
Numerical Linear Algebra
for Computational Science and Information Engineering

Introduction to the Julia Language

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Fact sheet of the Julia language
▶ Started at MIT in 2009 to develop a fast open source and free

high-level language
▶ Features

- Dynamically typed (also enables static types for better performance)
- Just-in-time (JIT) compiled (i.e., compiled at runtime)
- Provided with full-featured interactive command-line REPL (read-eval-print

loop)
- Designed for parallelism and distributed computing (part of the standard

library)
- No need to vectorize code for performance
- Supports notebooks

▶ Version 1.0 released in 2018
▶ Current release is 1.12.1
▶ Used at MIT, Stanford, UC Berkeley, Amazon, Apple, Google, IBM, Intel,

Microsoft, ...
▶ Over 45 millions downloads as of January 2023

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 1 / 30

What is Julia made of?

▶ Most of the Julia standard library is written in Julia
▶ Julia makes use of pre-existing libraries (mostly in C/C++) for:

- BLAS/LAPACK, however, native Julia versions exist for most
functionalities. Optimized native Julia BLAS can match the
performances of Intel MKL and OpenBLAS.

- Regular expressions (PCRE)
- Downloading files (libcurl)
- Low-level asynchronous IO (libuv)
- Compilation (LLVM)
- Extended precision arithmetic (GMP, MPFR), but native Julia

solutions also exist.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2 / 30

RBGS: An algorithm for comparison purposes
▶ Randomized block Gram-Schmidt (RBGS) procedure by Balabanov and

Grigori (2021):

RBGS : (X,Θ) ∈ Rn×m × Rk×m 7→ (Q,R) ∈ Rn×m × Rm×m

such that X = QR where m < k ≪ n, (ΘQ)TΘQ = Im and
Ran(ΘQ) = Ran(ΘX). We exploit the following structure of p blocks of
size n× s:

X = [X:,1:s, X:,s+1:2s, . . . , X:,(p−1)s+1:ps]

Q = [Q:,1:s, Q:,s+1:2s, . . . , Q:,(p−1)s+1:ps]

where m = ps.
▶ Exploiting those block structures, we have (ΘQ)TΘQ = Im =⇒

R(i−1)s+1:is,(j−1)s+1:js = (ΘQ:,(i−1)s+1:is)
TΘX;,(j−1)s+1:js, (i, j) ∈ [1, p]2

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 3 / 30

RBGS: An algorithm for comparison purposes
▶ There are different possible implementations of RBGS algorithm. Let us

consider the following:

Algorithm 1 RBGS : (X,Θ) 7→(Q, R)
1: RGS(X:,1:s) 7→ (Q:,1:s, R1:s,1:s, S:,1:s) ▷ S := ΘQ
2: for i = 2, . . . , p do
3: P := ΘX:,(i−1)s+1:is ▷ Sketching
4: R1:(i−1)s,(i−1)s+1:is := S†

:,1:(i−1)sP ▷ Block least-squares problem
5: Q:,(i−1)s+1:is := X:,(i−1)s+1:is −Q:,1:(i−1)sR1:(i−1)s,(i−1)s+1:is ▷ BLAS-3
6: RGS(Q:,(i−1)s+1:is) 7→ (Q:,(i−1)s+1:is, R(i−1)s+1:is,(i−1)s+1:is, S:,(i−1)s+1:is)

where RGS corresponds to RBGS with s = 1.
▶ In what follows, line 3 will be done more efficiently using a matrix-free fast

transform.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 4 / 30

Julia is close to math
1 function RBGS(X::Array{Float64,2}, p::Int, k::Int)
2 n, m = size(X)
3 s = Int(m / p)
4 P = Array{Float64}(undef, k, s)
5 Q = Array{Float64,2}(undef, n, m)
6 R = zeros(Float64, m, m)
7 S = Array{Float64,2}(undef, k, m)
8 srht = set_srht(n, k)
9 Q[:, 1:s], R[1:s, 1:s], S[:, 1:s] = RGS(X[:, 1:s], srht)

