
Numerical Linear Algebra for CS and IE

Chair of Computational Mathematics

Technical University of Munich

Nicolas Venkovic

nicolas.venkovic@tum.edu

Jacobi-Davidson Methods

[1]: using LinearAlgebra, Printf, SparseArrays, LinearOperators, Random
using MatrixMarket: mmread
using IterativeSolvers: gmres!
using IncompleteLU: ilu
using Plots
using Plots.PlotMeasures
Random.seed!(1);

Exercise 1: Rayleigh-Ritz Arnoldi

[2]: function RR_Arnoldi(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
rho = zeros(Float64, k+1)
t .= q
j = 0
while true

1

Orthogonalize t against Q[1:j]
if ortho == :MGS

for i in 1:j
h = Q[:, i]'t
t .-= h .* Q[:, i]

end
elseif ortho == :CGS2

t .-= Q[:, 1:j] * (Q[:, 1:j]'t)
t .-= Q[:, 1:j] * (Q[:, 1:j]'t)

end
Q[:, j+1] = t ./ norm(t)
j += 1
W[:, j] = A * Q[:, j]
Update projected matrix B for RR procedure
B[1:j, j] = Q[:, 1:j]'W[:, j]
B[j, 1:j-1] = Q[:, j]'W[:, 1:j-1]
B[1:j, 1:j] = Q[:,1:j]'W[:,1:j] = Q[:, 1:j]'A*Q[:, 1:j]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= Q[:, 1:j] * vecs[:, j]
r .= W[:, 1:j] * vecs[:, j] - rho[j] .* y
res[j] = norm(r) / norm(rho[j])
if ((res[j] < tol) || (j > k))

break
end
Expansion vector set along eigenresidual <=> RR Arnoldi
t .= r

end
return res[1:j], rho[1:j], y

end;

[3]: A = mmread("matrices/Kuu.mtx")
n = A.n
q = rand(n);
k = 200;
tol = 1e-8;

[4]: res_RR_Arnoldi, val_RR_Arnoldi, _ = RR_Arnoldi(A, q, k, tol);

Exercise 2: Rayleigh-Ritz Davidson

[5]: function RR_Davidson(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2)

n, _ = size(A)

2

Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
rho = zeros(Float64, k+1)
t .= q
j = 0
DA = spdiagm(diag(A, 0))
while true

Orthogonalize t against Q[1:j]
if ortho == :MGS

for i in 1:j
h = Q[:, i]'t
t .-= h .* Q[:, i]

end
elseif ortho == :CGS2

t .-= Q[:, 1:j] * (Q[:, 1:j]'t)
t .-= Q[:, 1:j] * (Q[:, 1:j]'t)

end
Q[:, j+1] = t ./ norm(t)
j += 1
W[:, j] = A * Q[:, j]
Update projected matrix B for RR procedure
B[1:j, j] = Q[:, 1:j]'W[:, j]
B[j, 1:j-1] = Q[:, j]'W[:, 1:j-1]
B[1:j, 1:j] = Q[:,1:j]'W[:,1:j] = Q[:, 1:j]'A*Q[:, 1:j]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= Q[:, 1:j] * vecs[:, j]
r .= W[:, 1:j] * vecs[:, j] - rho[j] .* y
res[j] = norm(r) / norm(rho[j])
if ((res[j] < tol) || (j > k))

break
end
Compute expansion vector
t .= (DA - rho[j] * I) \ r

end
return res[1:j], rho[1:j], y

end;

[6]: res_RR_Davidson, val_RR_Davidson, _ = RR_Davidson(A, q, k, tol);

[7]:

3

p1 = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="RR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:log10,␣
↪→label="RR Davidson", linewidth=2, color=:red)

p2 = plot([i for i in 1:length(val_RR_Arnoldi)], val_RR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="RR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR␣
↪→Davidson", linewidth=2, color=:red, ylims=(val_RR_Davidson[end]-2,␣
↪→val_RR_Davidson[end]+.1))

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[7]:

