_20[end]-2,val_RR_GD_20[end]+.1))

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[14]:
10° F B —RR Arnoldi 54.0 F
—— RR Davidson
——RR GD (2 inner iters)
———RR GD (5 inner iters)
] AR G (30 inner rere
£ = |D (2 inner iters) 535
: -~]D (5 inner itgrs)
—_ -]D (10 inner iters)
= \ -~]D (20 inner iters) o
*O 10 5 L 'E — HR Arnqldi
e 53.0 —— RR Davidson
5 ——RR GD (2 inner iters)
2 | R D et
= i ——RR GD (20 inner iters)
52.5 -~ RR JD (2 inner iters)
f -~ RR JD (5 inner iters)
~==RR D (10 inner iters)
=== RR JD (20 inner iters)
(I) 2‘0 4‘0 6‘0 8‘0 1(‘)0 12I 0 (I) 20 40 6‘0 8‘0 1(‘)0 1 2I 0
Iteration Iteration
[15]: println(" $(length(res_RR_Arnoldi)-1) Arnoldi iterations")
println(" $(length(res_RR_Davidson)-1) Davidson,
—iterations")
println(" 2 inner iterations --- $(length(res_RR_GD_2)-1) GD outer iterations =>
—$(length(res_RR_JD_2)-1) JD outer iterations")
println(" 5 inner iterations --- $(length(res_RR_GD_5)-1) GD outer iterations =>
—$(length(res_RR_JD_5)-1) JD outer iterations")
println("10 inner iterations --- $(length(res_RR_GD_10)-1) GD outer iterations
—=> $(length(res_RR_JD_10)-1) JD outer iterations")
println("20 inner iterations --- $(length(res_RR_GD_20)-1) GD outer iterations
—=> $(length(res_RR_JD_20)-1) JD outer iterations")
126 Arnoldi iterations
129 Davidson iterations
2 inner iterations --- 67 GD outer iterations => 72 JD outer iterations
5 inner iterations --- 38 GD outer iterations => 31 JD outer iterations
10 inner iterations --- 56 GD outer iterations => 23 JD outer iterations
20 inner iterations --- 88 GD outer iterations => 24 JD outer iterations

[16]: println("Approximate eigenvalues")

println(" Arnoldi: $(val_RR_Arnoldilend])")
println(" Davidson: $(val_RR_Arnoldilend])")

10

println(" 2 inner iterations --- GD: $(val_RR_GD_2[end])")

println(" JD: $(val_RR_JD_2[end])")
println(" 5 inner iterations --- GD: $(val_RR_GD_b5[end])")
println(" JD: $(val_RR_JD_5[end])")
println("10 inner iterations --- GD: $(val_RR_GD_10[end])")
println(" JD: $(val_RR_JD_10[end])")
println("20 inner iterations --- GD: $(val_RR_GD_20[end])")
println(" JD: $(val_RR_JD_20[end])")

Approximate eigenvalues
Arnoldi: 54.082055996412564
Davidson: 54.082055996412564

2 inner iterations --- GD: 54.08205599641252
JD: 54.08205599641244

5 inner iterations --- GD: 54.08205599641254
JD: 54.08205599641246

10 inner iterations --- GD: 54.08205599641259
JD: 54.08205599641256

20 inner iterations --- GD: 54.08205599641251

JD: 54.08205599641259

With proper projection through Jacobi-Davidson (JD) iteration, the convergence delay of the gen-
eralized Davidson (GD) iteration is partly remedied.

Exercise 5: Harmonic Ritz Arnoldi

[46]: function HR_CGS2_arnoldi(A, ql::Vector{Float64}, k::Int, sigma, tol::Float64)
n, _ = size(4)
Q = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k))
zeros (Float64, k+1)
w = zeros(Float64, n)
zeros (Float64, k+1)
val = zeros(Float64, k+1)
QL:, 11 = g1 ./ norm(ql)
j=0
vec = nothing

[=2
]

=
[
n

]

while true

j+=1

w .= A x Q[:, j]

h .= Q'w

h[j+1:k+1] .= 0.

