
PracticeSession03

May 1, 2025

Numerical Linear Algebra for Computational Science and Informa-
tion Engineering
Floating-Point Arithmetic and Error Analysis
Nicolas Venkovic (nicolas.venkovic@tum.edu)

[1]: using LinearAlgebra, Random, Plots, Printf, Latexify, LaTeXStrings

Preamble: Cancellation error
The relative error of a scalar is indicative of the number of correct digits of its approximation. For
example, consider 𝜋 = 3.1415926 …, we have

̂𝜋 | ̂𝜋 − 𝜋|/|𝜋|
3.1 1.323935 × 10−2

3.141 1.886475 × 10−4

3.141592 2.080440 × 10−7

3.1415926 1.705816 × 10−8

When we subtract two nearly equal numbers, their most significant digits cancel out, leading to
a floating-point number that less accurately approximates the difference. This is cancellation
error.

For example, consider the number 𝜋 stored in 32 bits, i.e., �32, and its representation error:

[2]: �32 = Float32(pi)
rel_error_�32 = abs(Float64(�32) - pi) / abs(pi)
@printf "� = %.8f, �32 = %.8f, rel. error = %.2E" � �32 rel_error_�32

� = 3.14159265, �32 = 3.14159274, rel. error = 2.78E-08

We see that �32 has around 8 significant digits.

Then, we want to evaluate the difference between 𝜋 and a nearly equal number, say Δ = 𝜋 −3.14.
We also are interested in the approximation Δ32 of this number, done by evaluating �32 - 3.14 in
32 bits, and we look at the relative error between Δ and Δ32:

1

[3]: Δ32 = Float32(3.14) - �32
Δ = 3.14 - pi
rel_error_Δ = abs(Float64(Δ32) - Δ) / abs(Δ)
@printf "Δ = %.5E, Δ32 %.5E, rel_error_Δ = %.2E" Δ Δ32 rel_error_Δ

Δ = -1.59265E-03, Δ32 -1.59264E-03, rel_error_Δ = 1.10E-05

We see the number of significant digits of Δ32 dropped to 5, from previously 8 digits for �32.

However, the representation of Δ with 32 bits still has around 8 significant digits:

[4]: rel_error_Δ32 = abs(Float64(Float32(Δ)) - Δ) / abs(Δ)
@printf "Δ = %.5E, Float32(Δ) %.5E, rel_error_Δ32 = %.2E" Δ Float64(Float32(Δ))␣

↪rel_error_Δ32

Δ = -1.59265E-03, Float32(Δ) -1.59265E-03, rel_error_Δ32 = 1.20E-08

So, the increase of relative error obtained when evaluating Δ32 using floating-point arithmetic
with 32 bits is indeed due to cancellation.

Exercise #1: Catastrophc cancellation

Let us consider the integral 𝐼𝑛 = ∫1
0 𝑥𝑛𝑒−𝑥𝑑𝑥, which we wish to evalue as a function of 𝑛.

Upon integrating by parts we get the recursive formula 𝐼𝑛 = 𝑛 ⋅ 𝐼𝑛−1 − 1/𝑒 with a base case
𝐼0 = 1 − 1/𝑒.

The recursive formula is implemented as follows:

[2]: function I(n)
if n == 0

return 1. - exp(-1)
end
return n * I(n-1) - exp(-1)

end;

Now, we wish to test I(n). We know that 𝐼100 ≈ 3.678430281 × 10−3. What does I(100) give us?

[3]: I0 = 6.321205588e-1;
I10 = 3.646133462e-2;
I50 = 7.354706796e-3;
I100 = 3.678430281e-3;
I300 = 1.226251224e-3;

II100 = I(100)
println("I_100 = ", II100)
println("rel. error: ", abs(I100 - II100) / abs(I100))

I_100 = -3.1530126806564304e141
rel. error: 8.571625502711085e143

The value returned by I(100) is completely off from the expected result, showing a breakdown of
the numerical method. Why is that?

