Numerical Linear Algebra
for Computational Science and Information Engineering

Introduction to the Julia Language

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

TUT

Fact sheet of the Julia language

» Started at MIT in 2009 to develop a fast open source and free
high-level language

» Features
- Dynamically typed (also enables static types for better performance)
- Just-in-time (JIT) compiled (i.e., compiled at runtime)
- Provided with full-featured interactive command-line REPL (read-eval-print

loop)

- Designed for parallelism and distributed computing (part of the standard
library)

- No need to vectorize code for performance
- Supports notebooks

» Version 1.0 released in 2018
» Current release is 1.12.1

» Used at MIT, Stanford, UC Berkeley, Amazon, Apple, Google, IBM, Intel,
Microsoft, ...

» Over 45 millions downloads as of January 2023

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 1/30

What is Julia made of ?

® Juliacgs® e C16.0%

® C++104% @ Scheme 2.8%

® Makefile 1.0% & LLVM 0.6%
Other 0.7%

» Most of the Julia standard library is written in Julia
» Julia makes use of pre-existing libraries (mostly in C/C++) for:

- BLAS/LAPACK, however, native Julia versions exist for most
functionalities. Optimized native Julia BLAS can match the
performances of Intel MKL and OpenBLAS.

- Regular expressions (PCRE)

- Downloading files (libcurl)

- Low-level asynchronous 10 (libuv)
- Compilation (LLVM)

- Extended precision arithmetic (GMP, MPFR), but native Julia
solutions also exist.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2/30

RBGS: An algorithm for comparison purposes
» Randomized block Gram-Schmidt (RBGS) procedure by Balabanov and
Grigori (2021):
RBGS : (X, 0) € R™™ x R¥*™ 1 (Q, R) € R™™ x R™*™

such that X = QR where m < k < n, (0Q)T0Q = I,,, and
Ran(0Q) = Ran(0X). We exploit the following structure of p blocks of
size n X s:

X = [X:,l:Su X:,5+1:2s> cee ’X:,(p—l)s—l-l:ps]
Q = [Q:,l:s, Q:,s—i—l:?s, R Q:,(pfl)erl:ps]
where m = ps.
» Exploiting those block structures, we have (0Q)70Q = I,, —
R(ifl)erl:is,(jfl)erl:js = (9Q:,(if1)s+1:is)T@X;,(jfl)erl:js7 (Zvj) € [1ap]2

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 3/30

RBGS: An algorithm for comparison purposes

» There are different possible implementations of RBGS algorithm. Let us
consider the following:

Algorithm 1 RBGS : (X,0) —(Q, R)

1 RGS(X:,LS) — (Q:,l:sa Rl:s,l:sa S:,l:s) > S = (_)(2
2: fori=2,...,pdo

30 P:=0X (i_1)st1us > Sketching
4 Ryi(i—1)s,(i—1)s+1iis -= SII:(FI)SP > Block least-squares problem
5. Q. (i-1)st1us 1= X (im1)s+1is — @ 1:(i—1)s B (i—1)s,(i—1) s+ 1:is > BLAS-3
6: RGS(Q: (i—1)s+1:is) F (Q:,(i=1)s+1:is> R(i—1)s41eis,(i—1)s+Lriss Ot (i—1)s+1:is)

where RGS corresponds to RBGS with s = 1.

» In what follows, line 3 will be done more efficiently using a matrix-free fast
transform.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 4/30

Julia is close to math

function RBGS(X::Array{Float64,2}, p::Int, k::Int)
n, m = size(X)
s = Int(m / p)
= Array{Float64}(undef, k, s)
= Array{Float64,2}(undef, n, m)
= zeros(Float64, m, m)
= Array{Float64,2}(undef, k, m)
srht = set_srht(n, k)
Q[:, 1:s8], R[1:s, 1:s8], S[:, 1:s8] = RGS(X[:, 1:s], srht)
for i in 2:p
P .= MatrixFreeTheta(X[:, (i-1)*s+1:i*s], srht)
R[1:(i-1)*s, (i-1)*s+1:i*s] = S[:, 1:(i-1)*s] \ P
QL:, (i-1)*s+1:i*s] = X[:, (i-1)*s+1:i*s]
- Q[:, 1:(i-1)#*s] * R[1:(i-1)*s, (i-1)*s+1:i*s]

