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Methods to solve linear systems
Problem
Solve for x such that Ax = b where A is an invertible matrix.

To solve this problem, we distinguish between two types of methods:
▶ Direct methods: Deploy a predictable sequence of operations to yield the

exact solution (assuming exact arithmetic).
- Gaussian elimination: Efficiently solves isolated systems.
- LU factorization: Leverages A = LU , reusable for multiple right-hand sides.
- Cholesky factorization: Leverages A = LLH for Hermitian positive definite

matrices, reusable for multiple right-hand sides.
In this lecture: Reminders, special cases, basic aspects of performance
optimization, stability issues, and pivoting strategies.

▶ Iterative methods: Form successive approximations to the solution using
z 7→ Az at each iteration.
- Stationary methods: Use a consistent update formula, e.g., Jacobi,

Gauss-Seidel, ...
- Krylov subspace methods: Build solution in expanding (Krylov) subspaces,

e.g., CG, GMRES, ...
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Gaussian elimination
Section 3.1 in Darve & Wootters (2021)
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Solving isolated linear systems
▶ Special matrices (more efficient than general case):

- Diagonal matrices: Element-wise division — n ops.
For D = diag(d1, . . . , dn), solve Dx = b with xi = bi/di.

- Tridiagonal matrices: Thomas algorithm — O(n) ops.
A specialized form of the more general Gaussian elimination algorithm.

- Lower triangular matrices: Forward substitution — n2 ops.
Start from first equation, solve downwards.

- Upper triangular matrices: Backward substitution — n2 ops.
Start from last equation, solve upwards.

▶ Row echelon form:
- Matrix where the leading non-zero coefficient (pivot) of each row is

strictly to the right of the pivot of the row above it.
▶ General matrices: Gaussian elimination — O(n3) ops.

Doolittle (Crout) variant:
1. Forward elimination: From [A|b] to [U |c] where U is upper triangular.

Apply a sequence of row operations (breakdown possible).
2. Backward substitution: If no breakdown happened, solve Ux = c.
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Lower triangular matrices — Forward substitution
▶ Consider the system Lx = b with lower triangular matrix

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 .

▶ The algorithm goes as follows:

1. x1 = b1/l11
2. x2 = (b2 − l21x1)/l22...
i. xi =

(
bi −

∑i−1
j=1 lijxj

)
/lii

...
n. xn =

(
bn −

∑n−1
j=1 lnjxj

)
/lnn

▶ Operation count: n divs. +
n(n− 1)

2
mults. +

n(n− 1)

2
adds. = n2 ops.

▶ Breakdown happens iff lii = 0 for some 1 ≤ i ≤ n, i.e., iff L is singular.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 3 / 26



Upper triangular matrices — Backward substitution
▶ Consider the system Ux = b with upper triangular matrix

U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 .

▶ The algorithm goes as follows:

n. xn = bn/unn

n−1. xn−1 = (bn−1 − un−1,nxn)/un−1,n−1
...

i. xi =
(
bi −

∑n
j=i+1 uijxj

)
/uii

...
1. x1 =

(
b1 −

∑n
j=2 u1jxj

)
/u11

▶ Operation count: n divs. +
n(n− 1)

2
mults. +

n(n− 1)

2
adds. = n2 ops.

▶ Breakdown happens iff uii = 0 for some 1 ≤ i ≤ n, i.e., iff U is singular.
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General matrices — Forward elimination
▶ Forward elimination is deployed to try and transform [A|b] to [U |c] where

U is an upper triangular matrix. First, we do so without pivoting.
- First, we want to operate a transformation of the form

a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

...
...

. . .
...

...
an1 an2 an3 · · · ann bn


(k=1)−−−−→


a11 a12 a13 · · · a1n b1

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n b

(1)
2

0 a
(1)
32 a

(1)
33 · · · a

(1)
3n b

(1)
3

...
...

...
. . .

...
...

0 a
(1)
n2 a

(1)
n3 · · · a

(1)
nn b

(1)
n


where a21, . . ., an1 are eliminated by setting b

(1)
i := bi −m

(1)
i bi and

a
(1)
ij := aij −m

(1)
i a1j where m

(1)
i := ai1/a11 for i, j ∈ {2, . . . , n}.