2

To answer this question, let us look first at first look at what comes into the recursive computation
of 𝐼𝑛+1 for different values of 𝑛, namely 𝑛 ⋅ 𝐼𝑛−1 and 1/𝑒:

[4]: println("1 * I0 = ", I0, ", exp(-1) = ", exp(-1));
println("11 * I10 = ", 10 * I10, ", exp(-1) = ", exp(-1));
println("51 * I50 = ", 51 * I50, ", exp(-1) = ", exp(-1));
println("101 * I100 = ", 101 * I100, ", exp(-1) = ", exp(-1));

1 * I0 = 0.6321205588, exp(-1) = 0.36787944117144233
11 * I10 = 0.3646133462, exp(-1) = 0.36787944117144233
51 * I50 = 0.37509004659600004, exp(-1) = 0.36787944117144233
101 * I100 = 0.371521458381, exp(-1) = 0.36787944117144233

We see that the true value of 𝑛⋅𝐼𝑛−1 grows closer to 1/𝑒 as 𝑛 increases. Then, I(n) attempts to
evaluate 𝐼𝑛 by subtracting these increasingly close numbers, which leads to cancellation error.
In addition to this, 𝐼𝑛 is then multiplied by 𝑛+1 in order to compute 𝐼𝑛+1. As 𝑛 grows, this means
the cancellation error may be maginified, accelerating the propagation of errors.

In order to circumvent this issue, we should try and reformulate the recursion so as to not have
differences of nearly equal numbers multiplied by large numbers.

For that, note that the recursion can be recast into 𝐼𝑛−1 = 1/𝑛⋅(𝐼𝑛+1/𝑒), which is used backwards,
from a base case 𝐼𝑚 with 𝑚 > 𝑛. Let us for instance use 𝐼300 as a base case. The backward
recursion is implemented as follows:

[5]: function J(n)
J = 1.226251224e-3
i = 300
while (i > n)
J = (1. / i) * (J + exp(-1))
i -= 1

end
return J

end;

Let us now test J(n) to compute 𝐼100.

[6]: J100 = J(100)
println("J_100 = ", J100)
println("rel. error: ", abs(I100 - J100) / abs(I100))

J_100 = 0.0036784302813674887
rel. error: 9.990364464392733e-11

The problem now is fixed.

This problem was suggested by Luc Giraud from Inria, Bordeaux.

Exercise #2: Ill-conditioned linear system
Let us consider the linear system 𝐴𝑥 = 𝑏 given by

3

𝐴 = [1 1
1 + 𝜀 1] and 𝑏 = [𝑏1

𝑏1 + 𝜀] with 𝜀 > 0.

The unique exact solution of this system is given by

𝑥 = [1
𝑏1 − 1] .

The matrix 𝐴 has eigenvalues 𝜆𝑚𝑖𝑛 = 1 − √1 + 𝜀 and 𝜆𝑚𝑎𝑥 = 1 + √1 + 𝜀, so that ‖𝐴‖2 = 𝜆𝑚𝑎𝑥 =
1 + √1 + 𝜀 and, the condition number for solving a linear system with 𝐴 is

𝜅(𝐴) = ‖𝐴−1‖2‖𝐴‖2 = |𝜆𝑚𝑎𝑥(𝐴)|
|𝜆𝑚𝑖𝑛(𝐴)| = 1 + √1 + 𝜀

|1 − √1 + 𝜀| = (1 + √1 + 𝜀)2

𝜀 (𝐴 is normal).

That is, solving for 𝑥 is an ill-conditioned problem for sufficiently small values of 𝜀. For example,
we have

[7]: function get_A(�)
return [1. 1.;

1+� 1.]
end;

get_b(b1, �) = [b1;b1+�];
get_�(�) = (1 + sqrt(1+�))^2/�;
get_x(b, �) = [1.; b[1]-1.];

for � � (1e-3, 1e-4, 1e-5, 1e-6)
� = get_�(�);
@printf "� = %.0E, � = %.1E\n" � �

end

� = 1E-03, � = 4.0E+03
� = 1E-04, � = 4.0E+04
� = 1E-05, � = 4.0E+05
� = 1E-06, � = 4.0E+06

Now, in practice some of the components of 𝐴 and 𝑏 may not be exactly stored. In particular, we
may rather have

𝐵 = [1 1
fl(1 + 𝜀) 1] and 𝑐 = [fl(𝑏1)

fl(𝑏1 + 𝜀)] with 𝜀 > 0.