Exercise 3: Rayleigh-Ritz generalized Davidson

[8]: function RR_GD(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2,
inner_precond=:Tridiagonal,
inner_iters=5)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
rho = zeros(Float64, k+1)
M = if inner_precond == :Diagonal

4

Diagonal(A)
elseif inner_precond == :Tridiagonal

Tridiagonal(A)
elseif inner_precond ==:ILU

ilu(A)
end
t .= q
j = 0
while true

Orthogonalize t against Q[1:j]
if ortho == :MGS

for i in 1:j
h = Q[:, i]'t
t .-= h .* Q[:, i]

end
elseif ortho == :CGS2

t .-= Q[:, 1:j] * (Q[:, 1:j]'t)
t .-= Q[:, 1:j] * (Q[:, 1:j]'t)

end
Q[:, j+1] = t ./ norm(t)
j += 1
W[:, j] = A * Q[:, j]
Update projected matrix B for RR procedure
B[1:j, j] = Q[:, 1:j]'W[:, j]
B[j, 1:j-1] = Q[:, j]'W[:, 1:j-1]
B[1:j, 1:j] = Q[:,1:j]'W[:,1:j] = Q[:, 1:j]'A*Q[:, 1:j]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= Q[:, 1:j] * vecs[:, j]
r .= W[:, 1:j] * vecs[:, j] - rho[j] .* y
r_norm = norm(r)
res[j] = r_norm / norm(rho[j])
if ((res[j] < tol) || (j > k))

break
end
Update preconditioner for correction equation
if inner_precond == :Diagonal

M .= Diagonal(A - rho[j] * I)
elseif inner_precond == :Tridiagonal

M .= Tridiagonal(A - rho[j] * I)
end
Approximate solve of correction equation
t .= r
gmres!(t, A - rho[j] * I , -r, Pl=M, maxiter=inner_iters)

end
return res[1:j], rho[1:j], y

end;

5

[9]: res_RR_GD_2, val_RR_GD_2, _ = RR_GD(A, q, k, tol, inner_iters=2);
res_RR_GD_5, val_RR_GD_5, _ = RR_GD(A, q, k, tol, inner_iters=5);
res_RR_GD_10, val_RR_GD_10, _ = RR_GD(A, q, k, tol, inner_iters=10);
res_RR_GD_20, val_RR_GD_20, _ = RR_GD(A, q, k, tol, inner_iters=20);

[10]: p1 = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="RR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:log10,␣
↪→label="RR Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(res_RR_GD_2)], res_RR_GD_2, yscale=:log10, label="RR␣
↪→GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_RR_GD_5)], res_RR_GD_5, yscale=:log10, label="RR␣
↪→GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_RR_GD_10)], res_RR_GD_10, yscale=:log10,␣
↪→label="RR GD (10 inner iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(res_RR_GD_20)], res_RR_GD_20, yscale=:log10,␣
↪→label="RR GD (20 inner iters)", linewidth=2, color=:green)

p2 = plot([i for i in 1:length(val_RR_Arnoldi)], val_RR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR␣
↪→Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_RR_GD_2)], val_RR_GD_2, label="RR GD (2 inner␣
↪→iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_RR_GD_5)], val_RR_GD_5, label="RR GD (5 inner␣
↪→iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_RR_GD_10)], val_RR_GD_10, label="RR GD (10 inner␣
↪→iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_RR_GD_20)], val_RR_GD_20, label="RR GD (20 inner␣
↪→iters)", linewidth=2, color=:green,␣
↪→ylims=(val_RR_GD_20[end]-2,val_RR_GD_20[end]+.1))

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[10]:

6

Forming the expansion vector t by approximately solving the correction equation (A− ρIn)t = −r
with 5 GMRES iterations accelerates the convergence. But solving it too precisely, e.g., with 20
GMRES iterations leads to delay, or even stagnation.

