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Number representation and arithmetic on

digital computers
Section 3.2 in Darve & Wootters (2021)
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Number representation on computers
» Computers store numbers with finite memory, leading to limitations:
- Representation errors: Most real numbers cannot be exactly represented.
- Rounding errors: Arithmetic operations result in quantities which cannot be
exactly represented either.

- Overflow/Underflow: Numbers may exceed their representable range.
» These limitations introduce challenges in numerical computations, such as

maintaining
- Accuracy: How close is the computed result to the true value?
Affected by accumulation of representation and rounding errors,

and by algorithmic choices.
- Stability: Does the method prevent error growth for small input changes?
Specific to both the problem and the algorithm together.

» Error analysis helps understand these challenges by focusing on
- Perturbation: effect of small input changes on the true solution of a problem.
- Propagation: cumulative effects of rounding errors through calculations.

» Understanding these concepts is essential to prevent unwanted behaviors
when using numerical methods.
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Bit representation of integers

» Digital computers represent integers using a fixed number b of bits, e.g., 8,
16, 32, or 64 bits.
» For every unsigned integers x ranging from 0 to 20 — 1,
b—1
3! (do, ... dy—1) € {0, 1} stz => d;2".
i=0
We say that x is represented as dy_1 . .. dp.

Attempting to represent integers out of the range from 0 to 2° — 1, leads
to underflow or overflow.

Example: integers from 0 to 7 can be represented as follows using 3 bits:

integer | binary representation decomposition
0 000 O0x1+0x240x4
1 001 1x14+0x2+0x4
2 010 O0x14+1x24+0x4
3 011 1x1+1x240x4
4 100 O0x14+0x24+1x4
5 101 I1x1+0x24+1x4
6 110 O0x1+4+1x24+1x4
7 111 1x14+1x2+1x4

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2/20



Bit representation of integers, cont'd

» Different systems exist in order to encode signed integers with bits.
In particular, we consider the two’s complement representation:

For every integer = ranging from —20~1 to 20—1,

b—2
3! (do, ceey db—l) S {O, 1}b s.t.x = —db_12b_1 + E d;2".
i=0
Example: integers from -4 to 3 can be represented as follows using 3 bits:
integer | binary representation decomposition

0 000 —0x4+0x14+0x2
1 001 —0X4+1x140x2
2 010 —0X4+0x14+1x2
3 011 —0x4+1x14+1x2
-4 100 ~1Xx44+0x140x2
-3 101 —Ix44+1x140x2
-2 110 —1x44+0x141x2
-1 111 —1x4+1x141x%x2

Clearly, the most significant bit d;,_; represents the sign (0 for +, 1 for -).

Arithmetic operations on two's complement numbers follow the same rules
as unsigned arithmetic.
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Bit representation of floating-point numbers

» Floating-point numbers are used to represent a wide range of real
numbers, including fractions and very large or small numbers.
» A floating-point number z is given by z = (—1)* x m X 2¢=2""""" \here
- s is the sign bit (O for +, 1 for -).
-m=1+ ZZ 1 127" € [1,2) is the significand (or mantissa), encoded by
— 1 fraction bits, where p is the precision of the numerical system.
- e—2b"P~1 s the exponent represented by b — p bits with e = Zi’;g*l d; 2.

The associated bits are stored in the form | s |dp—p—1...do|q1 ... qp—1 .

» Example: Half precision (1 sign bit, 5 exponent bits, 10 fraction bits)

- Then, the floating-point number fl(r), which best approximates = = 3.1416...,
is represented as 0100001001001000 so that

w0l m=1+1x2""+1x27"+1x277

e=1X

s=0 I =1-+0.5+0.0625 + 0.0078125
B =1.5703125

and fl(m) = (=1)° x 1.5703125 x 216=2""" = 1 5703125 x 2 = 3.140625.
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Bit repsentation of floating-point numbers, cont'd

» Most real numbers cannot be exactly represented due to the finite number
of bits used for the mantissa. The machine epsilon and the unit roundoff
are often used to characterize the rounding error of a numerical system.