If that is so, assuming fl(1 + 𝜀) > 1 so that 𝐵 remains invertible, the true solution 𝑦 of 𝐵𝑦 = 𝑐
is

𝑦 = 1
fl(1 + 𝜀) − 1 [fl(𝑏1 + 𝜀) − fl(𝑏1)

fl(1 + 𝜀) ⋅ fl(𝑏1) − fl(𝑏1 + 𝜀)] .

4

In case of non-zero representation errors, 𝑦 is only an approximation of 𝑥, i.e., the true solution
of the non-perturbed system 𝐴𝑥 = 𝑏. We saw in class that the minimally normed perturbations
𝛿𝐴 and 𝛿𝑏 such that (𝐴 + 𝛿𝐴)𝑦 = 𝑏 + 𝛿𝑏 are given by

𝛿𝐴 = ‖𝐴‖2
‖𝑦‖2 ⋅ (‖𝐴‖2 ⋅ ‖𝑦‖2 + ‖𝑏‖2) 𝑟𝑦𝑇 and 𝛿𝑏 = − ‖𝑏‖2

‖𝐴‖2 ⋅ ‖𝑦‖2 + ‖𝑏‖2
𝑟

where 𝑟 = 𝑏 − 𝐴𝑦, and so that

𝜂𝐴,𝑏(𝑦) = ‖𝑟‖2
‖𝐴‖2 ⋅ ‖𝑦‖2 + ‖𝑏‖2

= ‖𝛿𝐴‖2
‖𝐴‖2

= ‖𝛿𝑏‖2
‖𝑏‖2

.

In this particular case, since 𝐵 − 𝐴 and 𝑐 − 𝑎 are very small, we actually have

𝜂𝐴,𝑏(𝑦) ≈ ‖𝐵 − 𝐴‖2
‖𝐴‖2

= ‖𝑐 − 𝑏‖2
‖𝑏‖2

.

Now, what we wish to show is that, even though the backward error 𝜂𝐴,𝑏(𝑦) may be
small, the relative forward error ‖𝑥 − 𝑦‖2/‖𝑥‖2 may actually be large, because of the
ill-conditioned nature of the problem reflected by the values of 𝜅(𝐴).

[8]: function get_y(b, �)
arithmetic = :fl64 # fl32
if (arithmetic == :fl32)

a21_32 = Float32(1+�)
b1_32 = Float32(b[1])
b2_32 = Float32(b[1]+�)
return [Float64((b2_32-b1_32)/(a21_32-1));

Float64((a21_32*b1_32-b2_32)/(a21_32-1))]
else

a21_64 = Float64(Float32(1+�))
b1_64 = Float64(Float32(b[1]))
b2_64 = Float64(Float32(b[1]+�))
return [(b2_64-b1_64)/(a21_64-1);

(a21_64*b1_64-b2_64)/(a21_64-1)]
end

end

function get_�(y, �, b, r)
A_2norm = 1+sqrt(1+�)
b_2norm = sqrt(b'b)
r_2norm = sqrt(r'r)
y_2norm = sqrt(y'y)
d = A_2norm * y_2norm + b_2norm
return r_2norm / d

end;

function get_�A(y, �, b, r)
A_2norm = 1+sqrt(1+�)
b_2norm = sqrt(b'b)

5

y_2norm = sqrt(y'y)
c = A_2norm / y_2norm / (A_2norm * y_2norm + b_2norm)
return c * r * y'

end;

function get_�b(y, �, b, r)
A_2norm = 1+sqrt(1+�)
b_2norm = sqrt(b'b)
y_2norm = sqrt(y'y)
c = - b_2norm / (A_2norm * y_2norm + b_2norm)
return c * r

end;

function check(y, �, A, b, r)
�A = get_�A(y, �, b, r)
�b = get_�b(y, �, b, r)
z = (A + �A) \ (b + �b)
println(norm(y - z))

end

b1 = 22.