H[(:, jl =h

w-=0Q *h

h . =Q'w

h[j+1:k+1] .= 0.

w -=Q *x h

H[j + 1, j] = norm(w)

11

:, j+11 =w ./ H[j + 1, jl
_j = zeros(Float64, j); e_j[jl = 1.
= (H[1:j, 1:j] - sigma * I)' \ e_j
H{1:j, 1:3] + norm(H[j + 1, j1)"2 .x £ * e_j'
vals, vecs = eigen(G)
ind = argmin(norm.(vals .- sigma))
val[j] = vals[ind]
vec = vecs[:, ind]
rho = val[j] - norm(H[j + 1, jI1)~2 * vec'f * vecl[j]
res[j] = sqrt.(real.((vall[j] .- rho) .* conj.(rho .- sigma)))
res[j] /= norm(rho)
if ((res[j]l < tol) || (j == k))
break
end

Q
e
f
G

end
return res[1:j], vall1:j], Q[:, 1:j]1 * vec
end;

[47]: sigma = 2.;
k = 500;
res_HR_Arnoldi, val_HR_Arnoldi, _ = HR_CGS2_arnoldi(A, q, k, sigma, tol);

Exercise 6: Harmonic Ritz Davidson

[21]: function HR_Davidson(A,
q: :Vector{Float64},
k::Int,
sigma::Float64,
tol::Float64;
which=:RayleighQuotient)
n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)

DA = spdiagm(diag(A, 0))
while true
j+=1
w = (A - sigma * I) * t
for i in 1:j
witw = W[:, i]l'w

12

w o.-= witw * W[:, i]

t .-= witw * Q[:, i]
end
w_norm = norm(w)
Wl:, jl = w / w_norm
Ql:, jl =t / w_norm
H(j, 1:31 = wl:, j1'QL:, 1:j]
H[1:j, j]1 = Wl:, t:j1'Q[:, j]
vals, vecs = eigen(H[1:j, 1:31)
ind = argmax(norm. (vals))
y .= Q[:, 1:3] * vecs[:, ind]

yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]
val[j] = sigma + dlbda
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - dlbda * y
#r .=4 %y -wallg] *y
elseif which == :RayleighQuotient
drho = conj(vals[ind]) / yty
val[j] = sigma + drho
vallj] = (4 * y)'y
r .= Wl:, 1:j] % vecs[:, ind] / sqrt(yty) - drho * y
#r .= 4 *y - wvallj] *y
end
res[j] = norm(r) / norm(vall[jl)
if ((res[j] < tol) || (j > k))

break
end
t .= (DA - val[j] = I) \' r
end

return res[1:j], valll:j], y
end;

[22]: res_HR_Davidson, val_HR_Davidson, _ = HR_Davidson(A, q, k, sigma, tol, which=:
—RayleighQuotient) ;

[48]: pl = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="HR Arnoldi",
—linewidth=2, color=:black)

plot! ([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:1ogl0,
<.label="HR Davidson'", linewidth=2, color=:red)

p2 = plot([i for i in 1:length(val HR_Arnoldi)], val_HR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
—black)

plot! ([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR
—Davidson", linewidth=2, color=:red, ylims=(sigma-2, sigma+2))

13

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)
[48] : 4

——HR Arnoldi
——HR Davidson

——HR Arnoldi
——HR Davidson

rho
N
T

[IAy-rho*y|| / |rho]

L L L L L 1 0 L L L L L

200 300 100 200 300 400 500
Iteration Iteration

Exercise #7: Harmonic Ritz generalized Davidson

[49] : function HR_GD(A,
q::Vector{Float64},
k::Int,
sigma: :Float64,
tol: :Float64;
inner_precond=:Tridiagonal,
inner_iters=5,
which=:RayleighQuotient)

n, _ = size(A)

Q = zeros(Float64, (n, k+1))

W = zeros(Float64, (n, k+1))

H = zeros(Float64, (k+1, k+1))

y = zeros(Float64, n)

r = zeros(Float64, n)

t = zeros(Float64, n)

res = zeros(Float64, k+1)

val = zeros(Float64, k+1)