10 for i in 2:p
11 P .= MatrixFreeTheta(X[:, (i-1)*s+1:i*s], srht)
12 R[1:(i-1)*s, (i-1)*s+1:i*s] = S[:, 1:(i-1)*s] \ P
13 Q[:, (i-1)*s+1:i*s] = X[:, (i-1)*s+1:i*s]
14 .- Q[:, 1:(i-1)*s] * R[1:(i-1)*s, (i-1)*s+1:i*s]
15 Q[:, (i-1)*s+1:i*s],
16 R[(i-1)*s+1:i*s, (i-1)*s+1:i*s],
17 S[:, (i-1)*s+1:i*s] = RGS(Q[:, (i-1)*s+1:i*s], srht)
18 end
19 return Q, R, S
20 end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5 / 30

So is Python
1 def RBGS(X, p, k):
2 n, m = X.shape
3 s = int(m / p)
4 P = np.zeros((k, s))
5 Q = np.zeros((n, m))
6 R = np.zeros((m ,m))
7 S = np.zeros((k, m))
8 srht = set_srht(n, k)
9 Q[:, :s], R[:s, :s], S[:, :s] = RGS(X[:, :s], srht)

10 for i in range(1, p):
11 P[:, :] = MatrixFreeTheta(X[:, i*s:(i+1)*s], srht)
12 R[:i*s, i*s:(i+1)*s] = np.linalg.lstsq(S[:, :i*s], P)[0]
13 Q[:, i*s:(i+1)*s] = X[:, i*s:(i+1)*s]
14 - np.matmul(Q[:, :i*s], R[:i*s, i*s:(i+1)*s])
15 Q[:, i*s:(i+1)*s],
16 R[i*s:(i+1)*s, i*s:(i+1)*s],
17 S[:, i*s:(i+1)*s] = RGS(Q[:, i*s:(i+1)*s], srht)
18 return Q, R, S

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 6 / 30

But not C
1 void RBGS(int n, int m, int p, int k, double *X, struct SRHT srht, double *Q, double *R, double *S) {
2 int s = m / p;
3 double *P = (double*)malloc(k * s * sizeof(double));
4 double *Rtmp = (double*)malloc(m * s * sizeof(double));
5 double *StS = (double*)malloc(m * m * sizeof(double));
6 lapack_int *ipiv = (lapack_int*)malloc(m * sizeof(lapack_int));
7 RGS(n, s, k, &X[0], srht, &Q[0], Rtmp, &S[0]);
8 for (int v=0; v<s; v++)
9 for (int u=0; u<s; u++)

10 R[v * m + u] = Rtmp[v * s + u];
11 for (int v=0; v<s; v++)
12 for (int u=s; u<m; u++)
13 R[v * m + u] = 0.;
14 for (int i=1; i<p; i++) {
15 BlockMatrixFreeTheta(&X[i * s * n], srht, s, P);
16 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, i * s, i * s, k, 1., S, k, S, k, 0., StS, i * s);
17 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, i * s, s, k, 1., S, k, P, k, 0., Rtmp, i * s);
18 LAPACKE_dsysv(LAPACK_COL_MAJOR, 'U', i * s, s , StS, i * s, ipiv, Rtmp, i * s);
19 for (int v=0; v<s; v++)
20 for (int u=0; u<i*s; u++)
21 R[i * s * m + v * m + u] = Rtmp[v * i * s + u];
22 cblas_dcopy(n * s, &X[i * s * n], 1, &Q[i * s * n], 1);
23 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, n, s, i * s, -1., Q, n, Rtmp, i * s, 1., &Q[i * s * n], n);
24 RGS(n, s, k, &Q[i * s * n], srht, &Q[i * s * n], Rtmp, &S[i * s * k]);
25 for (int v=0; v<s; v++)
26 for (int u=0; u<s; u++)
27 R[i * s * m + v * m + i * s + u] = Rtmp[v * s + u];
28 for (int v=0; v<s; v++)
29 for (int u=(i+1)*s; u<m; u++)
30 R[i * s * m + v * m + u] = 0.;
31 }
32 free(P);
33 free(Rtmp);
34 free(StS);
35 free(ipiv);
36 }

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 7 / 30

Stepping away from matrix computation
▶ SRHT refers to subsampled randomized Walsh-Hadamard transform.
▶ MatrixFreeTheta: X → ΘX, where Θ is a SRHT matrix given by:

Θ :=
√
n/kRHD

R ∈ Rk×n: Random restriction, i.e., each row is a row from In.
H ∈ Rn×n: Normalized Walsh-Hadamard transform matrix.
D ∈ Rn×n: Random sign flip, i.e., diagonal array with ±1 components.