0 o9
|

QL:, (i-1)*s+1:ixs],
R[(i-1)*s+1:i*s, (i-1)#*s+1:ix*s],
S[:, (i-1)*s+1:i*s] = RGS(Q[:, (i-1)#*s+1:i*s], srht)
end
return Q, R, S
end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5/30

So is Python

def RBGS(X, p, k):
n, m = X.shape
s = int(m / p)
= np.zeros((k, s))
np.zeros((n, m))
= np.zeros((m ,m))
= np.zeros((k, m))
srht = set_srht(n, k)
Q[:, :s], R[:s, :s], S[:, :s] = RGS(X[:, :s], srht)
for i in range(l, p):
P[:, :] = MatrixFreeTheta(X[:, i*s:(i+1)#*s], srht)
Rl:i*s, i*s:(i+1)*s] = np.linalg.lstsq(S[:, :ixs], P)[0]
QL:, i*s:(i+1)*s] = X[:, i*s:(i+1)x*s]
- np.matmul(Q[:, :i*s], R[:i*s, i*s:(i+1)*s])

0 o9
]

QL:, i*s:(i+1)=*s],

Rli*s: (i+1)*s, ixs:(i+1)*s],

S[:, i*s:(i+1)*s] = RGS(Q[:, i*s:(i+1)*s], srht)
return Q, R, S

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 6 /30

But not C

void RBGS(int n, int m, int p, int k, double *X, struct SRHT srht, double *Q, double *R, double *S) {
int s =m / p;
double *P = (double*)malloc(k * s * sizeof (double));
double *Rtmp = (double*)malloc(m * s * sizeof(double));
double *StS = (double*)malloc(m * m * sizeof(double));
lapack_int *ipiv = (lapack_int*)malloc(m * sizeof(lapack_int));
RGS(n, s, k, &X[0], srht, &Q[0], Rtmp, &S[0]);
for (int v=0; v<s; v++)
for (int u=0; u<s; u++)
Rlv # m + ul = Rtmp[v * s + ul;
for (int v=0; v<s; v++)
for (int u=s; u<m; u++)
Rlv *m + ul] = 0.;
for (int i=1; i<p; i++) {
BlockMatrixFreeTheta(&X[i * s * n], srht, s, P);
cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, i * s, i * s, k, 1., S, k, S, k, 0., StS, i * s);
cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, i * s, s, k, 1., S, k, P, k, 0., Rtmp, i * s);
LAPACKE_dsysv(LAPACK_COL_MAJOR, 'U', i * s, s , StS, i * s, ipiv, Rtmp, i * s);
for (int v=0; v<s; v++)
for (int u=0; u<i*s; u++)
R[i*s*m+v*m+ul =Rtmplv * i * s + ul;
cblas_dcopy(n * s, &X[i * s * n], 1, &Q[i * s * n], 1);
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, n, s, i * s, -1., Q, n, Rtmp, i * s, 1., &Q[i * s * n
RGS(n, s, k, &Q[i * s * n], srht, &Q[i * s * n], Rtmp, &S[i * s * k1);
for (int v=0; v<s; v++)
for (int u=0; u<s; u++)
R[i*s*m+v*m+1ix*s+ul =Rtmplv * s + ul;
for (int v=0; v<s; v++)
for (int u=(i+1)#*s; u<m; u++)
R[i*s#*m+v*m+ul =0.;
}
free(P);
free(Rtmp) ;
free(StS);

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 7/30

Stepping away from matrix computation

» SRHT refers to subsampled randomized Walsh-Hadamard transform.
» MatrixFreeTheta: X — OX, where © is a SRHT matrix given by:

© :=+/n/kRHD

R € RF*™: Random restriction, i.e., each row is a row from I,,.

H € R™™: Normalized Walsh-Hadamard transform matrix.