This is equivalently done by [A|b] 7→ [G1A|G1b] where

G1 = In−v(1)eT1 is a Gauss transformation matrix with structure

in which v(1) = [0 m
(1)
2 . . . m(1)

n ]T .
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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General matrices — Forward elimination, cont’d1
▶ Forward elimination is deployed to try and transform [A|b] to [U |c] where

U is an upper triangular matrix. First, we do so without pivoting.
- Then, we want to operate a transformation of the form
a11 a12 a13 · · · a1n b1

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n b

(1)
2

0 a
(1)
32 a

(1)
33 · · · a

(1)
3n b

(1)
3

...
...

...
. . .

...
...

0 a
(1)
n2 a

(1)
n3 · · · a

(1)
nn b

(1)
n


(k=2)−−−−→


a11 a12 a13 · · · a1n b1

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n b

(1)
2

0 0 a
(2)
33 · · · a

(2)
3n b

(2)
3

...
...

...
. . .

...
...

0 0 a
(2)
n3 · · · a

(2)
nn b

(2)
n


where a

(1)
32 , . . ., a

(1)
n2 are eliminated by setting b

(2)
i := b

(1)
i −m

(2)
i b

(1)
i and

a
(2)
ij := a

(1)
ij −m

(2)
i a

(1)
2j where m

(2)
i := a

(1)
i2 /a

(1)
22 for i, j ∈ {3, . . . , n}.

This is equivalently done by [G1A|G1b] 7→ [G2G1A|G2G1b] where

G2 = In−v(2)eT2 is a Gauss transformation matrix with structure

in which v(2) = [0 0 m
(2)
3 . . . m(2)

n ]T .
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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General matrices — Forward elimination, cont’d2
▶ Forward elimination is deployed to try and transform [A|b] to [U |c] where

U is an upper triangular matrix. First, we do so without pivoting.
- Eventually, the row-echelon form [U |c] is obtained after the application of
n− 1 Gaussian transformations:

[Gn−1 . . . G1A|Gn−1 . . . G1b] = [U |c]

where Gk = In − v(k)eTk in which

v
(k)
i =

{
0 for 1 ≤ i ≤ k

a
(k−1)
ik /a

(k−1)
kk for k < i ≤ n

for 1 < k ≤ n− 1.

- Structurally speaking, U is formed as follows:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

- Breakdown happens if either of the a11, a
(1)
22 , . . . , a

(n−2)
n−1,n−1 pivots is zero.
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General matrices — Forward elimination, cont’d3
▶ Operation count of Gn−1 . . . G1A:

TA(n) :=

n−1∑
k=1

(
n− k divs. + (n− k)2 mults. + (n− k)2 adds.

)
=

(n− 1)n

2
divs. +

n(2n2 − 3n+ 1)

6
mults.

+
n(2n2 − 3n+ 1)

6
adds.

=
n(4n2 − 3n− 1)

6
ops. = O(n3) ops.

▶ Operation count of Gn−1 . . . G1b:

Tb(n) :=

n−1∑
k=1

(1 div. + 1 mult. + 1 add.)

= (n− 1) mults. + (n− 1) adds.
=2(n− 1) ops. = O(n) ops.
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Tridiagonal matrices — Forward elimination
▶ Consider the system Tx = b with tridiagonal matrix T . Then, assuming no

breakdown happens, the forward elimination yields a bidiagonal matrix.
- The first set of row operations, i.e., k = 1, yields
t11 t12 b1
t21 t22 t23 b2

t32 t33 t34 b3
. . . . . . . . .

...
tn,n−1 tnn bn


(k=1)−−−−→


t11 t12 b1

0 t
(1)
22 t23 b

(1)
2

t32 t33 t34 b3
. . . . . . . . .

...
tn,n−1 tnn bn


The application of forward elimination starts by b

(1)
2 := b2 −m

(1)
2 b2 and

t
(1)
2j := t2j−m

(1)
2 t1j where m

(1)
2 := t21/t11 for j ∈ {2, . . . , n}.

Since t13 = · · · = t1n = 0, we have

t
(1)
22 = t22 −m

(1)
2 t12, but t

(1)
2j = t2j for j ∈ {3, . . . , n}.
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Tridiagonal matrices — Forward elimination, cont’d
▶ Consider the system Tx = b with tridiagonal matrix T . Then, assuming no

breakdown happens, the forward elimination yields a bidiagonal matrix.
- Then, the row operations for k = 2 yield
t11 t12 b1

t
(1)
22 t23 b

(1)
2

t32 t33 t34 b3
. . . . . . . . .

