
PracticeSession04

May 1, 2025

Numerical Linear Algebra for Computational Science and Informa-
tion Engineering
Direct Methods for Dense Linear Systems
Nicolas Venkovic (nicolas.venkovic@tum.edu)

[1]: using LinearAlgebra, Random, Plots, Printf, Latexify, LaTeXStrings

Exercise #1: Forward substition with row-wise data access
As we saw, to solve a lower triangular system 𝐿𝑥 = 𝑏 , we start by 𝑥1 = 𝑏1/𝑙11, which we then
substitute in the expression to solve for 𝑥2, and we keep moving forward like this. This yields the
expression

𝑥𝑖 ∶= (𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑙𝑖𝑗𝑥𝑗) /𝑙𝑖𝑖 for 𝑖 = 2, … , 𝑛

which is coded as follows:

[2]: # Forward substitution with row-wise access to L
function RowMajorForwardSubstitution(L, b) # ~ trtrsRow(L, b), p. 67 in Darve␣

↪and Wootters (2021)
n = length(b)
x = Vector{Float64}(undef, n)
for i = 1:n
z = 0.
for j = 1:i-1

z += L[i, j] * x[j]
end
x[i] = (b[i] - z) / L[i, i]

end
return x

end;

One thing we notice in this implementation is that, the data from 𝐿 is fetched row-wise, i.e., for
a given index value 𝑖, the summation first uses 𝑙𝑖1, then 𝑙𝑖2 , and then 𝑙𝑖3 , and so on, until 𝑙𝑖,𝑖−1.

1

However Julia matrices are stored in a column-major format, so that this pattern of data access
results in multiple cache misses.

Exercise #2: Reorganizing forward substition to avoid cache misses
Instead of following a row-wise data access, we prefer to compute 𝑥𝑖 by streaming through the
components of 𝐿 in a column-wise fashion. To see how to do that, let us expose how the
components of 𝑥 are formed:

𝑥1 ∶= 𝑏1/𝑙11
𝑥2 ∶= (𝑏2 − 𝑙21𝑥1) /𝑙11
𝑥3 ∶= (𝑏3 − 𝑙31𝑥1 − 𝑙32𝑥2) /𝑙33
𝑥4 ∶= (𝑏4 − 𝑙41𝑥1 − 𝑙42𝑥2 − 𝑙43𝑥3) /𝑙44

⋮
𝑥𝑛 ∶= (𝑏𝑛 − 𝑙𝑛1𝑥1 − 𝑙𝑛2𝑥2 − 𝑙𝑛3𝑥3 − ⋯ − 𝑙𝑛,𝑛−1𝑥𝑛−1) /𝑙𝑛𝑛.

We can see that, once we are done evaluating 𝑥𝑖, the partial contributions 𝑙𝑖+1,𝑖𝑥𝑖, 𝑙𝑖+2,𝑖𝑥𝑖, … , 𝑙𝑛𝑖𝑥𝑖
can all be added one after the other to 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑛, respectivelly. When doing so, the require-
ment is that 𝑥𝑖+1 is fully evaluated before adding its the partial contributions to the subsequent
component 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑛. Thus, the calculation can be re-ordered as follows:

0. 𝑥1 ∶= 𝑏1, 𝑥2 ∶= 𝑏2, … , 𝑥𝑛 = 𝑏𝑛
1. 𝑥1 ∶= 𝑥1/𝑙11
2. 𝑥2 ∶= 𝑥2 − 𝑙21𝑥1, 𝑥3 ∶= 𝑥3 − 𝑙31𝑥1, 𝑥4 ∶= 𝑥4 − 𝑙41𝑥1, … , 𝑥𝑛 ∶= 𝑥𝑛 − 𝑙𝑛1𝑥1
3. 𝑥2 ∶= 𝑥2/𝑙22
4. 𝑥3 ∶= 𝑥3 − 𝑙32𝑥2, 𝑥4 ∶= 𝑥4 − 𝑙42𝑥2, … , 𝑥𝑛 ∶= 𝑥𝑛 − 𝑙𝑛2𝑥2
5. 𝑥3 ∶= 𝑥3/𝑙33
6. 𝑥4 ∶= 𝑥4 − 𝑙43𝑥3, … , 𝑥𝑛 ∶= 𝑥𝑛 − 𝑙𝑛3𝑥3