D € R™™: Random sign flip, i.e., diagonal array with +1 components.
» We have H = 1/y/nH,, in which the non-normalized Walsh-Hadamard

transform H, is defined by the following recursion:

1 1 H H
H, = , H,:= a/2 q/2} , ¢=2,4,...,n/2,n.
' [1 _1] ! [Hq/2 —Hq/2 ! /

» The recurrence of the SRHT lends itself to divide and conquer, which
yields a non-vectorized fast algorithm.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8/30

Algorithm for the fast Walsh-Hadamard transform (FWHT)
» Pseudocode of the FWHT assuming n is a power of 2:
Algorithm 2 FWHT : z — H,,z

1. h:=1

2: while h < n do

3: fori=1,142h,...,n—2h,n do
4; for j=4,...,i+h—1do

5: T =z

6: Y= Zj+h

7 zi=r+y

8: Zith =T —Y

9: h:=2h

10: return 2z

» If n is not a power of 2, zero-pad up to the smallest power of 2 greater
than n.

» Then, define MatrixFreeTheta by making use of FWHT.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 9/30

Runtime of the fast Walsh-Hadamard transform (FWHT)

/\M C is approximately
E 1.5x faster than Julia
= 107 300x faster than Python
E — Python/C For fast Python:
EB T Julia/C code in C w/ pybind11
£ code in Fortran w/ f2py
& \/\/\/_/_/,\ﬁ Julia is fast

1004 and hlgh level

o 102 100 10t 10° 106 107
n

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 10 /30

Other benchmarks
» See julialang.org/benchmarks/

10* .
.
10°
.
" . benchmark
. . ® iteration_pi_sum
- . ® matrix_multiply
107 . * . ® matrix_statistics
. . ® parse_integers
- . # print_to_file
. ® recursion_fibonacci
. recursion_guicksort
- . 3 . ® userfunc_mandelbrot
. H
, .
10 . : .
- . .
. H
. .
] .
.
.
. s
: 2 . - . e .
w H . H .
. L .
o
c Juliz LualiT Rust Go Forran Java JavaScript Marlsh Mathematica Python 3 Octave

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

julialang.org/benchmarks/

Installing Julia
» Install juliaup:
- On Linux and MacOS:
$ curl -fsSL https://install.julialang.org | sh

- On Windows:
> winget install --name Julia --id 9NJNWW8SPVKMN -e -s msstore

This will install the latest version of Julia.

» juliaup is also used to update Julia to the latest version:
$ juliaup update

» You can use juliaup to install arbitrary releases, e.g.:
$ juliaup add 1.9.3

» Start a new terminal and access the REPL as follows:
$ julia
julia>

» To run a specific release, e.g.,
$ julia +1.9.3

» To see the installed versions: $ juliaup status

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 12 /30

Package management
» The default project is defined by two files
- ~/.julia/environments/v1.12/Project.toml: contains names of
packages.
- ~/.julia/environments/v1.12/Manifest.toml: contains version numbers
and dependencies.
» To clone your environment on a new machine, only copy the
Project.toml in the new default folder.

» In REPL, hit the key] to get in Pkg mode. You then get the following
prompt:
(@1.12) pkg>

» To initialize a new environment in ~/MyEnvironment/, activate the
path and add a package:

(@1.12) pkg> activate ~/MyEnvironment/
(@1.12) pkg> add NPZ
this will automatically create the Project.toml and Manifest.toml files in
~/MyEnvironment/.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13 /30

Package management, cont'd

» Load an existing environment using the activate command as follows:
(01.12) pkg> activate ~/MyEnvironment/
Activating project at '~/MyEnvironment'

» Check the status of an environment with the st command:

(@1.12) pkg> st
Status '~/MyEnvironment/Project.toml’
[15elcf62] NPZ v0.4.2

» When loaded for the first time, use the command instantiate to install all
the packages from Project.toml:
(@1.12) pkg> instantiate
» All these operations defined in the Pkg mode can be done with the Pkg
package inside a script, e.g.:

using Pkg
activate("”/MyEnvironment/")

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 14 /30

Overview of available packages
» Scientific computing

LinearAlgebra.jl: Basic linear algebra subroutines, multithreaded BLAS
and LAPACK