...
tn,n−1 tnn bn


(k=2)−−−−→


t11 t12 b1

t
(1)
22 t23 b

(1)
2

0 t
(1)
33 t34 b

(2)
3

. . . . . . . . .
...

tn,n−1 tnn bn


Similarly, since t24 = · · · = t2n = 0, we have

t
(1)
33 = t33 −m

(2)
3 t23, but t

(1)
3j = t3j for j ∈ {4, . . . , n}.

- And so on for k = 3, . . . , n− 1.
▶ Operation count: TT (n) = 3(n− 1) ops. and Tb(n) = (n− 1) ops.
▶ Breakdown happens iff tii = 0 for some 1 ≤ i < n.
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Bidiagonal matrices — Simplified backward substitution
▶ Consider the system Bx = b with (upper) bidiagonal matrix

B =


b11 b12

b22 b23
. . . . . .

bnn

 .

▶ The algorithm goes as follows:

n. xn = bn/bnn
n−1. xn−1 = (bn−1 − bn−1,nxn)/bn−1,n−1

...
i. xi = (bi − bi,i+1xi+1) /bii

...
1. x1 = (b1 − b12x2) /b11

▶ Operation count: n divs. + (n− 1) mults. + (n− 1) adds. = 3n− 2 ops.

▶ Breakdown happens iff bii = 0 for some 1 ≤ i ≤ n, i.e., iff B is singular.
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LU factorization without pivoting
Section 3.1 in Darve & Wootters (2021)
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LU factorization
▶ So far, we considered forward elimination without pivoting. If no

breakdown happens, this process yields an upper-triangular matrix

U = Gn−1 · · ·G1A

where the Gauss transformation matrix Gk = In − v(k)eTk is
lower-triangular, with ones on the diagonal, thus non-singular.

▶ You can verify that G−1
k = In + v(k)eTk .

▶ Given the structure of v(k) = [0 · · · 0 m
(k)
k+1 . . . m(k)

n ]T , we also have
that k < ℓ implies G−1

k G−1
ℓ = In + v(k)eTk + v(ℓ)eTℓ .

▶ Consequently, we have

G−1
1 · · ·G−1

n−1U = A(
In + v(1)eT1 + · · ·+ v(n−1)eTn−1

)
U = A

LU = A

where L := G−1
1 · · ·G−1

n−1 is lower-triangular.
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LU factorization, cont’d
▶ The components below the diagonal of the k-th column of L are given by

the non-zero components of v(k), i.e.,

L =


1

m
(1)
2

. . .
... 1

m
(1)
n · · · m

(n−1)
n 1


so that L is a by-product of the forward elimination procedure, i.e., we
have

m
(k)
i =

a
(k−1)
ik

a
(k−1)
kk

where a
(k−1)
ij are components of A(k−1) := Gk−1 · · ·G1A, and a

(0)
ij := aij .

▶ If A is non-singular, and the upper-triangular matrix U is obtained by
forward elimination without breakdown, then it can be shown that there is
a unique lower-triangular matrix L such that LU = A.
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Solving linear systems with an LU factorization
▶ Given an LU factorization of an invertible matrix A:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

the linear system Ax = b can be recast into Lz = b, where Ux = z, so
that one can solve for x in two steps:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ Then, solving Ax = b requires two triangular solves, i.e., a forward
substitution, followed by a backward propagation, totaling 2n2 operations.
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Breakdown and instability of LU
factorization

Section 3.1 and 3.3 in Darve & Wootters (2021)
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Breakdown of LU factorization without pivoting
▶ So far, we assumed no breakdown happens during forward elimination.
▶ However, breakdowns do happen, even when using exact arithmetic

and A is invertible:

E.g., applying forward elimination to A :=


1 6 1 0
0 1 9 0
1 6 1 1
0 0 1 0

, which is
invertible, will break down.

▶ If a(k−1)
kk = 0, then breakdown will happen when applying Gk to A(k−1) :

We say that A(k−1) = has a zero-pivot.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

In particular, breakdown happens as we attempt to divide by zero to form

m
(k)
i := a

(k−1)
ik /a

(k−1)
kk for i = k + 1, . . . , n.
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Understanding the source of breakdown
▶ We can think of the block A(k−1)[1 :k, 1:k] as

(Gk−1 . . . G1)[1 :k, 1:n]A[1 :n, 1:k] = A(k−1)[1 :k, 1:k].