Exercise 4: Rayleigh-Ritz Jacobi-Davidson

[11]: function mul_tA(A, lbda, y, x, tAx)
tAx .= (I - y*y')*(A - lbda*I)*(I - y*y')*x
tAx .= x
c = y'x
tAx .-= c * y
tAx .= (A - lbda * I) * tAx
c = y'tAx
tAx .-= c * y

end;

mutable struct OrthoPrecond
T
y::Vector{Float64}

end;

function LinearAlgebra.ldiv!(M::OrthoPrecond, z)
z .= M.T \ z
z .-= (M.y'z) * z

end;

function LinearAlgebra.ldiv!(Z, M::OrthoPrecond, R)
ldiv!(M, R)
Z .= R

end;

[12]: function RR_JD(A,
q::Vector{Float64},
k::Int,
tol::Float64;
ortho=:CGS2,
inner_precond=:Tridiagonal,
inner_iters=5)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
B = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)

7

rho = zeros(Float64, k+1)
M = if inner_precond == :Diagonal

OrthoPrecond(Diagonal(A), copy(q))
elseif inner_precond == :Tridiagonal

OrthoPrecond(Tridiagonal(A), copy(q))
end
t .= q
j = 0
while true

Orthogonalize t against Q[1:j]
if ortho == :MGS

for i in 1:j
h = Q[:, i]'t
t .-= h .* Q[:, i]

end
elseif ortho == :CGS2

t .-= Q[:, 1:j] * (Q[:, 1:j]'t)
t .-= Q[:, 1:j] * (Q[:, 1:j]'t)

end
Q[:, j+1] = t ./ norm(t)
j += 1
W[:, j] = A * Q[:, j]
Update projected matrix B for RR procedure
B[1:j, j] = Q[:, 1:j]'W[:, j]
B[j, 1:j-1] = Q[:, j]'W[:, 1:j-1]
B[1:j, 1:j] = Q[:,1:j]'W[:,1:j] = Q[:, 1:j]'A*Q[:, 1:j]
vals, vecs = eigen(B[1:j, 1:j], sortby=norm)
rho[j] = vals[j]
y .= Q[:, 1:j] * vecs[:, j]
r .= W[:, 1:j] * vecs[:, j] - rho[j] .* y
res[j] = norm(r) / norm(rho[j])
if ((res[j] < tol) || (j > k))

break
end
tA*x = (I - y*y')*(A - rho[j]*I)*(I - y*y')*x
tA = LinearOperator(Float64, n, n, false, false,

(tAx, x) -> mul_tA(A, rho[j], y, x, tAx),
nothing, nothing)

Update preconditioner for correction equation
if inner_precond == :Diagonal

M.T .= Diagonal(A - rho[j] * I)
elseif inner_precond == :Tridiagonal

M.T .= Tridiagonal(A - rho[j] * I)
end
M.y .= y
Approximate solve of correction equation
t .= r

8

gmres!(t, tA, -r, Pl=M, maxiter=inner_iters)
end
return res[1:j], rho[1:j], y

end;

[13]: res_RR_JD_2, val_RR_JD_2, _ = RR_JD(A, q, k, tol, inner_iters=2);
res_RR_JD_5, val_RR_JD_5, _ = RR_JD(A, q, k, tol, inner_iters=5);
res_RR_JD_10, val_RR_JD_10, _ = RR_JD(A, q, k, tol, inner_iters=10);
res_RR_JD_20, val_RR_JD_20, _ = RR_JD(A, q, k, tol, inner_iters=20);

[14]: p1 = plot([i for i in 1:length(res_RR_Arnoldi)], res_RR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="RR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_RR_Davidson)], res_RR_Davidson, yscale=:log10,␣
↪→label="RR Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(res_RR_GD_2)], res_RR_GD_2, yscale=:log10, label="RR␣
↪→GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_RR_GD_5)], res_RR_GD_5, yscale=:log10, label="RR␣
↪→GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_RR_GD_10)], res_RR_GD_10, yscale=:log10,␣
↪→label="RR GD (10 inner iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(res_RR_GD_20)], res_RR_GD_20, yscale=:log10,␣
↪→label="RR GD (20 inner iters)", linewidth=2, color=:green)