SparseArrays.jl: Support for sparse vectors and matrices
Distributed.jl: Methods for distributed computing
DistributedArrays.jl

MPL.jl: Wrapper for the message passing interface

CUDA.jl: Main entrypoint for programming NVIDIA GPUs
AlgebraicMultigrid.jl: GPU-based implementation of AMG solvers and
preconditioners

Metis.jl: Wrapper for the Metis library

FFTW.jl: Bindings to the FFTW library for fast Fourier transforms
SuiteSparse.jl: Wrapper for the SuiteSparse library

Arpack.jl: Wrapper for the Arpack library to solve large-scale
eigenvalue problems

BenchmarkTools.jl: Methods for performance tracking

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 /30

Overview of available packages, cont'd
> Scientific computing (cont'd)
- lterativeSolvers.jl: Iterative algorithms to solve large linear systems
- KrylovKit.jl: Matrix-free Krylov-based algorithms for linear, singular
value and eigenvalue problems
- TriangleMesh.jl: Generate and refine 2D unstructured triangular
meshes
- Gridap.jl: Finite elements for partial differential equations in arbitrary
dimensions
- DifferentialEquations.jl: Suite for numerically solving differential
equations (including DAEs)
» Machine learning
- Flux.jl: Go-to library for neural networks and machine learning
- Zygote.jl: Automatic differentiation package
- Knet.jl: Deep learning framework developed at Ko¢ University
- TensorFlow.jl: Wrapper for TensorFlow
- ScikitLearn.jl: Implementation of the scikit-learn API

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 /30

Interoperability with Python
» Calling Python from Julia

Set-up Python installation as follows using PyCall.jl:
julia> ENV["PYTHON"] = "/usr/bin/python3"

(01.12) pkg> build PyCall

julia> using PyCall

Import packages using pyimport from PyCall jl:

julia> np = pyimport ("numpy");

julia> pushfirst!(pyimport("sys")."path", "");
julia> GS = pyimport ("GramSchmidt");

Proceed seamlessly in Julia as in Python:

julia> x = np.random.rand(2°24);

julia> z = GS.fwht(x);

Other packages:

- PyPlot.jl: Enables Matplotlib in Julia

- NPZ.jl: Enables saving and loading NumPy binary data files
- Conda.jl: Provides access to the Conda package manager

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 17 /30

Interoperability with Python, cont'd
» Calling Julia from Python

Install PyJulia:

$ pip install julia

The default environment of Julia is then available from Python. For
example, we can do

>>> from julia import NPZ

The global namespace of Julia's interpreter can be accessed via the
module julia.Main:

>>> from julia import Main

You can set a variable's name in the julia.Main module to send data
from Python to Julia:

>>> import numpy as np

>>> Main.x = np.random.rand (2**24)

Use the eval function from julia.Main to run Julia code:

>>> Main.eval('push! (LOAD_PATH, ".")") # add current
>>> Main.eval('using MyGramSchmidt: fwht') # folder to path
>>> z = Main.eval('fwht(x)')

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 18 /30

Interoperability with C

Calling C libraries from Julia:
(see docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/)
- The C code must be available as a shared library
- No additional overhead for calling from Julia compared to calling from C
- The function ccall is used to call a C function with the following
arguments:
- 1. A (:function, "path/to/library") pair
- 2. The function’s return type
- 3. A tuple of input types corresponding to the function's signature

\4

- 4. Argument values to be passed to the function

- Example for double *fwht(double *a, int n) in srht.so:
julia> z_ptr = ccall((:fwht, "./srht.so"), Ptr{Cdouble},
(Ptr{Cdouble}, Cint), rand(2-24),
2°24)
julia> z = unsafe_wrap(Vector{Float64}, z_ptr, 2724)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 19 /30

Interoperability with C, cont'd

» Calling Julia code from C:
(see docs.julialang.org/en/v1/manual /embedding/)
- A header file julia.h is made available in the Julia folder
- Example of C code (main.c) calling Julia code:
#include <julia.h>
JULIA_DEFINE_FAST_TLS
int main(int argc, char *argv[]) {
jl_initQ);
jl_eval_string("push! (LOAD_PATH, \".\")");
jl_eval_string("using MyGramSchmidt: fwht");
jl_array_t *z = (jl_array_t*)jl_eval_string("fwht(rand(2°24))"'
double *z_data = (doublex)jl_array_data(z);
jl_atexit_hook(0);
return 0;}

