Numerical Linear Algebra for Computational Science and Information Engineering CITHN2006

Final Exam

by Nicolas Venkovic

Computational Mathematics School of Computation, Information and Technology (CIT) Technical University of Munich, Germany

Summer 2025

Problem 1 (9 pts)

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix. We are interested in finding a right-approximate inverse of A, that is, $M^{-1} \in \mathbb{R}^{n \times n}$ such that $I_n - AM^{-1}$ is small in some sense.

- a. Show that $(X,Y) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \mapsto \operatorname{tr}(X^T Y)$ is an inner-product over $\mathbb{R}^{n \times n}$. (3 pts)
- b. Show that $X \in \mathbb{R}^{n \times n} \mapsto \|X\|_F$ is a norm induced by the inner-product, i.e., $(X, X) = \|X\|_F^2$. (1 pt)
- c. Consider the procedure described as follows:

Find
$$M_1^{-1} \in M_0^{-1} + \text{span}\{G\}$$
 such that $R_1 := I_n - AM_1^{-1} \perp A \text{span}\{G\}$ (1)

where $M_0^{-1} \in \mathbb{R}^{n \times n}$ is an initial right-approximate inverse of A, and $G \in \mathbb{R}^{n \times n}$ is a search direction. Assume $AG \neq 0_{n \times n}$, and find $\alpha \in \mathbb{R}$ such that

$$M_1^{-1} = M_0^{-1} + \alpha G.$$

For the sake of brevity, introduce $R_0 := I_n - AM_0^{-1}$. (2 pts)

d. Show that M_1^{-1} is given by Eq. (1) if and only if

$$M_1^{-1} = \arg\min_{M^{-1} \in M_0^{-1} + \operatorname{span}\{G\}} \|I_n - AM^{-1}\|_F.$$

Hint: Use the orthogonal projection theorem. That is, for any $S \subset \mathbb{R}^{n \times n}$ and $X \in \mathbb{R}^{n \times n}$, there exists a unique $Y \in S$ such that $||X - Y||_F = \min_{Z \in S} ||X - Z||_F$ if and only if $X - Y \perp S$. (3 pts)

Problem 2 (3 pts)

Consider a tall-and-skinny matrix $A \in \mathbb{R}^{m \times n}$, i.e., such that $m \gg n$, and let A = QR be the thin QR factorization of A, where $Q \in \mathbb{R}^{m \times n}$ is orthogonal, and $R \in \mathbb{R}^{n \times n}$ is upper-triangular.

- a. Write down the algorithm of the CholeskyQR method to compute the QR factorization of A. (2 pts)
- b. Is this algorithm stable? Explain why. (1 pt)

Problem 3 (3 pts)

Problem 3 (3 pts)
Let
$$A = \begin{bmatrix} 2 & 7 & 2 & 0 \\ 0 & 3 & 6 & 0 \\ 2 & 7 & 2 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$
, and answer the following questions with proper explanations:

- a. Is A singular? (1 pt)
- b. Does A admit an LU decomposition without pivoting? (2 pts)

Problem 4 (5 pts)

For the matrices

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix} \quad \text{and} \quad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix},$$

- a. Find the Rayleigh-Ritz pairs of A with respect to range(V). (3 pts)
- b. Assemble the reduced eigenvalue problem to solve in order to find the harmonic Ritz values of A with respect to range(V) for a shift $\sigma = 1$. (2 pts)

Problem 5 (9 pts)

Let
$$A = \begin{bmatrix} 1 & 4 & 5 & 6 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
, answer the following questions, and provide proper explanations:

- a. What is the spectrum of A? (1 pt)
- b. Is A singular? (1 pt)
- c. Is A defective? (1 pt)
- d. Is A diagonalizable? (1 pt)
- e. Is A normal? (1 pt)
- f. What is the conditioning number of the smallest eigenvalue of A? (3 pts)
- g. What is the conditioning number of each eigenvalue of $B := A + A^T$? (1 pt)

Problem 6 (3 pts)

Complete the flowchart in Fig. 1 with the correct names of the methods covered in class:

- Conjugate gradient (CG),
- Minimal residual (MINRES),
- SYMMLQ,
- General minimal residual (GMRES),
- Quasi-minimal residual (QMR),
- Bi-conjugate gradient stabilized (Bi-CGSTAB)
- Conjugate gradient squared (CGS).

All the methods must be placed. Some boxes contain more than one method.

Figure 1: Flowchart of Krylov subspace-based linear iterative solvers.