⋮ ⋮ ⋮ ⋮
2𝑛 − 2. 𝑥𝑛−1 ∶= 𝑥𝑛−1/𝑙𝑛−1,𝑛−1
2𝑛 − 1. 𝑥𝑛 ∶= 𝑥𝑛 − 𝑙𝑛,𝑛−1𝑥𝑛−1

2𝑛. 𝑥𝑛 ∶= 𝑥𝑛/𝑙𝑛𝑛

where, clearly, the components of 𝐿 are now accessed row-wise. This is coded as follows:

[3]: # Forward substitution with column-wise access to L
function ColumnMajorForwardSubstitution(L, b) # ~ trtrs(L, b), p. 67 in Darve␣

↪and Wootters (2021)
n = length(b)
x = copy(b)
for j = 1:n
x[j] = x[j] / L[j, j]
for i = j+1:n

x[i] -= L[i, j] * x[j]

2

end
end
return x

end;

Exercise #3: Performance comparison of data access patterns for forward sub-
stitution
Let us now introduce a lower triangular matrix and measure the difference in runtime between the
two approaches.

[4]: function get_L(n)
L = zeros(n, n)
for j=1:n
L[j,j] = 1.
L[j+1:n,j] = rand(-2:2, n-j)

end
return L

end

Random.seed!(123467);
for n in (2_000, 20_000)

L = get_L(n)
x_exact = rand(0:9, n)
b = L * x_exact
dt1 = @elapsed x1 = RowMajorForwardSubstitution(L, b)
dt2 = @elapsed x2 = ColumnMajorForwardSubstitution(L, b)
@printf "n = %d\n" n
@printf "Row-wise access: dt = %.2E, ||x - x_exact||_2 = %E\n" dt1 norm(x1 -␣

↪x_exact)
@printf " Cache-friendly: dt = %.2E, ||x - x_exact||_2 = %E\n" dt2 norm(x2 -␣

↪x_exact)
end

n = 2000
Row-wise access: dt = 3.65E-03, ||x - x_exact||_2 = 0.000000E+00
Cache-friendly: dt = 2.66E-03, ||x - x_exact||_2 = 0.000000E+00
n = 20000
Row-wise access: dt = 1.36E+00, ||x - x_exact||_2 = 0.000000E+00
Cache-friendly: dt = 1.47E-01, ||x - x_exact||_2 = 0.000000E+00

Exercise #4: Forward elimination without pivoting with row-wise access

For a given matrix 𝐴 with components 𝑎𝑖𝑗 =∶ 𝑎(0)
𝑖𝑗 , we saw that forward elimination without

pivoting goes a follows:

3

for 𝑘 = 1, … , 𝑛 − 1 // Loop over Gauss transformations 𝐺1, … , 𝐺𝑛−1
// Compute 𝐴(𝑘) = 𝐺𝑘𝐴(𝑘−1)

𝑎(𝑘)
𝑖𝑗 ∶= 𝑎(𝑘−1)

𝑖𝑗 for 𝑖 = 1, … , 𝑘 and 𝑗 = 𝑖, … , 𝑛
𝑎(𝑘)

𝑖𝑗 ∶= 0 for 𝑗 = 1, … , 𝑘 and 𝑖 = 𝑗 + 1, … , 𝑛
for 𝑖 = 𝑘 + 1, … , 𝑛 // Loop over rows acted on by 𝐺𝑘

𝑚(𝑘)
𝑖 ∶= 𝑎(𝑘−1)

𝑖𝑘 /𝑎(𝑘−1)
𝑘𝑘

for 𝑗 = 𝑘 + 1, … , 𝑛 // Loop over columns acted on by 𝐺𝑘

𝑎(𝑘)
𝑖𝑗 ∶= 𝑎(𝑘−1)

𝑖𝑗 − 𝑚(𝑘)
𝑖 𝑎(𝑘−1)