- Compile as follows:
$ gcc -o main -fPIC
-I/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.1linux.gnu/include/julia
-L/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.1linux.gnu/1ib
-W1,-rpath,/home/venkovic/.julia/juliaup/julia-1.12.5+0.x64.1linux.gnu/lib
main.c -ljulia

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20/30

Shared memory multithreading

» The number of threads is set through an environment variable:
$ export JULIA_NUM_THREADS=12
» Multithreaded for loop:
julia> Z = Array{Float64,2}(undef, 1_024, Threads.nthreads())
julia> Threads.@threads for i in 1:Threads.nthreads()
z[:, il = fwht(rand(1_024));
end
» Parallel task launching:
julia> a = Threads.Ospawn fwht(rand(1_024));
julia> b = Threads.@spawn fwht(rand(1_024));
julia> z = fetch(a) .+ fetch(b)
» Multithreaded BLAS:
julia> using LinearAlgebra.BLAS
julia> BLAS.set_num_threads(Threads.nthreads())
julia> BLAS.dot(10_000_000, rand(10_000_000), 1,
rand (10_000_000), 1);
21/30

Distributed computing
» Add aliases of your machines to /etc/hosts:
192.168.1.74 hectorO ... 192.168.1.23 hector3
» Set-up password-less ssh connection between
machines

» Import the Distributed.jl package and add the
machines:

hector
4x Intel Core i7

using Distributed
machines = ["hector$i" for i in 0:3];

for machine in machines
addprocs ((["venkovic@$machine", Sys.CPU_THREADS]),
tunnel=true)
end
» There are processes and workers. The master

process is not a worker:

julia> println(procs(), workers())
[1,2,3,4,5,6,7,8,9,10,11,12112,3,4,5,6,7,8,9,10,11,12]

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 /30

Distributed computing, cont'd;

» Load code on all processes making use of the @everywhere macro:
Q@everywhere push!(LOAD_PATH, ".")
Q@everywhere using MyGramSchmidt: fwht
» Define a shared array as follows:
Qeverywhere using SharedArrays
Z = SharedArray(Array{Float64,2}(undef, 1_024, nworkers()))
» Do a distributed for loop as follows. The loop is distributed over
workers:
@distributed for p in 1:nworkers()
Z[:, p] = fwht(rand(1_024))
end
» Use pmap as follows to divide the work among workers:
Z = pmap(i->fwht(rand(1_024), 1:nworkers()))
» Do a reduction through a distributed for loop as follows:
z = Array{Float64,1}(undef, 1_024)
z .= @distributed (.+) for _ in 1_nworkers()
fwht (rand(1_024))
end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 /30

Distributed computing, cont'ds

» Dynamic mapreduce routine for large parallel unbalanced working loads:
github.com/venkovic/julia-phd-krylov-spdes/blob/master/Utils /PllUtils.jl

function dynamic_mapreduce! (func::Function,
redop: :Function,
coll::Array{Int,1},
K::Array{Float64,2};
verbose=true,
At=2.)
Does parallel mapreduce of arrays with dynamic scheduling. This is an alternative to
K .= @distributed (redop) for c in coll
func(c)
end
which does static scheduling and tends to crash for time consuming and unbalanced work
loads.
Another approach is given by reduce(redop, Distributed.pmap(func, K)), which requires to
allocate enough memory to store Distributed.pmap(func, K). This becomes a problem when the
number of workers and the dimensions of K are increased.