M = if inner_precond == :Diagonal
Diagonal(A - sigma * I)

elseif inner_precond == :Tridiagonal
Tridiagonal(A - sigma * I)

elseif inner_precond == :ILU

ilu(A - sigma * I, ©=0.01)

end
t .=
j =
whil
N

q

0

e true
+= 1

14

w= (A - sigma * I) * t
for i in 1:j
witw = W[:, i]l'w

w o.-= witw * W[:, i]
t .-= witw * Q[:, i]
end

w_norm = norm(w)

Wl:, jl = w / w_norm

Ql:, j1 = t / w_norm

Update projected matrixz H for HR procedure
H(j, 1:31 = wl:, j1'QL:, 1:j]

Hl1:j, j1 = wl:, 1:51'QL:, jI

vals, vecs = eigen(H[1:j, 1:31)

ind = argmax(norm.(vals))

y .= Q[:, 1:3] * vecs[:, ind]

yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]
val[j] = sigma + dlbda
r .= Wl:, 1:j] % vecs[:, ind] / sqrt(yty) - dlbda * y
#r .= A4 xy - vallj] *y
elseif which == :RayleighQuotient
drho = conj(vals([ind]) / yty
val[j] = sigma + drho
vallg] = (4 * y)'y
r .= W[:, 1:j]1 * vecs[:, ind] / sqrt(yty) - drho * y
#r .= 4 xy - wallj] *y
end
res[j] = norm(r) / norm(val[j])
if ((res[j] < tol) || (j > k))
break
end
Compute ezxpansion wvector by GMRES

t .=r
gmres!(t, A - val[j] * I , -r, P1=M, maxiter=inner_iters)
end
return res[1:j], valll:j], y
end;
[50]: res_HR_GD_2, val_HR_GD_2, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,
—inner_iters=2, which=:RayleighQuotient);
res_HR_GD_5, val _ HR_GD_5, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,
—inner_iters=5, which=:RayleighQuotient);
res_HR_GD_10, val_HR_GD_10, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,,

—inner_iters=10, which=:RayleighQuotient);

15

[51]:

[51]:

res_HR_GD_20, val_HR_GD_20, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,,
—inner_iters=20, which=:RayleighQuotient);

pl = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*y|| / |rhol|", label="HR Arnoldi",
—linewidth=2, color=:black)

plot! ([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:1logl0,,
—»label="HR Davidson'", linewidth=2, color=:red)

plot!([i for i in 1:length(res_HR_GD_2)], res_HR_GD_2, yscale=:1logl0O, label="HR,
—GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_HR_GD_5)], res_HR_GD_5, yscale=:1logl0O, label="HR,
—GD (5 inner iters)", linewidth=2, color=:magenta)

plot! ([i for i in 1:length(res_HR_GD_10)], res_HR_GD_10, yscale=:loglO,,
—label="HR GD (10 inner iters)", linewidth=2, color=:gray)

plot! ([i for i in 1:length(res_HR_GD_20)], res_HR_GD_20, yscale=:loglO,,
—label="HR GD (20 inner iters)", linewidth=2, color=:green)

p2 = plot([i for i in 1:length(val_HR_Arnoldi)], val_HR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
—black)

plot!([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR
—Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_HR_GD_2)], val_HR_GD_2, label="HR GD (2 inner
—iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_HR_GD_5)], val_HR_GD_5, label="HR GD (5 inner
—iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_HR_GD_10)], val_HR_GD_10, label="HR GD (10 inner,
—iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_HR_GD_20)], val_HR_GD_20, label="HR GD (20 inner,
—iters)", linewidth=2, color=:green, ylims=(sigma-2, sigma+2))

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

4

o L ——HR Arnoldi ——HR Arnoldi
10 ——HR Davidson ——HR Davidson
——HR GD (2 inner iters) ——HR GD (2 inner iters)
———HR GD (5 inner iters) ———HR GD (5 inner iters)
— ———HR GD (10 inner iters) 3 r ———HR GD (10 inner iters)
g ——HR GD (20 inner iters) ——HR GD (20 inner iters)
—
~
FY 22}
o) —_
£
—5
T 10 L
>
<
= 1L
L L L L L L 0 L L L L L
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

16

Exercise 8: Harmonic Ritz Jacobi-Davidson

[62]: function HR_JD(A,
q::Vector{Float64},
k::Int,
sigma: :Float64,
tol::Float64;
inner_precond=:Tridiagonal,
inner_iters=5,
which=:RayleighQuotient)
n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)