plot!([i for i in 1:length(res_RR_JD_2)], res_RR_JD_2, yscale=:log10, label="JD␣
↪→(2 inner iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(res_RR_JD_5)], res_RR_JD_5, yscale=:log10, label="JD␣
↪→(5 inner iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(res_RR_JD_10)], res_RR_JD_10, yscale=:log10,␣
↪→label="JD (10 inner iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(res_RR_JD_20)], res_RR_JD_20, yscale=:log10,␣
↪→label="JD (20 inner iters)", linewidth=2, color=:green, linestyle=:dot)

p2 = plot([i for i in 1:length(val_RR_Arnoldi)], val_RR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_RR_Davidson)], val_RR_Davidson, label="RR␣
↪→Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_RR_GD_2)], val_RR_GD_2, label="RR GD (2 inner␣
↪→iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_RR_GD_5)], val_RR_GD_5, label="RR GD (5 inner␣
↪→iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_RR_GD_10)], val_RR_GD_10, label="RR GD (10 inner␣
↪→iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_RR_GD_20)], val_RR_GD_20, label="RR GD (20 inner␣
↪→iters)", linewidth=2, color=:green)

plot!([i for i in 1:length(val_RR_JD_2)], val_RR_JD_2, label="RR JD (2 inner␣
↪→iters)", linewidth=2, color=:blue, linestyle=:dot)

9

plot!([i for i in 1:length(val_RR_JD_5)], val_RR_JD_5, label="RR JD (5 inner␣
↪→iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(val_RR_JD_10)], val_RR_JD_10, label="RR JD (10 inner␣
↪→iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(val_RR_JD_20)], val_RR_JD_20, label="RR JD (20 inner␣
↪→iters)", linewidth=2, color=:green, linestyle=:dot,␣
↪→ylims=(val_RR_GD_20[end]-2,val_RR_GD_20[end]+.1))

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[14]:

[15]: println(" $(length(res_RR_Arnoldi)-1) Arnoldi iterations")
println(" $(length(res_RR_Davidson)-1) Davidson␣
↪→iterations")

println(" 2 inner iterations --- $(length(res_RR_GD_2)-1) GD outer iterations =>␣
↪→$(length(res_RR_JD_2)-1) JD outer iterations")

println(" 5 inner iterations --- $(length(res_RR_GD_5)-1) GD outer iterations =>␣
↪→$(length(res_RR_JD_5)-1) JD outer iterations")

println("10 inner iterations --- $(length(res_RR_GD_10)-1) GD outer iterations␣
↪→=> $(length(res_RR_JD_10)-1) JD outer iterations")

println("20 inner iterations --- $(length(res_RR_GD_20)-1) GD outer iterations␣
↪→=> $(length(res_RR_JD_20)-1) JD outer iterations")

126 Arnoldi iterations
129 Davidson iterations

2 inner iterations --- 67 GD outer iterations => 72 JD outer iterations
5 inner iterations --- 38 GD outer iterations => 31 JD outer iterations

10 inner iterations --- 56 GD outer iterations => 23 JD outer iterations
20 inner iterations --- 88 GD outer iterations => 24 JD outer iterations

[16]: println("Approximate eigenvalues")

println(" Arnoldi: $(val_RR_Arnoldi[end])")
println(" Davidson: $(val_RR_Arnoldi[end])")

10

println(" 2 inner iterations --- GD: $(val_RR_GD_2[end])")
println(" JD: $(val_RR_JD_2[end])")
println(" 5 inner iterations --- GD: $(val_RR_GD_5[end])")
println(" JD: $(val_RR_JD_5[end])")
println("10 inner iterations --- GD: $(val_RR_GD_10[end])")
println(" JD: $(val_RR_JD_10[end])")
println("20 inner iterations --- GD: $(val_RR_GD_20[end])")
println(" JD: $(val_RR_JD_20[end])")

Approximate eigenvalues
Arnoldi: 54.082055996412564

Davidson: 54.082055996412564
2 inner iterations --- GD: 54.08205599641252

JD: 54.08205599641244
5 inner iterations --- GD: 54.08205599641254

JD: 54.08205599641246
10 inner iterations --- GD: 54.08205599641259

JD: 54.08205599641256
20 inner iterations --- GD: 54.08205599641251

JD: 54.08205599641259

With proper projection through Jacobi-Davidson (JD) iteration, the convergence delay of the gen-
eralized Davidson (GD) iteration is partly remedied.