» Used for parallel Karhunen-Loéve decompositions on unstructured
meshes:

NA™Y
o |
v,

a Venkovic (2023)
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 24 /30

github.com/venkovic/julia-phd-krylov-spdes/blob/master/Utils/PllUtils.jl

Distributed computing, cont'ds
» An alternative to reduction for loops is the mapreduce function:
z = mapreduce(x->fwht(rand(1_024)), .+, 1l:nworkers())
» Launch a task on any available worker:
z = fetch(@spawn fwht(rand(1_024)))

» Launch a task on a specific process, say the 4th process:
z = fetch(@spawnat 4 fwht(rand(1_.024)))

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /30

Performance tips

» Access arrays in memory order, i.e., along columns

» Pre-allocate returned variables

Instead of this: for i in 1:10
x = fwht(rand(1_024))
println(x[1:3])
end
Use this: x = Vector{Float64} (undef, 1_024)
for i in 1:10
x[:] = fwht(rand(1_024))
println(x[1:3])

end
» Avoid changing the type of a variable
Avoid this: x =1

for i in 1:10
x *= rand()
end

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 26 /30

Performance tips, cont'd

> Write type-stable functions
Instead of this: pos(x) =x <070 : x
Use this: pos(x) = x < 0 7 zero(x) : x
» Use broadcast operators for vectorized operations
Instead of this: f(x::Vector{Float64}) = 3 * x.72 + x
Use this: f(x::Vector{Float64}) = 3 .* x.”2 .+ x

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 27 /30

Useful macros
» Macros provide a mechanism to include generated code in the final body
program. We've seen @distributed, but there are other examples:
- Use @time to time a command and get allocations info:
julia> O@time fwht(rand(2°24));
0.622758 seconds (4 allocations: 256.000 MiB, 1.34% gc time
- Use Q@elapsed to store time elapsed during command execution:
julia> dt = Qelapsed fwht(rand(2°24));
julia> println("$dt seconds have passed.")
0.624587781 seconds have passed.
- Use @which to identify the method invoked along with its signature and
location in file:
julia> Owhich fwht(rand(1_024))
fwht(a::Vector{Float64}) in MyGramSchmidt at ~/julia-gram-s
- Use @code llvm to view the LLVM code used by the compiler:
julia> @code_llvm fwht(1_024)
; @ “/julia-gram-schmidt/GramSchmidt.j1:85 within [[fwht’

define nonnull {}* @julia_fwht_819({}* nonnull align 16 der

on
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 28 /30

Useful macros, cont'd

» Use Ocode native to view the native assembly code generated by the
compiler:
julia> @Gcode_native fwht(rand(1_024));
.text
.file "fwht"
.section .rodata.cst8,"aM",0Oprogbits,8
.p2align 3 # -- Begin function julia_fwht_587
.LCPIO_O

» Use Ocode warntype to investigate type stability:
julia> @code_warntype fwht(rand(1_.024));
MethodInstance for fwht(::Vector{Float64})
from fwht(a::Vector{Float64}) in Main at REPL[16]:1
Arguments
#self#::Core.Const (fwht)
a::Vector{Float64}
Locals

nicolas.venkovic@tum.de ANumericaI Linear Algebra for CS and IE 29 /30

Ressources

| 2
>

| 2

| 2

>

Documentation: docs.julialang.org
Discourse board: discourse.julialang.org
Responsive community. Ideal for questions.

Slack: julialang.slack.com

Good for package development, and questions.
YouTube: www.youtube.com/c/TheJuliaLanguage
Sengupta, Avik. Julia High Performance: Optimizations, distributed
computing, multithreading, and GPU programming with Julia 1.0
and beyond. Packt Publishing Ltd, 2019.

Julia High
Performance

My favorite Used at Stanford

Darve, Eric, and Mary Wootters. Numerical Linear Algebra with Julia.
Vol. 172. SIAM, 2021.

JuliaCon 2026 @ Johannes Gutenberg University, Frankfurt, August
10-15, 2026.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30/30

docs.julialang.org
discourse.julialang.org
julialang.slack.com

References
> Balabanov, Oleg, and Laura Grigori. "Randomized block Gram-Schmidt process for solution of
linear systems and eigenvalue problems." arXiv preprint arXiv:2111.14641 (2021).

» Balabanov, Oleg, and Laura Grigori. "Randomized Gram—Schmidt Process with Application to
GMRES." SIAM Journal on Scientific Computing 44.3 (2022): A1450-A1474.