for � � (1e-3, 1e-4, 1e-5, 1e-6)
A = get_A(�);
b = get_b(b1, �);
� = get_�(�);
x = get_x(b, �);
y = get_y(b, �);
r = b - A * y;
forward_error = sqrt((x-y)'*(x-y))/sqrt(x'x);
backward_error = get_�(y, �, b, r);
check(y, �, A, b, r);
@printf "� = %.0E, � = %.1E, backward_error = %.4E, forward_error = %.4E\n" � �␣

↪backward_error forward_error
end

� = 1E-03, � = 4.0E+03, backward_error = 8.1454E-09, forward_error = 4.0093E-05
� = 1E-04, � = 4.0E+04, backward_error = 1.1401E-08, forward_error = 5.6123E-04
� = 1E-05, � = 4.0E+05, backward_error = 6.5008E-09, forward_error = 3.2032E-03
� = 1E-06, � = 4.0E+06, backward_error = 1.4023E-08, forward_error = 6.7267E-02

We can see that, as the condition number 𝜅(𝐴) of the problem increases, the backward error
𝜂𝐴,𝑏(𝑦), which characterizes the approximation 𝑦 of 𝑥 , becomes less and less indicative of the
relative forward error. Indeed, we do have

‖𝑥 − 𝑦‖2
‖𝑥‖2

≲ 𝜅(𝐴) × 𝜂𝐴,𝑏(𝑦).

6

Exercise #3: Ill-conditioned eigenvalue problem
We saw during the lecture that the condition number was a problem-dependent quantity. In order
to showcase this, we take a look at a specific type of matrix which is well-conditioned for linear
solves, but has ill-conditioned eigenvalues.

We consider the Grcar matrix (see https://math.nist.gov/MatrixMarket/data/NEP/mvmgrc/mvmgrc.html)
which is upper Hessenberg, and thus, non-normal.

[9]: function get_A(n)
A = zeros(n, n);
A[diagind(A, -1)] .= -1.;
for i in 0:3
A[diagind(A, i)] .= 1.;

end
return A

end

println("For n=10, the Grcar matrix looks like this:")
latex_string = L"A = " * latexify(get_A(10));
display("text/latex", latex_string);

For n=10, the Grcar matrix looks like this:

𝐴 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 −1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 −1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 −1.0 1.0 1.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 −1.0 1.0 1.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 −1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 −1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0 1.0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

This matrix has a small condition number �(A) with respect to linear solves. In particular, for
n=100, we have:

[10]: n = 100;
A = get_A(n);
� = cond(A)

[10]: 3.5911104629805917

The small value of 𝜅 = ‖𝐴−1‖2‖𝐴‖2 means that the solution 𝑥 of the linear system 𝐴𝑥 = 𝑏 is not
highly sensitive to perturbations. That is, the true solution 𝑦 of (𝐴 + 𝛿𝐴)𝑦 = 𝑏 + 𝛿𝑏 remains close
to 𝑥 , as long as ‖𝛿𝐴‖2 and ‖𝛿𝑏‖2 are small. We can put this to the test as follows:

7

[11]: Random.seed!(123467);
b = 1 .+ rand(n);
A_2norm = norm(A);
b_2norm = norm(b);

x = A \ b

�A0 = rand(n, n); �A0 ./= norm(�A0);
�b0 = rand(n); �b0 ./= norm(�b0);

for � � (1e-5, 1e-4, 1e-3, 1e-2)
�A = � * �A0
�b = � * �b0
y = (A + �A) \ (b + �b)
rel_error = norm(y - x) / norm(x)
@printf "||�A||_2/||A||_2 = %.2E, ||�b||_2/||b||_2 = %2.E, ||y - x||_2/||x||_2␣