Exercise 5: Harmonic Ritz Arnoldi

[46]: function HR_CGS2_arnoldi(A, q1::Vector{Float64}, k::Int, sigma, tol::Float64)
n, _ = size(A)
Q = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k))
h = zeros(Float64, k+1)
w = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)
Q[:, 1] = q1 ./ norm(q1)
j = 0
vec = nothing
while true

j += 1
w .= A * Q[:, j]
h .= Q'w
h[j+1:k+1] .= 0.
H[:, j] = h
w -= Q * h
h .= Q'w
h[j+1:k+1] .= 0.
w -= Q * h
H[j + 1, j] = norm(w)

11

Q[:, j + 1] = w ./ H[j + 1, j]
e_j = zeros(Float64, j); e_j[j] = 1.
f = (H[1:j, 1:j] - sigma * I)' \ e_j
G = H[1:j, 1:j] + norm(H[j + 1, j])^2 .* f * e_j'
vals, vecs = eigen(G)
ind = argmin(norm.(vals .- sigma))
val[j] = vals[ind]
vec = vecs[:, ind]
rho = val[j] - norm(H[j + 1, j])^2 * vec'f * vec[j]
res[j] = sqrt.(real.((val[j] .- rho) .* conj.(rho .- sigma)))
res[j] /= norm(rho)
if ((res[j] < tol) || (j == k))

break
end

end
return res[1:j], val[1:j], Q[:, 1:j] * vec

end;

[47]: sigma = 2.;
k = 500;
res_HR_Arnoldi, val_HR_Arnoldi, _ = HR_CGS2_arnoldi(A, q, k, sigma, tol);

Exercise 6: Harmonic Ritz Davidson

[21]: function HR_Davidson(A,
q::Vector{Float64},
k::Int,
sigma::Float64,
tol::Float64;
which=:RayleighQuotient)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)
t .= q
j = 0
DA = spdiagm(diag(A, 0))
while true

j += 1
w = (A - sigma * I) * t
for i in 1:j

witw = W[:, i]'w

12

w .-= witw * W[:, i]
t .-= witw * Q[:, i]

end
w_norm = norm(w)
W[:, j] = w / w_norm
Q[:, j] = t / w_norm
H[j, 1:j] = W[:, j]'Q[:, 1:j]
H[1:j, j] = W[:, 1:j]'Q[:, j]
vals, vecs = eigen(H[1:j, 1:j])
ind = argmax(norm.(vals))
y .= Q[:, 1:j] * vecs[:, ind]
yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]
val[j] = sigma + dlbda
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - dlbda * y
r .= A * y - val[j] * y

elseif which == :RayleighQuotient
drho = conj(vals[ind]) / yty
val[j] = sigma + drho
val[j] = (A * y)'y
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - drho * y
r .= A * y - val[j] * y

end
res[j] = norm(r) / norm(val[j])
if ((res[j] < tol) || (j > k))

break
end
t .= (DA - val[j] * I) \ r

end
return res[1:j], val[1:j], y

end;

[22]: res_HR_Davidson, val_HR_Davidson, _ = HR_Davidson(A, q, k, sigma, tol, which=:
↪→RayleighQuotient);

[48]: p1 = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="HR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:log10,␣
↪→label="HR Davidson", linewidth=2, color=:red)

p2 = plot([i for i in 1:length(val_HR_Arnoldi)], val_HR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR␣
↪→Davidson", linewidth=2, color=:red, ylims=(sigma-2, sigma+2))

13

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[48]:

Exercise #7: Harmonic Ritz generalized Davidson

[49]: function HR_GD(A,
q::Vector{Float64},
k::Int,
sigma::Float64,
tol::Float64;
inner_precond=:Tridiagonal,
inner_iters=5,
which=:RayleighQuotient)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)
M = if inner_precond == :Diagonal