Definition (Machine epsilon & unit roundoff)

- The (interval) machine epsilon, often denoted by €,,4ch, is the distance between
1 and the next floating-point number.

- The unit roundoff w is half the machine precision, i.e., u = €nacn/2-

» Common floating-point formats:
- Half precision (16 bits): 1 sign bit, 5 exponent bits, 10 significand bits
and unit roundoff u = 27! &~ 4.88 x 10~
- Single precision (32 bits): 1 sign bit, 8 exponent bits, 23 significand bits
and unit roundoff u = 272* ~ 5.96 x 1078,
- Double precision (64 bits): 1 sign bit, 11 exponent bits, 52 significand bits
and unit roundoff u = 2753 ~ 1.11 x 10716,
» The distribution of floating-point numbers is not uniform within the
range of a numerical system.
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Floating-point conversion and arithmetic

» For every number z within the range of a floating-point number system, it
can be shown that the associated rounding fl(x) is such that

fl(z) = (1 + 9)z for some § s.t. 6| < u.

» When performing arithmetic operations between floating-point numbers, i.e.,
fl(x) o fl(y) with o € {4, —, x, =}, the result is not necessarily a
floating-point number, so that further rounding applies.

Floating-point number systems follow the standard model of arithmetic,
which states they must satisfy

fi(fl(z) o fl(y)) = (1 + 0)(fl(x) o fl(y)) for some ¢ s.t. |§] < u.

» Properties of floating-point arithmetic:

- Not associative, e.g., fl(fl(z) + fl(y)) + fl(z) # fl(z) + fI(fl(y) + fI(2)).
- Not distributive, e.g.,
fi(z) x fl(fl(y) + fl(2)) # fl(fl(z) x fl(y)) + fI(fl(x) x fl(2)).
- Subtraction of nearly equal numbers can lead to catastrophic cancellation.
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Principles of error analysis
Section 3.3 in Darve & Wootters (2021)
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Forward error

» Error analysis is crucial for understanding the accuracy and stability of
numerical algorithms.

> Let f be a function and f be its computed approximation for an input z.

» The forward error || f(z) — f(z)| measures the distance between the
true value f(z) and the computed approximation f(z).

Forward ervor ||f(x)—f ()l

Input space Output space

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied
Mathematics.

> The relative forward error is given by ||f(z) — f(2)||/||f(z)].
» In practice, we often do not know f(x), which makes the forward error
difficult to evaluate.
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Backward error
> For an approximation y := f(z) of a true quantity f(z) for some input z,
the backward error 7(x,y) is the smallest perturbation to the input

whose exact map equates the approximation, i.e.,

n(z,y) = min{llz — 2| st. f(z) = y}.

This can be represented as

Backward error ||x —x||

Output space

Input space

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied

Mathematics.

» The relative backward error is given by n(x,y)/||z|.
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Sensitivity of a problem

» Sensitivity measures how much the output of a function changes relative
to small changes in the input:

forward error || f(x) — f(Z)]|

backward error |z —Z|

Sensitivity is the
ratio of these

sensitivity =

Input space Output space
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied

Mathematics. N
1f (@) — f@)]I/11Lf ()]l
lz —Z[|/ll=|
o720

» The relative sensitivity is given by



Conditioning of a problem

» The (relative) condition number x(z) of a problem x — f(x) bounds the
relative sensitivity for small perturbations in the input data:

I1f (@ + 0z) — f@)|I/If ()]

0 |15z)j<e [z /|||

» A fundamental result of numerical analysis states

relative < condition X relative
forward error number backward error
x,
also written as 7 () = yll yH < k() (. y) for any approximation y of f(x).

LFEI ™ ]

» A problem x — f(z) with a large condition number (z) is ill-conditioned.