M = if inner_precond == :Diagonal
OrthoPrecond(Diagonal(A - sigma * I), copy(q))
elseif inner_precond == :Tridiagonal
OrthoPrecond(Tridiagonal (A - sigma * I), copy(q))
elseif inner_precond == :ILU
OrthoPrecond(ilu(A - sigma * I, ©=0.01), copy(q))
end
t .= q
j=20
while true
j+=1

w = (A - sigma * I) * t
for i in 1:j

witw = W[:, il'w

W o.-= witw * W[:, il

t .-= witw * Q[:, i]
end

w_norm = norm(w)

Wl:, jl = w / w_norm

Ql:, jl = t / w_norm

H{j, 1:31 = wl:, j1'Q[:, 1:3]
H[1:j, j1 = Wwl:, 1:51'QL:, j]
vals, vecs = eigen(H[1:j, 1:31)
ind = argmax(norm. (vals))

y .= Q[:, 1:3] * vecs[:, ind]

yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]

17

val[j] = sigma + dlbda
r .= Wl:, 1:j] * vecs[:, ind] / sqrt(yty) - dlbda * y
#r .= 4%y -wall[g] *y
elseif which == :RayleighQuotient
drho = conj(vals[ind]) / yty
val[j] = sigma + drho
vallj] = (4 * y)'y
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - drho * y
#r .=A4 %y -wvallg] *y
end
res[j] = norm(r) / norm(vall[jl)
if ((res[j]l < tol) || (5 > k))
break
end
tA = LinearOperator(Float64, n, n, false, false,
(tAx, x) -> mul_tA(A, vall[jl, y, x, tAx),
nothing, nothing)
Compute expansion vector by GMRES constrained
to the orthogonal complement of range(y)

t .=r

My .=y

gmres!(t, tA, -r, P1=M, maxiter=inner_iters)
end

return res[1:j], val[l:j], y

end;
[63]: res_HR_JD_2, val_HR_JD_2, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,,

—inner_iters=2, which=:RayleighQuotient);

res_HR_JD_5, val_HR_JD_5, _ = HR_JID(A, q, k, sigma, tol, inner_precond=:ILU,,
—inner_iters=5, which=:RayleighQuotient);

res_HR_JD_10, val_HR_JD_10, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,,
—inner_iters=10, which=:RayleighQuotient);

res_HR_JD_20, val_HR_JD_20, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,,

—inner_iters=20, which=:RayleighQuotient);

[54]: pl = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:loglO,,
—xlabel="Iteration", ylabel="||Ay-rho*yl|| / |rhol|", label="HR Arnoldi",
—linewidth=2, color=:black)

plot!([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:1logl0,
—»label="HR Davidson'", linewidth=2, color=:red)

plot!([i for i in 1:length(res_HR_GD_2)], res_HR_GD_2, yscale=:1logl0O, label="HR,
—GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_HR_GD_5)], res_HR_GD_5, yscale=:1logl0O, label="HR,
—GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_HR_GD_10)], res_HR_GD_10, yscale=:loglO,,
—label="HR GD (10 inner iters)", linewidth=2, color=:gray)

18

[54]:

plot!([i for i in 1:length(res_HR_GD_20)], res_HR_GD_20, yscale=:loglO,,
—label="HR GD (20 inner iters)", linewidth=2, color=:green)

plot!([i for i in 1:length(res_HR_JD_2)], res_HR_JD_2, yscale=:1logl0O, label="HR,
—JD (2 inner iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_5)], res_HR_JD_5, yscale=:1loglO, label="HR,
—JD (5 inner iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_10)], res_HR_JD_10, yscale=:1logl0,
—label="HR JD (10 inner iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_20)], res_HR_JD_20, yscale=:1logl0,
—label="HR JD (20 inner iters)", linewidth=2, color=:green, linestyle=:dot)

p2 = plot([i for i in 1:length(val _HR_Arnoldi)], val_HR_Arnoldi,
—xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
—black)