Diagonal(A - sigma * I)
elseif inner_precond == :Tridiagonal

Tridiagonal(A - sigma * I)
elseif inner_precond == :ILU

ilu(A - sigma * I, τ=0.01)
end
t .= q
j = 0
while true

j += 1

14

w = (A - sigma * I) * t
for i in 1:j

witw = W[:, i]'w
w .-= witw * W[:, i]
t .-= witw * Q[:, i]

end
w_norm = norm(w)
W[:, j] = w / w_norm
Q[:, j] = t / w_norm
Update projected matrix H for HR procedure
H[j, 1:j] = W[:, j]'Q[:, 1:j]
H[1:j, j] = W[:, 1:j]'Q[:, j]
vals, vecs = eigen(H[1:j, 1:j])
ind = argmax(norm.(vals))
y .= Q[:, 1:j] * vecs[:, ind]
yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]
val[j] = sigma + dlbda
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - dlbda * y
r .= A * y - val[j] * y

elseif which == :RayleighQuotient
drho = conj(vals[ind]) / yty
val[j] = sigma + drho
val[j] = (A * y)'y
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - drho * y
r .= A * y - val[j] * y

end
res[j] = norm(r) / norm(val[j])
if ((res[j] < tol) || (j > k))

break
end
Compute expansion vector by GMRES
t .= r
gmres!(t, A - val[j] * I , -r, Pl=M, maxiter=inner_iters)

end
return res[1:j], val[1:j], y

end;

[50]: res_HR_GD_2, val_HR_GD_2, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=2, which=:RayleighQuotient);

res_HR_GD_5, val_HR_GD_5, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=5, which=:RayleighQuotient);

res_HR_GD_10, val_HR_GD_10, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=10, which=:RayleighQuotient);

15

res_HR_GD_20, val_HR_GD_20, _ = HR_GD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=20, which=:RayleighQuotient);

[51]: p1 = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="HR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:log10,␣
↪→label="HR Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(res_HR_GD_2)], res_HR_GD_2, yscale=:log10, label="HR␣
↪→GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_HR_GD_5)], res_HR_GD_5, yscale=:log10, label="HR␣
↪→GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_HR_GD_10)], res_HR_GD_10, yscale=:log10,␣
↪→label="HR GD (10 inner iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(res_HR_GD_20)], res_HR_GD_20, yscale=:log10,␣
↪→label="HR GD (20 inner iters)", linewidth=2, color=:green)

p2 = plot([i for i in 1:length(val_HR_Arnoldi)], val_HR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR␣
↪→Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_HR_GD_2)], val_HR_GD_2, label="HR GD (2 inner␣
↪→iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_HR_GD_5)], val_HR_GD_5, label="HR GD (5 inner␣
↪→iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_HR_GD_10)], val_HR_GD_10, label="HR GD (10 inner␣
↪→iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_HR_GD_20)], val_HR_GD_20, label="HR GD (20 inner␣
↪→iters)", linewidth=2, color=:green, ylims=(sigma-2, sigma+2))

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[51]:

16

Exercise 8: Harmonic Ritz Jacobi-Davidson

[52]: function HR_JD(A,
q::Vector{Float64},
k::Int,
sigma::Float64,
tol::Float64;
inner_precond=:Tridiagonal,
inner_iters=5,
which=:RayleighQuotient)

n, _ = size(A)
Q = zeros(Float64, (n, k+1))
W = zeros(Float64, (n, k+1))
H = zeros(Float64, (k+1, k+1))
y = zeros(Float64, n)
r = zeros(Float64, n)
t = zeros(Float64, n)
res = zeros(Float64, k+1)
val = zeros(Float64, k+1)
M = if inner_precond == :Diagonal

OrthoPrecond(Diagonal(A - sigma * I), copy(q))
elseif inner_precond == :Tridiagonal