But since (Gk−1 . . . G1)[1 :k, k + 1:n] = 0, we have

(Gk−1 . . . G1)[1 :k, 1:k]A[1 :k, 1:k] = A(k−1)[1 :k, 1:k].

Thus, we can focus our investigation on the leading principal blocks:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Understanding the source of breakdown, cont’d

-
The leading block A(k−1)[1 :k, 1:k] is singular because it is
triangular with a zero on the diagonal, i.e., a(k−1)

kk = 0.

-
The leading block (Gk−1 . . . G1)[1 :k, 1 :k] of the product
of Gauss transformation matrices is non-singular because
it is triangular with a ones on the diagonal.

- Therefore, the leading block A[1 :k, 1:k] must be singular.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Theorem (Existence of an LU factorization without pivoting)

A matrix A ∈ Fn×n admits an LU factorization without pivoting iff its n− 1
leading principal sub-matrices are non-singular.
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Backward error of LU factorization without pivoting
▶ Consider a matrix A whose leading principal sub-matrices are non-singular,

and let L̃ and Ũ be approximations of the factors L and U of A.
▶ Backward error analysis considers that L̃ and Ũ are exact factors of a

perturbed matrix, i.e., there exists δA such that

A+ δA = L̃Ũ .

The analysis consists then of bounding this perturbation.
▶ In Lecture 03, we introduced backward error analysis in a way that is

agnostic to the algorithm. For the LU factorization, this is not the case:
- L̃ and Ũ are specifically assumed to be computed by forward

elimination with floating-point arithmetic.
- Then, the perturbation δA is bounded component-wise by

|δA| ≤ γn · |L̃||Ũ |
where γn := nu/(1− nu) and nu < 1, in which u is the unit roundoff.

- In general, the components of |L̃||Ũ | can take arbitrary large values, i.e.,

forward elimination without pivoting is not backward stable.
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LU factorization with pivoting
Section 3.4 in Darve & Wootters (2021)
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Row pivoting
▶ For a given matrix A, one way to reduce the backward error of an

approximate LU factorization is to contain the components of |L̃|.
▶ Since L[i, k] = m

(k)
i := a

(k−1)
ik /a

(k−1)
kk for i = k + 1, . . . , n, this can be

done if we allow ourselves to permute the rows of A(k−1)[k+1, 1:n] such
that a(k−1)

kk ≥ a
(k−1)
ik for i = k + 1, . . . , n. Then we would have |L| ≤ 1.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Row pivoting, cont’d1
▶ When row pivoting is introduced in forward elimination, it is expressed as

Gn−1Pn−1 · · ·G1P1A, where P1, . . . , Pk denote row swap permutations.
▶ The similarity transformation PGkP

−1 of a Gauss transformation matrix
Gk with pivot column k using a permutation matrix P , is another Gauss
transformation matrix G̃k with pivot column k, e.g.,

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ Then, as we let G̃k := Pn−1 · · ·Pk+1GkP
−1
k+1 · · ·P

−1
n−1, you can show that

Gn−1Pn−1 · · ·G1P1A = G̃n−1 · · · G̃1Pn−1 · · ·P1A =: U.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20 / 26



Row pivoting, cont’d2
▶ Similarly as without pivoting, this can be recast as

G̃n−1 · · · G̃1Pn−1 · · ·P1A = U

Pn−1 · · ·P1A = G̃−1
1 · · · G̃−1

n−1U

PA = LU

where L = G̃−1
1 · · · G̃−1

n−1 and P = Pn−1 · · ·P1.
▶ That is, there is a permutation P such that an LU factorization of PA

exists, and can be obtained by forward elimination without pivoting.
▶ Upon applying row pivoting during forward elimination, such a

permutation P is recovered along with the triangular factors L and U such
that PA = LU .
Then, one can solve for x such that Ax = b by

1. Solving for z such that Lz = Pb

2. Solving for x such that Ux = z.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21 / 26



Material we skip, for now
▶ Column pivoting (p. 101 in Darve and Wootters (2021))

- Column pivoting is introduced to allow for the computation of rank
revealing factorizations:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ Full pivoting (p. 102 in Darve and Wootters (2021))
- Performing both row and column swaps allows for the computation of

rank revealing factorization while maintaining stability.
▶ Rook pivoting (p. 103 in Darve and Wootters (2021))

- Reduces the cost of full pivoting by simplifying the search for swaps.
▶ Pivots and singular values (p. 104 in Darve and Wootters (2021))

- Pivoting strategies can also be used to compute approximately optimal
low-rank matrix approximations.