𝑘𝑗

We also saw that, if no breakdown happens, we obtain the upper triangular matrix 𝑈 =
𝐺𝑛−1 ⋯ 𝐺1𝐴 =∶ 𝐴(𝑛−1). Moreover, the lower triangular matrix 𝐿 ∶= 𝐺−1

1 ⋯ 𝐺−1
𝑛−1 is a by-product

of the procedure, i.e., we have

𝐿 =
⎡
⎢
⎢
⎣

1
𝑚(1)

2 ⋱
⋮ 1

𝑚(1)
𝑛 ⋯ 𝑚(𝑛−1)

𝑛 1

⎤
⎥
⎥
⎦

such that 𝐿𝑈 = 𝐴. A first implementation to obtain the 𝐿𝑈 factors of 𝐴 by forward elimination
is as follows:

[5]: # "outer-product" implementation of forward elimination with row-wise data␣
↪access

function get_LU(A) # ~ getrfOuter!(A), p. 74 in Darve and Wootters (2021)
n, _ = size(A)
L = zeros(n, n); L[diagind(L)] .= 1.
U = copy(A)
for k = 1:n-1

for i = k+1:n
m = U[i, k] / U[k, k]
for j = k+1:n
U[i, j] -= m * U[k, j]

end
L[i, k] = m

end
U[k+1:n, k] .= 0.

end
return L, U

end;

which we can test with a matrix as follows:

4

[6]: function get_A(n)
A = zeros(n, n)
for j=1:n
A[:,j] = rand(-2:2, n)
A[j,j] = 1.

end
return A

end;

Random.seed!(123467)

for n in (10, 100, 1_000)
A = get_A(n)
L, U = get_LU(A)
println(maximum(abs.(L * U - A)))

end

9.82927766795898e-15
1.8189894035458565e-12
5.0391690820106305e-11

We also saw that 𝐴𝑥 = 𝑏 can be solved in two triangular solves, i.e.,

1. Solve for 𝑧 such that 𝐿𝑧 = 𝑏,
2. Solve for 𝑥 such that 𝑈𝑥 = 𝑧.

[7]: Random.seed!(1)

for n in (10, 100, 1_000)
A = get_A(n)
x_exact = rand(0:9, n)
b = A * x_exact
L, U = get_LU(A)
z = LowerTriangular(L) \ b # Forward substitution
x = UpperTriangular(U) \ z # Backward substitution
@printf "n = %d, ||x - x_exact||_2/||x_exact||_2 = %E\n" n norm(x - x_exact) /

↪ norm(x_exact)
end

n = 10, ||x - x_exact||_2/||x_exact||_2 = 5.237667E-15
n = 100, ||x - x_exact||_2/||x_exact||_2 = 1.322292E-11
n = 1000, ||x - x_exact||_2/||x_exact||_2 = 1.595005E-11

Exercise #5: In-place LU factorization without pivoting with row-wise access
Clearly, 𝑈 can be computed in-place, i.e., the components of 𝐴(1), … , 𝐴(𝑛−2), 𝐴(𝑛−1) = 𝑈 can be
stored within 𝐴 from one Gauss transformation to another.

5

Also, for a given transformation 𝐺𝑘, the components 𝑎(𝑘)
𝑘+1,𝑘, … , 𝑎(𝑘)

𝑛𝑘 , which are set to zero by
construction, can be used to store the components of the 𝑘-th column of 𝐿 below the diagonal,
i.e., 𝑚(𝑘)

𝑘+1, … , 𝑚(𝑘)
𝑛 .

Then, no extra memory needs to be alocated, and upon completion of the forward elimination
procedure, 𝐴 contains simultaneously the components of 𝑈 in its upper-triangular part, and the
non-trivial components of 𝐿.