▶ We have H = 1/
√
nHn, in which the non-normalized Walsh-Hadamard

transform Hn is defined by the following recursion:

H1 :=

[
1 1
1 −1

]
, Hq :=

[
Hq/2 Hq/2

Hq/2 −Hq/2

]
, q = 2, 4, . . . , n/2, n.

▶ The recurrence of the SRHT lends itself to divide and conquer, which
yields a non-vectorized fast algorithm.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8 / 30

Algorithm for the fast Walsh-Hadamard transform (FWHT)
▶ Pseudocode of the FWHT assuming n is a power of 2:

Algorithm 2 FWHT : z 7→ Hnz

1: h := 1
2: while h < n do
3: for i = 1, 1 + 2h, . . . , n− 2h, n do
4: for j = i, . . . , i+ h− 1 do
5: x := zj
6: y := zj+h

7: zj := x+ y
8: zj+h := x− y
9: h := 2h

10: return z

▶ If n is not a power of 2, zero-pad up to the smallest power of 2 greater
than n.

▶ Then, define MatrixFreeTheta by making use of FWHT.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 9 / 30

Runtime of the fast Walsh-Hadamard transform (FWHT)

C is approximately
1.5x faster than Julia
300x faster than Python

For fast Python:
code in C w/ pybind11
code in Fortran w/ f2py

Julia is fast
and high level

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 10 / 30

Other benchmarks
▶ See julialang.org/benchmarks/

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 11 / 30

julialang.org/benchmarks/

Installing Julia
▶ Install juliaup:

- On Linux and MacOS:
$ curl -fsSL https://install.julialang.org | sh

- On Windows:
> winget install --name Julia --id 9NJNWW8PVKMN -e -s msstore

This will install the latest version of Julia.
▶ juliaup is also used to update Julia to the latest version:

$ juliaup update
▶ You can use juliaup to install arbitrary releases, e.g.:

$ juliaup add 1.9.3
▶ Start a new terminal and access the REPL as follows:

$ julia
julia>

▶ To run a specific release, e.g.,
$ julia +1.9.3

▶ To see the installed versions: $ juliaup status
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 12 / 30

Package management
▶ The default project is defined by two files

- ∼/.julia/environments/v1.12/Project.toml: contains names of
packages.

- ∼/.julia/environments/v1.12/Manifest.toml: contains version numbers
and dependencies.

▶ To clone your environment on a new machine, only copy the
Project.toml in the new default folder.

▶ In REPL, hit the key] to get in Pkg mode. You then get the following
prompt:

(@1.12) pkg>
▶ To initialize a new environment in ∼/MyEnvironment/, activate the

path and add a package:
(@1.12) pkg> activate ~/MyEnvironment/
(@1.12) pkg> add NPZ

this will automatically create the Project.toml and Manifest.toml files in
∼/MyEnvironment/.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13 / 30

Package management, cont’d
▶ Load an existing environment using the activate command as follows:

(@1.12) pkg> activate ~/MyEnvironment/
Activating project at '~/MyEnvironment'

▶ Check the status of an environment with the st command:

(@1.12) pkg> st
Status '~/MyEnvironment/Project.toml'
[15e1cf62] NPZ v0.4.2

▶ When loaded for the first time, use the command instantiate to install all
the packages from Project.toml:

(@1.12) pkg> instantiate

▶ All these operations defined in the Pkg mode can be done with the Pkg
package inside a script, e.g.:

using Pkg
activate("~/MyEnvironment/")