OrthoPrecond(Tridiagonal(A - sigma * I), copy(q))
elseif inner_precond == :ILU

OrthoPrecond(ilu(A - sigma * I, τ=0.01), copy(q))
end
t .= q
j = 0
while true

j += 1
w = (A - sigma * I) * t
for i in 1:j

witw = W[:, i]'w
w .-= witw * W[:, i]
t .-= witw * Q[:, i]

end
w_norm = norm(w)
W[:, j] = w / w_norm
Q[:, j] = t / w_norm
H[j, 1:j] = W[:, j]'Q[:, 1:j]
H[1:j, j] = W[:, 1:j]'Q[:, j]
vals, vecs = eigen(H[1:j, 1:j])
ind = argmax(norm.(vals))
y .= Q[:, 1:j] * vecs[:, ind]
yty = y'y
y ./= sqrt(yty)
if which == :HarmonicRitzValue

dlbda = 1. / vals[ind]

17

val[j] = sigma + dlbda
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - dlbda * y
r .= A * y - val[j] * y

elseif which == :RayleighQuotient
drho = conj(vals[ind]) / yty
val[j] = sigma + drho
val[j] = (A * y)'y
r .= W[:, 1:j] * vecs[:, ind] / sqrt(yty) - drho * y
r .= A * y - val[j] * y

end
res[j] = norm(r) / norm(val[j])
if ((res[j] < tol) || (j > k))

break
end
tA = LinearOperator(Float64, n, n, false, false,

(tAx, x) -> mul_tA(A, val[j], y, x, tAx),
nothing, nothing)

Compute expansion vector by GMRES constrained
to the orthogonal complement of range(y)
t .= r
M.y .= y
gmres!(t, tA, -r, Pl=M, maxiter=inner_iters)

end
return res[1:j], val[1:j], y

end;

[53]: res_HR_JD_2, val_HR_JD_2, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=2, which=:RayleighQuotient);

res_HR_JD_5, val_HR_JD_5, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=5, which=:RayleighQuotient);

res_HR_JD_10, val_HR_JD_10, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=10, which=:RayleighQuotient);

res_HR_JD_20, val_HR_JD_20, _ = HR_JD(A, q, k, sigma, tol, inner_precond=:ILU,␣
↪→inner_iters=20, which=:RayleighQuotient);

[54]: p1 = plot([i for i in 1:length(res_HR_Arnoldi)], res_HR_Arnoldi, yscale=:log10,␣
↪→xlabel="Iteration", ylabel="||Ay-rho*y|| / |rho|", label="HR Arnoldi",␣
↪→linewidth=2, color=:black)

plot!([i for i in 1:length(res_HR_Davidson)], res_HR_Davidson, yscale=:log10,␣
↪→label="HR Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(res_HR_GD_2)], res_HR_GD_2, yscale=:log10, label="HR␣
↪→GD (2 inner iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(res_HR_GD_5)], res_HR_GD_5, yscale=:log10, label="HR␣
↪→GD (5 inner iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(res_HR_GD_10)], res_HR_GD_10, yscale=:log10,␣
↪→label="HR GD (10 inner iters)", linewidth=2, color=:gray)

18

plot!([i for i in 1:length(res_HR_GD_20)], res_HR_GD_20, yscale=:log10,␣
↪→label="HR GD (20 inner iters)", linewidth=2, color=:green)

plot!([i for i in 1:length(res_HR_JD_2)], res_HR_JD_2, yscale=:log10, label="HR␣
↪→JD (2 inner iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_5)], res_HR_JD_5, yscale=:log10, label="HR␣
↪→JD (5 inner iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_10)], res_HR_JD_10, yscale=:log10,␣
↪→label="HR JD (10 inner iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(res_HR_JD_20)], res_HR_JD_20, yscale=:log10,␣
↪→label="HR JD (20 inner iters)", linewidth=2, color=:green, linestyle=:dot)

p2 = plot([i for i in 1:length(val_HR_Arnoldi)], val_HR_Arnoldi,␣
↪→xlabel="Iteration", ylabel="rho", label="HR Arnoldi", linewidth=2, color=:
↪→black)

plot!([i for i in 1:length(val_HR_Davidson)], val_HR_Davidson, label="HR␣
↪→Davidson", linewidth=2, color=:red)

