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Problem 1 (9 pts)

Let A € R™ ™ be a non-singular matrix. We are interested in finding a right-approximate inverse of
A, that is, M~! € R"*" such that I,, — AM ! is small in some sense.

a. Show that (X,Y) € R™*" x R"*" i tr(X7Y) is an inner-product over R™"*". (3 pts)
b. Show that X € R"*" — || X||F is a norm induced by the inner-product, i.e., (X, X) = || X||%. (1 pt)
c. Consider the procedure described as follows:

Find M; ' e My ' +span{G} such that R;:=1, — AM; " L Aspan{G} (1)

where M 1 € R™*" is an initial right-approximate inverse of A, and G € R"*™ is a search direction.
Assume AG # 0, xp, and find a € R such that

M= Myt + G
For the sake of brevity, introduce Ry := I,, — AM". (2 pts)
d. Show that Mfl is given by Eq. if and only if

Mt = arg min |1, — AM Y| .
M-1eM; '+span{G}

Hint: Use the orthogonal projection theorem. That is, for any & € R™*™ and X € R™*", there
exists a unique Y € S such that | X — Y||r = minges | X — Z||r if and only if X —Y L S. (3 pts)

Problem 2 (3 pts)

Consider a tall-and-skinny matrix A € R"™*" i.e., such that m > n, and let A = QR be the thin QR
factorization of A, where @ € R"™*"™ is orthogonal, and R € R™*™ is upper-triangular.

a. Write down the algorithm of the CholeskyQR method to compute the QR factorization of A. (2 pts)

b. Is this algorithm stable? Explain why. (1 pt)



Problem 3 (3 pts)
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a. Is A singular? (1 pt)
b. Does A admit an LU decomposition without pivoting? (2 pts)
Problem 4 (5 pts)
For the matrices
310 1 0
A=1]1 3 1| and V=|0 1],
0 1 3 0 0

a. Find the Rayleigh-Ritz pairs of A with respect to range(V'). (3 pts)

b. Assemble the reduced eigenvalue problem to solve in order to find the harmonic Ritz values of A
with respect to range(V') for a shift ¢ = 1. (2 pts)

Problem 5 (9 pts)
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Let A= 0 0 9 4| answer the following questions, and provide proper explanations:
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a. What is the spectrum of A? (1 pt)

b. Is A singular? (1 pt)

c. Is A defective? (1 pt)

d. Is A diagonalizable? (1 pt)

e. Is A normal? (1 pt)

f. What is the conditioning number of the smallest eigenvalue of A? (3 pts)

g. What is the conditioning number of each eigenvalue of B := A + AT? (1 pt)

Problem 6 (3 pts)

Complete the flowchart in Fig. [1) with the correct names of the methods covered in class:
- Conjugate gradient (CG),

- Minimal residual (MINRES),

- SYMMLQ,

- General minimal residual (GMRES),

- Quasi-minimal residual (QMR),

- Bi-conjugate gradient stabilized (Bi-CGSTAB)

- Conjugate gradient squared (CGS).

All the methods must be placed. Some boxes contain more than one method.



‘ Is the matrix symmetric?

/ N

Is the matrix SPD? ‘ Is the number of
iterations small?
Yes No Yes No
Can we
compute
x—ATx?

Yes /
No

Figure 1: Flowchart of Krylov subspace-based linear iterative solvers.



