[1]:

[2]:

PracticeSession04
May 1, 2025

Numerical Linear Algebra for Computational Science and Informa-
tion Engineering

Direct Methods for Dense Linear Systems

Nicolas Venkovic (nicolas.venkovic@tum.edu)

using LinearAlgebra, Random, Plots, Printf, Latexify, LaTeXStrings

Exercise #1: Forward substition with row-wise data access

As we saw, to solve a lower triangular system Lx = b, we start by z; = b;/ly;, which we then
substitute in the expression to solve for x5, and we keep moving forward like this. This yields the
expression

i—1
j=1

which is coded as follows:

Forward substitution with row-wise access to L
function RowMajorForwardSubstitution(L, b) # ~ trtrsRow(L, b), p. 67 in Darve,
wand Wootters (2021)
n = length(b)
x = Vector{Float64} (undef, n)
for i = 1:n

N
]

0.
for j = 1:i-1
+=

z L[i, j1 * x[j]
end
x[i] = (b[i] - z) / L[i, il
end
return x

end;

One thing we notice in this implementation is that, the data from L is fetched row-wise, i.e., for
a given index value 7, the summation first uses l;;, then [;5, and then [;5, and so on, until [, ; ;.

However Julia matrices are stored in a column-major format, so that this pattern of data access
results in multiple cache misses.

Exercise #2: Reorganizing forward substition to avoid cache misses

Instead of following a row-wise data access, we prefer to compute z; by streaming through the
components of L in a column-wise fashion. To see how to do that, let us expose how the
components of = are formed:

xy = by /lyy
Ty = (by — lyy77) /511
T3 = (by — l3171 — l3975) [l33

Ty = (by — 7y — lgowy — l43$3) o

Ly = (bn - lnlxl - ln2x2 - ln3$3 - ln,n—lxn—1> /lnn

We can see that, once we are done evaluating x;, the partial contributions [, ., ;@;, l; 15,2, ..., 1%,
can all be added one after the other to ; , z;,, ..., x,,, respectivelly. When doing so, the require-
ment is that x; , is fully evaluated before adding its the partial contributions to the subsequent
component T, i, T;,o,...,%,. Thus, the calculation can be re-ordered as follows:

O. $1 = b17 IQ = b27 eey .’Bn — bn

Loay =/l

2. :112 = .772 - l21{L’1, 5133 = .%3 - 131{131, 5134 = .’L‘4 - l41$1, ey .Tn = .'L’n - lnlxl

3. @y i=ay/lyy

4. .%'3 = $3 — 132.%'2, .%'4 = .%'4 - 142.’,62, ceey xn = an — ln2x2

5. wg:=x3/lss

6. ZC4 = .%‘4—[43163, ceey .I‘n = xn_lnsx?)
2n — 2. Lp—1 = "L‘nfl/lnfl,nfl
2n — 1. Ly =Ty — ln,nfl'rnfl

2n. z, =x,/l,,

where, clearly, the components of L are now accessed row-wise. This is coded as follows:

Forward substitution with column-wise access to L
function ColumnMajorForwardSubstitution(L, b) # ~ trtrs(L, b), p. 67 in Darve,
wand Wootters (2021)

n = length(b)
x = copy(b)
for j = 1:n

x[j1 = x[j1 / LLj, jl
for i = j+1:n
x[i] -= L[i, j1 * x[j]

end
end
return x
end;

Exercise #3: Performance comparison of data access patterns for forward sub-
stitution

Let us now introduce a lower triangular matrix and measure the difference in runtime between the
two approaches.

[4]: function get_L(n)
L = zeros(n, n)

for j=1:n
L{j,j1 = 1.
L[j+1:n,j] = rand(-2:2, n-j)
end
return L
end

Random.seed! (123467) ;

for n in (2_000, 20_000)
L = get_L(n)
x_exact = rand(0:9, n)
b =L * x_exact
dtl = Qelapsed x1 = RowMajorForwardSubstitution(L, b)
dt2 = Gelapsed x2 = ColumnMajorForwardSubstitution(L, b)
@printf "n = %d\n" n
Oprintf "Row-wise access: dt
X_exact)
Q@printf " Cache-friendly: dt = %.2E, ||x - x_exact]||_2
X_exact)

%.2E, |lx - x_exact||_2 = %E\n" dtl norm(xl -

%E\n" dt2 norm(x2 -

end

n = 2000

Row-wise access: dt
Cache-friendly: dt

n = 20000

Row-wise access: dt
Cache-friendly: dt

0.000000E+00
0.000000E+00

3.65E-03, |l|x - x_exactl||_2
2.66E-03, ||x - x_exact||_2

1.36E+00, |lx - x_exact||_2
1.47E-01, |lx - x_exact||_2

0.000000E+00
0.000000E+00

Exercise #4: Forward elimination without pivoting with row-wise access

For a given matrix A with components a,; =: al?