» The approximation f(:c) of an ill-conditioned problem can have a
large forward error, even if f(:v) has a small backward error.

» The condition number is problem-dependent, i.e., it is specifically defined
for linear system solving, least-squares solving, eigenvalue solving, ...

» The condition number does not depend on the algorithm.
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Backward stability of an algorithm

> In practice, we develop algorithms of the form 2 — f(x) to approximate
the solution of the problem z — f(z), and that minimize the associated
backward error n(z, f(x)).

» In particular, an algorithm is backward stable if the associated backward
error remains small, i.e.,

]

irrespective of x, where u is, typically, the unit roundoff of the
floating-point number system.

» For well-conditioned problems, a backward stable algorithm ensures
small forward errors.

» But, for ill-conditioned problems, even backward stable algorithms
may produce large forward errors.
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Analysis of linear systems
Section 3.3 in Darve & Wootters (2021)
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Perturbation of linear systems

» Consider the problem of solving for x such that Az = b for some invertible
matrix A and non-zero vector b.

» Let us assume T := x + dx is the true solution of a non-singular perturbed
problem (A + 0A)Z = b+ 6b. Then, the following remainder is obtained

(A+0A)(x+ dx) =b+ b
— Ax =0
Adz + 0Ax + 6Adx =6b
Multiplying the remainder by A=!, we get
6x + A 16 Az + A5 ASx = A716b.
Then, assuming the matrix norm is consistent with the vector norm:
8] < AT - I6A] - ]| + NATH - 1A - [loz]| + [[ATH] - [|6b].
Dividing by ||z||, and neglecting the 2nd order term [|[6A]| - ||0x||, we get
-1
Pl iy oy + I LI
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Perturbation of linear systems, cont'd
We can then factor by || A~} - ||A]|, which leads to

6l _ o <||5AH 0] >
MO <y =1y 4 - n .
fe ~ A4 Ui

But since Az = b implies ||b|| < ||A]| - ||=||, we obtain

62l _ (HMH HébH>
— < A .A. -+ — .
el ~ A A

where the relative forward error ||dz||/||z| is measured by || A7 - || 4] as
a multiple of the relative input perturbations || A||/|| Al and ||db]|/|b]|-

» Therefore, the condition number of the linear system solving problem
A x:= A"'bis given by k(A) = ||[A7Y - ||A].

» When using the 2-norm, we have k(A) = oymaz(A)/omin(A), in which
Omaz(A) and 0,,in(A) are the maximal and minimal singular values of A,
respectively.
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Backward errors of linear systems

» Let T be an approximation of the solution z of the linear system Az = b,
and define the associate residual r» := b — AZ.
» Then, we are interested in the backward error 14 (x) defined as

Nap(Z) = min{e s.t. (A+0A4)T =b+6b, ||[0A| < ellA], ||6b]] < <|b]}.
» To find 74 (x), we first rearrange the perturbed system as follows:

(A+0A)Z =b+ 6b
0AT =b— AT + 5b
0AZ =r + 0b.

Then, considering a matrix norm consistent with the vector norm, we have
[0AIl - [[Z]] = [l + 6b][ = ||| — [[6b]].
Applying the prescribed bounds ||dA|| < || A|| and ||0b]| < ]|b]|, we get
ellAll - [[2]] = [Ir]| — e/l
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Backward errors of linear systems, cont'd;

which we re-order as

ol
= AT+ ol

and whose minimum, i.e., the backward error 14 ;(Z), is

S [
’ A - {z[] + o]
When using 2-norms, the bound is attained for
[All2 T [10]]2
0A = — - rZ* and 0b= — - r.
122 - ([[Al2 - [1Z]l2 + [[]]2) [All2 - [1Z]]2 + [16]]2

» Note that rZ” is a matrix of rank 1, so that the approximate solution # to
the linear system Ax = b is the exact solution to a linear system whose
matrix is a rank-1 perturbation of A.