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 14 / 30

Overview of available packages
▶ Scientific computing

- LinearAlgebra.jl: Basic linear algebra subroutines, multithreaded BLAS
and LAPACK

- SparseArrays.jl: Support for sparse vectors and matrices
- Distributed.jl: Methods for distributed computing
- DistributedArrays.jl
- MPI.jl: Wrapper for the message passing interface
- CUDA.jl: Main entrypoint for programming NVIDIA GPUs
- AlgebraicMultigrid.jl: GPU-based implementation of AMG solvers and

preconditioners
- Metis.jl: Wrapper for the Metis library
- FFTW.jl: Bindings to the FFTW library for fast Fourier transforms
- SuiteSparse.jl: Wrapper for the SuiteSparse library
- Arpack.jl: Wrapper for the Arpack library to solve large-scale

eigenvalue problems
- BenchmarkTools.jl: Methods for performance tracking
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 / 30

Overview of available packages, cont’d
▶ Scientific computing (cont’d)

- IterativeSolvers.jl: Iterative algorithms to solve large linear systems
- KrylovKit.jl: Matrix-free Krylov-based algorithms for linear, singular

value and eigenvalue problems
- TriangleMesh.jl: Generate and refine 2D unstructured triangular

meshes
- Gridap.jl: Finite elements for partial differential equations in arbitrary

dimensions
- DifferentialEquations.jl: Suite for numerically solving differential

equations (including DAEs)
▶ Machine learning

- Flux.jl: Go-to library for neural networks and machine learning
- Zygote.jl: Automatic differentiation package
- Knet.jl: Deep learning framework developed at Koç University
- TensorFlow.jl: Wrapper for TensorFlow
- ScikitLearn.jl: Implementation of the scikit-learn API
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 / 30

Interoperability with Python
▶ Calling Python from Julia

- Set-up Python installation as follows using PyCall.jl:
julia> ENV["PYTHON"] = "/usr/bin/python3"
(@1.12) pkg> build PyCall
julia> using PyCall

- Import packages using pyimport from PyCall.jl:
julia> np = pyimport("numpy");
julia> pushfirst!(pyimport("sys")."path", "");
julia> GS = pyimport("GramSchmidt");

- Proceed seamlessly in Julia as in Python:
julia> x = np.random.rand(2^24);
julia> z = GS.fwht(x);

- Other packages:
- PyPlot.jl: Enables Matplotlib in Julia
- NPZ.jl: Enables saving and loading NumPy binary data files
- Conda.jl: Provides access to the Conda package manager

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 17 / 30

Interoperability with Python, cont’d
▶ Calling Julia from Python

- Install PyJulia:
$ pip install julia

- The default environment of Julia is then available from Python. For
example, we can do
>>> from julia import NPZ

- The global namespace of Julia’s interpreter can be accessed via the
module julia.Main:
>>> from julia import Main

- You can set a variable’s name in the julia.Main module to send data
from Python to Julia:
>>> import numpy as np
>>> Main.x = np.random.rand(2**24)

- Use the eval function from julia.Main to run Julia code:
>>> Main.eval('push!(LOAD_PATH, ".")') # add current
>>> Main.eval('using MyGramSchmidt: fwht') # folder to path
>>> z = Main.eval('fwht(x)')

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 18 / 30

Interoperability with C
▶ Calling C libraries from Julia:

(see docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/)

- The C code must be available as a shared library
- No additional overhead for calling from Julia compared to calling from C
- The function ccall is used to call a C function with the following

arguments:

- 1. A (:function, "path/to/library") pair
- 2. The function’s return type
- 3. A tuple of input types corresponding to the function’s signature
- 4. Argument values to be passed to the function

- Example for double *fwht(double *a, int n) in srht.so:
julia> z_ptr = ccall((:fwht, "./srht.so"), Ptr{Cdouble},

(Ptr{Cdouble}, Cint), rand(2^24),
2^24)

julia> z = unsafe_wrap(Vector{Float64}, z_ptr, 2^24)
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 19 / 30