↪= %.2E\n" norm(�A)/A_2norm norm(�b)/b_2norm rel_error
end

||�A||_2/||A||_2 = 4.50E-07, ||�b||_2/||b||_2 = 6E-07, ||y - x||_2/||x||_2 =
2.28E-06
||�A||_2/||A||_2 = 4.50E-06, ||�b||_2/||b||_2 = 6E-06, ||y - x||_2/||x||_2 =
2.28E-05
||�A||_2/||A||_2 = 4.50E-05, ||�b||_2/||b||_2 = 6E-05, ||y - x||_2/||x||_2 =
2.28E-04
||�A||_2/||A||_2 = 4.50E-04, ||�b||_2/||b||_2 = 6E-04, ||y - x||_2/||x||_2 =
2.28E-03

where we see that the forward error ‖𝑦−𝑥‖2/‖𝑥‖2 is properly measured by the relative perturbations
‖𝛿𝐴‖2/‖𝐴‖2 and ‖𝛿𝑏‖2/‖𝑏‖2 multiplied by the moderatly small condition number 𝜅(𝐴).
Now, let us look into the eigenvalues of 𝐴.

We remember the condition number 𝜅(𝐴, 𝜆) of an eigenvalue 𝜆 with normalized right- and left-
eigenvectors 𝑢 and 𝑣 , respectively, i.e., such that

𝐴𝑢 = 𝜆𝑢, 𝐴𝐻𝑣 = 𝜆𝑣, ‖𝑢‖2 = ‖𝑣‖2 = 1
is given by

𝜅(𝐴, 𝜆) = 1
|𝑣𝐻𝑢|

so that 𝜅(𝐴, 𝜆) becomes increasingly large as the right- and left-eigenvectors 𝑢 and 𝑣 are close to
be orthogonal.

For the case of the Grcar matrix, we can see that the condition number is very high, for all the
eigenvalues. For example, we have

[12]: Λ, U = eigen(A);
Θ, V = eigen(transpose(A));
�_�1 = 1. / norm(U[:,1]'V[:,2]);
�_�n = 1. / norm(U[:,n]'V[:,n-1]);

8

@printf "�_�1 = %.2E, �_�n = %.2E" �_�1 �_�n

�_�1 = 1.85E+14, �_�n = 1.09E+06

Let us now showcase the ill-conditioning of these eigenvalues by applying small perturbation 𝛿𝐴
to 𝐴, and see what the effect is on the spectrum:

[13]: �A = 1e-5 * �A0
Θ = eigvals(A + �A)
rel_error_1 = norm(Λ[1] - Θ[1]) / norm(Λ[1])
rel_error_n = norm(Λ[n] - Θ[n]) / norm(Λ[n])
@printf "||�A||_2/||A||_2 = %.2E, |�1 - �1|/|�1| = %.2E, |�n - �n|/|�n| = %.2E\n"␣

↪norm(�A)/A_2norm rel_error_1 rel_error_n

||�A||_2/||A||_2 = 4.50E-07, |�1 - �1|/|�1| = 1.25E-01, |�n - �n|/|�n| =
5.94E-01

We can see that despite the fact that the perturbation is small, the effect on the eigenvalues with
smallest and largest magnitudes is very strong.

It is worth observing the effect of the entire spectrum:

[14]: p = scatter(real.(Λ), imag.(Λ), xlabel="Real Part", ylabel="Imaginary Part",␣
↪title="Perturbation of eigenvalues",

label="Sp(A)", marker=:circle, markersize=2, markerstrokewidth=0,␣
↪color=:blue, aspect_ratio=:equal)

scatter!(p, real.(Θ), imag.(Θ), label="Sp(A+�A)", marker=:circle, markersize=2,␣
↪markerstrokewidth=0, color=:red)

hline!([0], color=:black, linestyle=:dash, label="")
vline!([0], color=:black, linestyle=:dash, label="")
display(current())

9

Hence, we see that, despite being well-conditioned for linear solves, the Grcar matrix has ill-
conditioned eigenvalues, which confirms that, indeed, the condition number is a problem-
dependent quantity.

10