j ij » we saw that forward elimination without
pivoting goes a follows:

for k=1,...,n—1 // Loop over Gauss transformations Gy, ...,G,,_,

// Compute A = G, A+-1)
ij ‘= Qij
(k) .

a for i=1,...,k and j=14,...,n

0 for j=1,...,k and 1 =j+1,...,n

for i=k+1,...,n // Loop over rows acted on by G,
(k) . (k=1) (k1)
M= gy g,
for j=k+1,...,n // Loop over columns acted on by G,
(k) . (k=1) (k) (k=1)
R 2 B (A W

We also saw that, if no breakdown happens, we obtain the upper triangular matrix U =
G, 1 G A = AU Moreover, the lower triangular matrix L := G7'--G;!, is a by-product
of the procedure, i.e., we have

1
(1)

I

L= : 1
m(l) mﬁl"*” 1

such that LU = A. A first implementation to obtain the LU factors of A by forward elimination
is as follows:

[6]: # "outer-product” implementation of forward elimination with row-wise datay

waccess
function get_LU(A) # ~ getrfOuter!(4), p. 74 in Darve and Wootters (2021)
n, _ = size(A)
L = zeros(n, n); L[diagind(L)] .= 1.
U = copy(A)

for k = 1:n-1
for i = k+1:n
m = U[i, k] / Ulk, k]
for j = k+l:n
Uli, j1 = m * Ulk, j]

end

L[i, k] = m
end
Ulk+1:n, k] .= 0.

end
return L, U
end;

which we can test with a matrix as follows:

[6]: | function get_A(n)
A = zeros(n, n)

for j=1:n
Al:,j] = rand(-2:2, n)
Alj,j]1 = 1.
end
return A
end;

Random.seed! (123467)

for n in (10, 100, 1_000)
A = get_A(n)
L, U = get_LU(A)
println(maximum(abs. (L * U - A)))
end

9.82927766795898e-15
1.8189894035458565e-12
5.0391690820106305e-11

We also saw that Az = b can be solved in two triangular solves, i.e.,

1. Solve for z such that Lz = b,
2. Solve for z such that Uz = z.

[7]: Random.seed! (1)

for n in (10, 100, 1_000)
A = get_A(n)
x_exact = rand(0:9, n)
b = A * x_exact
L, U = get_LU(A)
z = LowerTriangular(L) \ b # Forward substitution
x = UpperTriangular(U) \ z # Backward substitution
Oprintf "n = %d, |lx - x_exact||_2/||x_exact||_2 = %E\n" n norm(x - x_exact) /
< norm(x_exact)
end

n =10, |lx - x_exact||_2/||x_exact||_2 = 5.237667E-15
= 100, |lx - x_exactl||_2/||x_exact||_2 = 1.322292E-11
1000, |Ix - x_exact||_2/||x_exact||_2 = 1.595005E-11

B B
I

Exercise #5: In-place LU factorization without pivoting with row-wise access

Clearly, U can be computed in-place, i.e., the components of A1), ..., A2 A=) = [can be
stored within A from one Gauss transformation to another.

[8]:

[9]:

(k) (k)

Also, for a given transformation G, the components a,/; ;,...,a,;, which are set to zero by
construction, can be used to store the components of the k-th column of L below the diagonal,
i.e., mgﬁl,...,mgﬂ).

Then, no extra memory needs to be alocated, and upon completion of the forward elimination
procedure, A contains simultaneously the components of U in its upper-triangular part, and the
non-trivial components of L.

This is coded as follows:

In-place "outer—product” implementation of forward elimination with row-wise
~data access
function RowMajor_LU_InPlace!(A) # ~ getrfOuter!(4), p. 74 in Darve andy,
sWootters (2021)
n, _ = size(A)
for k = 1:n-1
for i = k+l:n
Ali, k] /= Alk, k]
end
for i = k+1:n
for j = k+l:n
Ali, j1 —= A[i, k] = Alk, jl
end
end
end
end;

Random.seed! (12345)

n =1 000

A = get_A(n)

A_LU = copy(4)

RowMajor_LU_InPlace! (A_LU)

U = UpperTriangular (copy(A_LU))

L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.
println(maximum(abs. (L * U - A)))
3.6419578464119695e-10

Looking at the way the non-trivial components of A*) = G, A=Y are set, we see the inner-

most loop of the initial implementation of forward elimination iterates in a row-wise fashion over
components of A*1) je.. we set

ag? = agf_l) — mgk)a%_l) by iterating over j=k+1,...,n
fori=k+1,...,n.