plot!([i for i in 1:length(val_HR_GD_2)], val_HR_GD_2, label="HR GD (2 inner␣
↪→iters)", linewidth=2, color=:blue)

plot!([i for i in 1:length(val_HR_GD_5)], val_HR_GD_5, label="HR GD (5 inner␣
↪→iters)", linewidth=2, color=:magenta)

plot!([i for i in 1:length(val_HR_GD_10)], val_HR_GD_10, label="HR GD (10 inner␣
↪→iters)", linewidth=2, color=:gray)

plot!([i for i in 1:length(val_HR_GD_20)], val_HR_GD_20, label="HR GD (20 inner␣
↪→iters)", linewidth=2, color=:green)

plot!([i for i in 1:length(val_HR_JD_2)], val_HR_JD_2, label="HR JD (2 inner␣
↪→iters)", linewidth=2, color=:blue, linestyle=:dot)

plot!([i for i in 1:length(val_HR_JD_5)], val_HR_JD_5, label="HR JD (5 inner␣
↪→iters)", linewidth=2, color=:magenta, linestyle=:dot)

plot!([i for i in 1:length(val_HR_JD_10)], val_HR_JD_10, label="HR JD (10 inner␣
↪→iters)", linewidth=2, color=:gray, linestyle=:dot)

plot!([i for i in 1:length(val_HR_JD_20)], val_HR_JD_20, label="HR JD (20 inner␣
↪→iters)", linewidth=2, color=:green, linestyle=:dot, ylims=(sigma-2, sigma+2))

plot(p1, p2; layout=(1, 2), size=(950, 350), left_margin=3mm, bottom_margin=3mm)

[54]:

19

[55]: println(" $(length(res_HR_Arnoldi)-1) Arnoldi ␣
↪→iterations")

println(" $(length(res_HR_Davidson)-1) Davidson␣
↪→iterations")

println(" 2 inner iterations --- $(length(res_HR_GD_2)-1) GD outer iterations =>␣
↪→$(length(res_HR_JD_2)-1) JD outer iterations")

println(" 5 inner iterations --- $(length(res_HR_GD_5)-1) GD outer iterations =>␣
↪→$(length(res_HR_JD_5)-1) JD outer iterations")

println("10 inner iterations --- $(length(res_HR_GD_10)-1) GD outer iterations␣
↪→=> $(length(res_HR_JD_10)-1) JD outer iterations")

println("20 inner iterations --- $(length(res_HR_GD_20)-1) GD outer iterations␣
↪→=> $(length(res_HR_JD_20)-1) JD outer iterations")

499 Arnoldi iterations
500 Davidson iterations

2 inner iterations --- 500 GD outer iterations => 500 JD outer iterations
5 inner iterations --- 500 GD outer iterations => 500 JD outer iterations

10 inner iterations --- 487 GD outer iterations => 500 JD outer iterations
20 inner iterations --- 428 GD outer iterations => 99 JD outer iterations

[56]: println("Approximate eigenvalues")

println(" Arnoldi: $(val_HR_Arnoldi[end])")
println(" Davidson: $(val_HR_Arnoldi[end])")
println(" 2 inner iterations --- GD: $(val_HR_GD_2[end])")
println(" JD: $(val_HR_JD_2[end])")
println(" 5 inner iterations --- GD: $(val_HR_GD_5[end])")
println(" JD: $(val_HR_JD_5[end])")
println("10 inner iterations --- GD: $(val_HR_GD_10[end])")
println(" JD: $(val_HR_JD_10[end])")
println("20 inner iterations --- GD: $(val_HR_GD_20[end])")
println(" JD: $(val_HR_JD_20[end])")

Approximate eigenvalues
Arnoldi: 2.053460565092543

Davidson: 2.053460565092543
2 inner iterations --- GD: 1.9967719080760646

JD: 2.004038551760178
5 inner iterations --- GD: 1.9907546977277473

JD: 1.9971231477084577
10 inner iterations --- GD: 2.0144170225715863

JD: 1.996392400964148
20 inner iterations --- GD: 2.0226994779640446

JD: 1.9908580446426472

20