This is coded as follows:

[8]: # In-place "outer-product" implementation of forward elimination with row-wise␣
↪data access

function RowMajor_LU_InPlace!(A) # ~ getrfOuter!(A), p. 74 in Darve and␣
↪Wootters (2021)
n, _ = size(A)
for k = 1:n-1

for i = k+1:n
A[i, k] /= A[k, k]

end
for i = k+1:n

for j = k+1:n
A[i, j] -= A[i, k] * A[k, j]

end
end

end
end;

[9]: Random.seed!(12345)
n = 1_000
A = get_A(n)
A_LU = copy(A)
RowMajor_LU_InPlace!(A_LU)
U = UpperTriangular(copy(A_LU))
L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.
println(maximum(abs.(L * U - A)))

3.6419578464119695e-10

Looking at the way the non-trivial components of 𝐴(𝑘) = 𝐺𝑘𝐴(𝑘−1) are set, we see the inner-
most loop of the initial implementation of forward elimination iterates in a row-wise fashion over
components of 𝐴(𝑘−1), i.e., we set

𝑎(𝑘)
𝑖𝑗 ∶= 𝑎(𝑘−1)

𝑖𝑗 − 𝑚(𝑘)
𝑖 𝑎(𝑘−1)

𝑘𝑗 by iterating over 𝑗 = 𝑘 + 1, … , 𝑛

for 𝑖 = 𝑘 + 1, … , 𝑛.

Therefore, for a given 𝑘 such that each 1 ≤ 𝑘 < 𝑛 , we have

𝑎(𝑘)
𝑖𝑗 = ⋯ = 𝑎(𝑛−1)

𝑖𝑗 = 𝑢𝑖𝑗 for 𝑖 ∈ {1, … , 𝑘 + 1} and 𝑗 ∈ {𝑖, … , 𝑘 + 1} (1)

6

where 𝑢𝑖𝑗 denotes the components of the upper-triangular factor 𝑈 . Therefore, we have

𝑢𝑖𝑗 = 𝑎(𝑖−1)
𝑖𝑗 for 𝑖 ∈ {1, … , 𝑗}.

Exercise #6: Reorganizing forward elimination for cache-friendly in-place LU
factorization without pivoting
Instead of iterating over 𝐺1, … , 𝐺𝑛−1 in an outer-most loop, we wish to form 𝑈 column-by-column.
That is, given a column 𝑗 such that 1 < 𝑗 ≤ 𝑛 , assume the non-trivial components of the 𝑗 − 1
first columns of 𝑈 are known, and we want to form 𝑢𝑖𝑗 for 𝑖 = 1, … , 𝑗. Then we have

𝑢1𝑗 = 𝑎(0)
1𝑗

𝑢2𝑗 = 𝑎(1)
2𝑗 = 𝑎(0)

2𝑗 − 𝑚(1)
2 𝑎(0)

1𝑗

𝑢3𝑗 = 𝑎(2)
3𝑗 = 𝑎(1)

3𝑗 − 𝑚(2)
3 𝑎(1)

2𝑗
⋮

𝑢𝑗−1,𝑗 = 𝑎(𝑗−2)
𝑗−1,𝑗 = 𝑎(𝑗−3)

𝑗−1,𝑗 − 𝑚(𝑗−2)
𝑗−1 𝑎(𝑗−3)

𝑗−2,𝑗

𝑢𝑗𝑗 = 𝑎(𝑗−1)
𝑗𝑗 = 𝑎(𝑗−2)

𝑗𝑗 − 𝑚(𝑗−1)
𝑗 𝑎(𝑗−2)

𝑗−1,𝑗

where 𝑎(1)
3𝑗 , … , 𝑎(𝑗−2)

𝑗𝑗 are not computed yet. However, in general, for 𝑘 < 𝑗 , we can also evaluate
𝑎(𝑘)

𝑖𝑗 by

// Forming 𝑎(𝑘)
𝑖𝑗 from 𝑎(0)

𝑖𝑗 , 𝑎(1)
𝑖𝑗 , … , 𝑎(𝑘−1)

𝑖𝑗 ∶
for 𝑙 = 1, … , 𝑘

𝑎(𝑙)
𝑖𝑗 ∶= 𝑎(𝑙−1)

𝑖𝑗 − 𝑚(𝑙)
𝑖 𝑎(𝑙−1)

𝑙𝑗

Therefore, the components 𝑢𝑖𝑗 for 𝑖 = 1, … , 𝑗 may be computed only using the components
𝑎(0)

1𝑗 , … , 𝑎(0)
𝑗𝑗 and

𝑚(1)
2 for 𝑢2𝑗

𝑚(1)
3 , 𝑚(2)