Interoperability with C, cont’d
▶ Calling Julia code from C:

(see docs.julialang.org/en/v1/manual/embedding/)
- A header file julia.h is made available in the Julia folder
- Example of C code (main.c) calling Julia code:
#include <julia.h>
JULIA_DEFINE_FAST_TLS
int main(int argc, char *argv[]) {

jl_init();
jl_eval_string("push!(LOAD_PATH, \".\")");
jl_eval_string("using MyGramSchmidt: fwht");
jl_array_t *z = (jl_array_t*)jl_eval_string("fwht(rand(2^24))");
double *z_data = (double*)jl_array_data(z);
jl_atexit_hook(0);
return 0;}

- Compile as follows:
$ gcc -o main -fPIC

-I/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.linux.gnu/include/julia
-L/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.linux.gnu/lib
-Wl,-rpath,/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.linux.gnu/lib
main.c -ljulia

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20 / 30

Shared memory multithreading
▶ The number of threads is set through an environment variable:

$ export JULIA_NUM_THREADS=12
▶ Multithreaded for loop:

julia> Z = Array{Float64,2}(undef, 1_024, Threads.nthreads());
julia> Threads.@threads for i in 1:Threads.nthreads()

Z[:, i] = fwht(rand(1_024));
end

▶ Parallel task launching:
julia> a = Threads.@spawn fwht(rand(1_024));
julia> b = Threads.@spawn fwht(rand(1_024));
julia> z = fetch(a) .+ fetch(b)

▶ Multithreaded BLAS:
julia> using LinearAlgebra.BLAS
julia> BLAS.set_num_threads(Threads.nthreads())
julia> BLAS.dot(10_000_000, rand(10_000_000), 1,

rand(10_000_000), 1);
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21 / 30

Distributed computing
▶ Add aliases of your machines to /etc/hosts:

192.168.1.74 hector0 ... 192.168.1.23 hector3
▶ Set-up password-less ssh connection between

machines
▶ Import the Distributed.jl package and add the

machines:
using Distributed
machines = ["hector$i" for i in 0:3];
for machine in machines

addprocs((["venkovic@$machine", Sys.CPU_THREADS]),
tunnel=true)

end
▶ There are processes and workers. The master

process is not a worker:
julia> println(procs(), workers())

[1,2,3,4,5,6,7,8,9,10,11,12][2,3,4,5,6,7,8,9,10,11,12]

hector
4x Intel Core i7

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 / 30

Distributed computing, cont’d1
▶ Load code on all processes making use of the @everywhere macro:

@everywhere push!(LOAD_PATH, ".")
@everywhere using MyGramSchmidt: fwht

▶ Define a shared array as follows:
@everywhere using SharedArrays
Z = SharedArray(Array{Float64,2}(undef, 1_024, nworkers()))

▶ Do a distributed for loop as follows. The loop is distributed over
workers:
@distributed for p in 1:nworkers()

Z[:, p] = fwht(rand(1_024))
end

▶ Use pmap as follows to divide the work among workers:
Z = pmap(i->fwht(rand(1_024), 1:nworkers()))

▶ Do a reduction through a distributed for loop as follows:
z = Array{Float64,1}(undef, 1_024)
z .= @distributed (.+) for _ in 1_nworkers()

fwht(rand(1_024))
end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 / 30

Distributed computing, cont’d2

▶ Dynamic mapreduce routine for large parallel unbalanced working loads:
github.com/venkovic/julia-phd-krylov-spdes/blob/master/Utils/PllUtils.jl

▶ Used for parallel Karhunen-Loève decompositions on unstructured
meshes:

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 24 / 30

github.com/venkovic/julia-phd-krylov-spdes/blob/master/Utils/PllUtils.jl

Distributed computing, cont’d3

▶ An alternative to reduction for loops is the mapreduce function:
z = mapreduce(x->fwht(rand(1_024)), .+, 1:nworkers())

▶ Launch a task on any available worker:
z = fetch(@spawn fwht(rand(1_024)))

▶ Launch a task on a specific process, say the 4th process:
z = fetch(@spawnat 4 fwht(rand(1_024)))