Therefore, for a given k such that each 1 < k < n, we have

ag-c) == agl_l) =u,;; for i€{l,..,k+1} and j€ {i,....,k+ 1} (1)

where u,;; denotes the components of the upper-triangular factor U. Therefore, we have

;= ag-_l) for i e {1,...,7}.

9

Exercise #6: Reorganizing forward elimination for cache-friendly in-place LU
factorization without pivoting

Instead of iterating over Gy, ..., G,,_; in an outer-most loop, we wish to form U column-by-column.
That is, given a column j such that 1 < j < n, assume the non-trivial components of the j —1
first columns of U are known, and we want to form w,;; for ¢ =1,...,j. Then we have
_ (0
Upj = ay
_ (D (0) (1) _(0)
Ug; = Qgj = Aoy — m2 1]
(2) (1) @),
Uzj = Ag; = Ag; — Mg 2]
(—=2) _ (-3 (7—2) (—-3)
Uj1,j = @15 = 451, — M1 Gy
-1 _ (—2) (7-1) (j—2)
Ujj = G5~ = Ay T My G5
where aél,j), s a%_z) are not computed yet. However, in general, for k£ < j, we can also evaluate
k) ‘ -
ai; by
// Forming (1 " from (1‘,(/”,(1;}), ,(1,[1-5 U,
for | = 1,...,k:
@ ,_ (-1) (1) (-1)
Aij = Qg5 — My Ay,
Therefore, the components w,;; for ¢ = 1,...,j may be computed only using the components
al?, ,ag(;.) and
mél) for wy;
mél),mgf) for wus;
1 2
mg_)l, ...,mgj_l) for w; 4 ;
(1) (G-2) (-1
My ey My M for U4

which are the non-trivial components of the j — 1 first columns of the lower- triangular factor L.
() (4)

While the evaluation of m(21>, ..,my) from a<1(]1),. ‘%(101) is a given, the evaluation of mJ/,, ..., my

such that 1 < 7 <n is done by

<) _
]J'H - a]+1,y/a J+1 J/UJJ
] i—1 j—1 -1

where, simimlarly,

(-1 (0) (7—2)
ajiq; can be formed from a; ..., a7
(-1) (0) (i—2)

a, ;i can be formed from Upy o oo s Oy

Therefore, the non-trivial components of the j-column of the lower-triangular and upper-triangular
factors of A, i.e., L and U, respectively, can be formed using only data from the j-th column of A,
and the components in the previously formed columns of L. This can be done with an inner-most
loop which iterates in a column-wise fashion of the components of A. This is done as follows:

[10]: # In-place implementation of forward elimination with column-wise data access
function ColumnMajor_LU_InPlace!(A) # ~ getrfAzpy!/(4), p. 75 in Darve and,
sWootters (2021)

n, _ = size(A)
for j = 1:n
for k = 1:j-1

for i = k+1:n
Ali, jl -= Ali, k] = Alk, jl

end

end

for i = j+l:n
Ali, j1 /= ALj, jl

end

end
end;

Exercise #7: Compare runtime of in-place LU factorization without pivoting
with different data access patterns

The effect on runtime is as follows:

[12]: Random.seed! (1)

for n in (10, 100, 1_000)
A = get_A(n)
rand(0:9, n);
A_LU = copy(4)
dt = @elapsed get_LU_InPlace!(A_LU)
U = UpperTriangular (copy(A_LU))
L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.
@printf "n = %d\n" n
Oprintf "Row-wise access: dt = Jg, component-wise max error = %E\n" dt,
omaximum(abs. (L * U - A))
A_LU = copy(A)
dt = Qelapsed ColumnMajor_LU_InPlace! (A_LU)
U = UpperTriangular(copy(A_LU))
L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.

O@printf " Cache-friendly: dt = %g, component-wise max error = %E\n" dt,
omaximum(abs. (L * U - A))

end

n =10

Row-wise access:
Cache-friendly:

n = 100

Row-wise access:
Cache-friendly:

1000

n =

Row-wise access:
Cache-friendly:

dt
dt

dt
dt

dt
dt

.523e-06, component-wise max error
.621e-06, component-wise max error

.000242756, component-wise
.000220563, component-wise

.43181, component-wise max
.17278, component-wise max

~

~

max error
max error

1]
ﬂ

error
error

I
~

.105427E-15
.105427E-15

8.390133E-11
8.390133E-11

.033041E-11
.033041E-11