▶ We may come back to these topics in our talk about preconditioners.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 / 26



Cholesky factorization
Section 3.5 in Darve & Wootters (2021)
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Cholesky factorization
▶ LU factorization is intended for general square matrices. For Hermitian

positive-definite matrices, it is possible to leverage the properties of such
matrices to yield a better behaved factorization.

Theorem (Cholesky factorization)
- If A ∈ Fn×n is Hermitian positive-definite, then there exists a lower-triangular

matrix L ∈ Fn×n such that A = LLH .

- If we limit our search to lower-triangular matrices with positive components on
the diagonal, then L is unique.

▶ The existence of such factors L is proven by inductive construction.
In particular, A being Hermitian, if L exists, we must have

A =

[
a11 aH1
a1 A1

]
=

[
l11 0
l1 L1

] [
l11 lH1
0 LH

1

]
where L =

[
l11 0
l1 L1

]
where, due to positive definiteness, a11 > 0, and the principal block A1 is
Hermitian positive-definite.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 / 26



Cholesky factorization, cont’d1

This is recast into A =

[
a11 aH1
a1 A1

]
=

[
l211 l11l

H
1

l11l1 L1L
H
1 + l1l

H
1

]
.

By construction, we impose l11 > 0, so that we have

l11 =
√
a11 and l1 = a1/l11.

We rely here on the assumption that the Cholesky factorization
L1L

H
1 = A1 − l1l

H
1 exists. To show that, A can be recast into XBXH

A =

[
a11 aH1
a1 A1

]
=

[
1 0

l1/l11 In−1

] [
l211 0
0 A1 − l1l

H
1

] [
1 lH1 /l11
0 In−1

]

where X =

[
1 0

l1/l11 In−1

]
and B =

[
l211 0
0 A1 − l1l

H
1

]
.

Since A is Hermitian positive-definite, and X is non-singular, then B must
be positive-definite.
Moreover, since the principal sub-matrices of a Hermitian positive-definite
matrix are positive-definite, so is A1 − l1l

H
1 .
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Cholesky factorization, cont’d2

▶ To complete the construction of L, we assume that the lij components of
L are known for i = 1, . . . , k and j = 1, . . . , i, s.t. l11, . . . , lk > 0 and

A =


a11 . . . ak1 aH1
...

. . .
...

...
ak1 . . . akk aHk
a1 . . . ak Ak

 =


l11
...

. . .
lk1 . . . lkk
l1 . . . lk Lk



l11 . . . lk1 lH1

. . .
...
lkk lHk

LH
k


where Ak − lkl

H
k − · · · − l1l

H
1 is Hermitian positive-definite with Cholesky

factorization LkL
H
k .

▶ The construction of L is completed by showing that Lk+1 can be defined
under similar conditions.

▶ The uniqueness of L is revealed with the final requirement |Ln|2 = ann.

Since both ann and Ln need be strictly positive, we simply have Ln = ann.
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Computation of the Cholesky factorization
▶ The procedure to compute a Cholesky factor follows the lines of our

constructive proof.
It requires about half the number of operations than that of calculating an
LU factorization by forward elimination.

▶ Backward error analysis considers that L̃ is an exact factor of a
perturbed matrix, i.e., there exists δA such that

A+ δA = L̃L̃H .

The analysis consists then of bounding this perturbation.
- Such analyses assume L̃ is specifically computed using the procedure we

described, with floating-point arithmetic.
- Then, the perturbation δA is bounded component-wise by

|δA| ≤ γn+1

1− γn+1
· ddT where d = [a

1/2
11 . . . a1/2nn ]T

with γn := nu/(1− nu) and nu < 1, in which u is the unit roundoff.
- Therefore, computing the Cholesky factorization is a backward stable

procedure, and thus, it does not require pivoting.
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