plot!([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR
—Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_HR_GD_2)], val_HR_GD_2, label="HR GD (2 inner,
—iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_HR_GD_5)], val_HR_GD_5, label="HR GD (5 inner,
—iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_HR_GD_10)], val_HR_GD_10, label="HR GD (10 inner,
—iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_HR_GD_20)], val_HR_GD_20, label="HR GD (20 inner,
—iters)", linewidth=2, color=:green)

plot! ([i for i in 1:length(val_HR_JD_2)], val_HR_JD_2, label="HR JD (2 inner,
—iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(val_HR_JD_5)], val_HR_JD_5, label="HR JD (5 inner,
—iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(val_HR_JD_10)], val_HR_JD_10, label="HR JD (10 inner,
—iters)", linewidth=2, color=:gray, linestyle=:dot)

plot! ([i for i in 1:length(val_HR_JD_20)], val_HR_JD_20, label="HR JD (20 inner,
—iters)", linewidth=2, color=:green, linestyle=:dot, ylims=(sigma-2, sigma+2))

plot(pl, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

4 -

o L —— HR Arnoldi —— HR Arnoldi
10 ——HR Davidson ——HR Davidson
——HR GD (2 inner iters) ——HR GD (2 inner iters)
——HR GD (5 inner iters) ——HR GD (5 inner iters)
— ———HR GD (10 inner iters) 3+ ———HR GD (10 inner iters)
o ——HR GD (20 inner iters) ——HR GD (20 inner iters)
£ ~=- HR JD (2 inner iters) ~- HR JD (2 inner iters)
= - HR JD (5 inner iters) - HR JD (5 inner iters)
— === HR JD (10 inner iters) === HR JD (10 inner iters)
= ~=HR JD (20 inner iters) o = HR JD (20 inner iters)
* c 2+
—
o
€
I (U
>
<<
= 1k
| | | | | | 0 | | | | |
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

19

[55] :

[56]:

println("

—iterations")

$(length(res_HR_Arnoldi)-1) Arnoldi

println(" $(length(res_HR_Davidson)-1) Davidson,
—iterations")

println(" 2 inner iterations --- $(length(res_HR_GD_2)-1) GD outer iterations =>
—$(length(res_HR_JD_2)-1) JD outer iterations")

println(" 5 inner iterations --- $(length(res_HR_GD_5)-1) GD outer iterations =>,
—$(length(res_HR_JD_5)-1) JD outer iterations")

println("10 inner iterations --- $(length(res_HR_GD_10)-1) GD outer iterations
—=> $(length(res_HR_JD_10)-1) JD outer iterations")

println("20 inner iterations --- $(length(res_HR_GD_20)-1) GD outer iterations

—=> $(length(res_HR_JD_20)-1) JD outer iterations")

20

499 Arnoldi iterations
500 Davidson iterations
2 inner iterations --- 500 GD outer iterations => 500 JD outer iterations
5 inner iterations --- 500 GD outer iterations => 500 JD outer iterations
10 inner iterations --- 487 GD outer iterations => 500 JD outer iterations
20 inner iterations --- 428 GD outer iterations => 99 JD outer iterations
println("Approximate eigenvalues")
println(" Arnoldi: $(val_HR_Arnoldil[end])")
println(" Davidson: $(val_HR_Arnoldi[end])")
println(" 2 inner iterations --- GD: $(val_HR_GD_2[end])")
println(" JD: $(val_HR_JD_2[end])")
println(" 5 inner iterations --- GD: $(val_HR_GD_5[end])")
println(" JD: $(val_HR_JD_5[end])")
println("10 inner iterations --- GD: $(val_HR_GD_10[end])")
println(" JD: $(val_HR_JD_10[end])")
println("20 inner iterations --- GD: $(val_HR_GD_20[end])")
println(" JD: $(val_HR_JD_20[end])")
Approximate eigenvalues
Arnoldi: 2.053460565092543
Davidson: 2.053460565092543
2 inner iterations --- GD: 1.9967719080760646
JD: 2.004038551760178
5 inner iterations --- GD: 1.9907546977277473
JD: 1.9971231477084577
10 inner iterations --- GD: 2.0144170225715863
JD: 1.996392400964148
20 inner iterations --- GD: 2.0226994779640446
JD: 1.9908580446426472