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 / 30

Performance tips
▶ Access arrays in memory order, i.e., along columns
▶ Pre-allocate returned variables

Instead of this:

Use this:

for i in 1:10
x = fwht(rand(1_024))
println(x[1:3])

end

x = Vector{Float64}(undef, 1_024)
for i in 1:10

x[:] = fwht(rand(1_024))
println(x[1:3])

end
▶ Avoid changing the type of a variable

Avoid this: x = 1
for i in 1:10

x *= rand()
end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 26 / 30

Performance tips, cont’d
▶ Write type-stable functions

Instead of this: pos(x) = x < 0 ? 0 : x

Use this: pos(x) = x < 0 ? zero(x) : x
▶ Use broadcast operators for vectorized operations

Instead of this: f(x::Vector{Float64}) = 3 * x.^2 + x

Use this: f(x::Vector{Float64}) = 3 .* x.^2 .+ x

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 27 / 30

Useful macros
▶ Macros provide a mechanism to include generated code in the final body

program. We’ve seen @distributed, but there are other examples:
- Use @time to time a command and get allocations info:
julia> @time fwht(rand(2^24));
0.622758 seconds (4 allocations: 256.000 MiB, 1.34% gc time)

- Use @elapsed to store time elapsed during command execution:
julia> dt = @elapsed fwht(rand(2^24));
julia> println("$dt seconds have passed.")
0.624587781 seconds have passed.

- Use @which to identify the method invoked along with its signature and
location in file:
julia> @which fwht(rand(1_024))
fwht(a::Vector{Float64}) in MyGramSchmidt at ~/julia-gram-schmidt/GramSchmidt.jl:85

- Use @code_llvm to view the LLVM code used by the compiler:
julia> @code_llvm fwht(1_024)
; @ ~/julia-gram-schmidt/GramSchmidt.jl:85 within 'fwht'
define nonnull {}* @julia_fwht_819({}* nonnull align 16 dereferenceable(40) %0) #0 {
top:

%gcframe167 = alloca [9 x {}*], align 16
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 28 / 30

Useful macros, cont’d
▶ Use @code_native to view the native assembly code generated by the

compiler:
julia> @code_native fwht(rand(1_024));
.text
.file "fwht"
.section .rodata.cst8,"aM",@progbits,8
.p2align 3 # -- Begin function julia_fwht_587
.LCPI0_0

...
▶ Use @code_warntype to investigate type stability:

julia> @code_warntype fwht(rand(1_024));
MethodInstance for fwht(::Vector{Float64})

from fwht(a::Vector{Float64}) in Main at REPL[16]:1
Arguments

#self#::Core.Const(fwht)
a::Vector{Float64}

Locals
z::Vector{Float64}
N::Int64
n::Int64

...

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 29 / 30

Ressources
▶ Documentation: docs.julialang.org
▶ Discourse board: discourse.julialang.org

Responsive community. Ideal for questions.
▶ Slack: julialang.slack.com

Good for package development, and questions.
▶ YouTube: www.youtube.com/c/TheJuliaLanguage
▶ Sengupta, Avik. Julia High Performance: Optimizations, distributed

computing, multithreading, and GPU programming with Julia 1.0
and beyond. Packt Publishing Ltd, 2019.

My favorite Used at Stanford

▶ Darve, Eric, and Mary Wootters. Numerical Linear Algebra with Julia.
Vol. 172. SIAM, 2021.

▶ JuliaCon 2026 @ Johannes Gutenberg University, Frankfurt, August
10-15, 2026.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30 / 30

docs.julialang.org
discourse.julialang.org
julialang.slack.com

References
▶ Balabanov, Oleg, and Laura Grigori. "Randomized block Gram-Schmidt process for solution of

linear systems and eigenvalue problems." arXiv preprint arXiv:2111.14641 (2021).
▶ Balabanov, Oleg, and Laura Grigori. "Randomized Gram–Schmidt Process with Application to

GMRES." SIAM Journal on Scientific Computing 44.3 (2022): A1450-A1474.