3 for 𝑢3𝑗
⋮

𝑚(1)
𝑗−1, … , 𝑚(𝑗−2)

𝑗−1 for 𝑢𝑗−1,𝑗

𝑚(1)
𝑗 , … , 𝑚(𝑗−2)

𝑗 , 𝑚(𝑗−1)
𝑗 for 𝑢𝑗𝑗

which are the non-trivial components of the 𝑗 − 1 first columns of the lower-triangular factor 𝐿.
While the evaluation of 𝑚(1)

2 , … , 𝑚(1)
𝑛 from 𝑎(0)

11 , … , 𝑎(0)
𝑛1 is a given, the evaluation of 𝑚(𝑗)

𝑗+1, … , 𝑚(𝑗)
𝑛

such that 1 < 𝑗 < 𝑛 is done by

𝑚(𝑗)
𝑗+1 = 𝑎(𝑗−1)

𝑗+1,𝑗/𝑎(𝑗−1)
𝑗𝑗 = 𝑎(𝑗−1)

𝑗+1,𝑗/𝑢𝑗𝑗

⋮
𝑚(𝑗)

𝑛 = 𝑎(𝑗−1)
𝑛,𝑗 /𝑎(𝑗−1)

𝑗𝑗 = 𝑎(𝑗−1)
𝑛,𝑗 /𝑢𝑗𝑗

7

where, simimlarly,

𝑎(𝑗−1)
𝑗+1,𝑗 can be formed from 𝑎(0)

𝑗+1,𝑗, … , 𝑎(𝑗−2)
𝑗+1,𝑗

⋮
𝑎(𝑗−1)

𝑛,𝑗 can be formed from 𝑎(0)
𝑛,𝑗, … , 𝑎(𝑗−2)

𝑛,𝑗

Therefore, the non-trivial components of the 𝑗 -column of the lower-triangular and upper-triangular
factors of 𝐴, i.e., 𝐿 and 𝑈 , respectively, can be formed using only data from the 𝑗-th column of 𝐴,
and the components in the previously formed columns of 𝐿. This can be done with an inner-most
loop which iterates in a column-wise fashion of the components of 𝐴. This is done as follows:

[10]: # In-place implementation of forward elimination with column-wise data access
function ColumnMajor_LU_InPlace!(A) # ~ getrfAxpy!(A), p. 75 in Darve and␣

↪Wootters (2021)
n, _ = size(A)
for j = 1:n

for k = 1:j-1
for i = k+1:n
A[i, j] -= A[i, k] * A[k, j]

end
end
for i = j+1:n

A[i, j] /= A[j, j]
end

end
end;

Exercise #7: Compare runtime of in-place LU factorization without pivoting
with different data access patterns
The effect on runtime is as follows:

[12]: Random.seed!(1)

for n in (10, 100, 1_000)
A = get_A(n)
rand(0:9, n);
A_LU = copy(A)
dt = @elapsed get_LU_InPlace!(A_LU)
U = UpperTriangular(copy(A_LU))
L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.
@printf "n = %d\n" n
@printf "Row-wise access: dt = %g, component-wise max error = %E\n" dt␣

↪maximum(abs.(L * U - A))
A_LU = copy(A)
dt = @elapsed ColumnMajor_LU_InPlace!(A_LU)
U = UpperTriangular(copy(A_LU))
L = LowerTriangular(copy(A_LU)); L[diagind(L)] .= 1.

8

@printf " Cache-friendly: dt = %g, component-wise max error = %E\n" dt␣
↪maximum(abs.(L * U - A))

end

n = 10
Row-wise access: dt = 4.523e-06, component-wise max error = 7.105427E-15
Cache-friendly: dt = 3.621e-06, component-wise max error = 7.105427E-15
n = 100
Row-wise access: dt = 0.000242756, component-wise max error = 8.390133E-11
Cache-friendly: dt = 0.000220563, component-wise max error = 8.390133E-11
n = 1000
Row-wise access: dt = 0.43181, component-wise max error = 7.033041E-11
Cache-friendly: dt = 0.17278, component-wise max error = 7.033041E-11

9