» 1n4(Z) is sometimes referred to as the normwise relative backward
error, so as to be distinguished from other definitions of backward error.
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Backward errors of linear systems, cont'd,
» In practice, evaluating 74 ;(Z) can be challenging due to the need of || A
» Then, the backward error 1,(Z) is considered, where only b is perturbed:
np(Z) = min{e s.t. Az = b+ 0b, ||6b|| < €||b||}.

Since we then have ||0b|| = ||AZ — b|| = ||7]|, the backward error is

5 = Il
= o

» Note that 1,(Z) > na(Z) for all A,b and Z, so that the design of a
stopping criteria on the basis of 7,(Z) is conservative, and good practice.

» Some implementations of iterative linear solvers monitor the convergence
of iterates x, ..., xy through ||7x||/|lroll- But, if zg # 0 and ||ro|| > ||b],
we have

Il _ Il o
16l [lroll ol

so that, even if ||rg||/||7o]l < €, we actually have n,(x) > €.

Thus, this practice is not recommended, especially for ill-conditioned

systems with poor non-zero initial guess.
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Analysis of eigenvalue problems
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Backward error of an eigenpair

> Let (), ) be an approximation of the eigenpair (A, u) such that Au = \u.

» Then, the associated normwise backward error 174 (\, @) is given as
na(\ @) = min{e s.t. (A4 6A)a = M, ||6A| < e||A||}.
To find 14(X, @), we reorder the perturbed eigenvalue problem as

(A+6A)a =i

0A — Aa.

s
Il
P
IS

Assuming consistent matrix and vector norms, we obtain
ellAflllall = 6 Al = [|ra — Aall

so that na(\, @) = HAHTHHfLH where 7 = A — \ii is the eigen-residual.
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Backward error of an eigenpair, cont'd

» When using 2-norms, the minimal norm perturbation is achieved with

ratt

1A]l2 - 1a]l3
which, again, is a rank-1 perturbation.
» So, computing an approximation (A, ) of the eigenpair (A, u) such that

0A =

[l

4]l =
for a small value of & should ensure the good quality approximation, if the
problem is well-conditioned.
But, what is the conditioning of solving for an eigenpair (A, u) of A?
» In practice, convergence is often monitored with the criterion
il
(AL flall —
which, for larger eigenvalues of the spectrum, is generally not an issue.
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Perturbation of the normal eigenvalue problem

> Let A be a simple eigenvalue of a matrix A with normalized

right-eigenvector u and left-eigenvector v, i.e.,

Au=u, vHA= " and |ullz = [[v]lz = 1.

We consider the approximate eigenpair (5\(5), u(e)) of A with the linear

perturbation A(e) := A + eE along a matrix E s.t. (A(0),%(0)) =

and

A(e)a(e) = Me)ale).

Multiplying both sides of this expression by the left-eigenvector v

associated with )\, we obtain:

" A(e)ae)
vl Adi(e) + EUHEu(a) = 5\(6)1) u(e)
() = Ae)oa(e)
so that (A(e) — A)/e = v Ea(e) /(v a(e)).

ule

(z'HA:/\'L‘H)
M a(e) + evf Ba(e

(A, w)
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Perturbation of the normal eigenvalue problem, cont'd

» The rate of change in X induced by the linear perturbation of A along E is
then given by:
Ae) — A Eu(0) v Ed

I - - .
eh0 e a(o) oi g

Using the Cauchy-Schwartz inequality, we obtain [v" Eu| < || E||2 and

1E]2
[0 ul’

A=Al S

so that solving for the simple eigenvalue A of A has conditioning given by
k(AN =1/ vl

» Normal (and thus symmetric) matrices have aligned right- and
left-eigenvectors, which implies k(\, A) =1, i.e., solving for a simple
eigenvalue of a normal matrix is a well-conditioned problem.

» For general matrices, if u and v are nearly orthogonal, we have (A, A)>1,
and solving for the eigenvalue ) is an ill-conditioned problem.
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