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Methods to solve linear systems

Problem
Solve for x such that Az = b where A is an invertible matrix.

To solve this problem, we distinguish between two types of methods:

» Direct methods: Deploy a predictable sequence of operations to yield the
exact solution (assuming exact arithmetic).
- Gaussian elimination: Efficiently solves isolated systems.
- LU factorization: Leverages A = LU, reusable for multiple right-hand sides.
- Cholesky factorization: Leverages A = L L for Hermitian positive definite

matrices, reusable for multiple right-hand sides.

In this lecture: Reminders, special cases, basic aspects of performance
optimization, stability issues, and pivoting strategies.

> lterative methods: Form successive approximations to the solution using
z +— Az at each iteration.
- Stationary methods: Use a consistent update formula, e.g., Jacobi,

Gauss-Seidel, ...
- Krylov subspace methods: Build solution in expanding (Krylov) subspaces,

e.g. CG, GMRES, ...
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Gaussian elimination
Section 3.1 in Darve & Wootters (2021)
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Solving isolated linear systems
» Special matrices (more efficient than general case):
- Diagonal matrices: Element-wise division — n ops.
For D = diag(dy,...,d,), solve Dz = b with x; = b;/d;.
- Tridiagonal matrices: Thomas algorithm — O(n) ops.
A specialized form of the more general Gaussian elimination algorithm.
- Lower triangular matrices: Forward substitution — n? ops.
Start from first equation, solve downwards.
- Upper triangular matrices: Backward substitution — n? ops.
Start from last equation, solve upwards.
» Row echelon form:
- Matrix where the leading non-zero coefficient (pivot) of each row is
strictly to the right of the pivot of the row above it.
» General matrices: Gaussian elimination — O(n?) ops.
Doolittle (€rout) variant:
1. Forward elimination: From [A|b] to [U|c|] where U is upper triangular.
Apply a sequence of row operations (breakdown possible).
2. Backward substitution: If no breakdown happened, solve Uz = c.
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Lower triangular matrices — Forward substitution

» Consider the system Lx = b with lower triangular matrix

iy 0 - 0

logy log -+~ 0
L= . .

lnl ln2 lnn

» The algorithm goes as follows:

1oz =0bi/ln
2. 29 = (b2 — lo1w1)/l22

i xz = <bi -0 lz‘j%’) i

- (b0 = 2351 Tz ) fan

-1 -1
» Operation count: n divs. + % mults. + M adds. = n? ops.

» Breakdown happens iff I;; = 0 for some 1 < i < n, i.e., iff L is singular.
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Upper triangular matrices — Backward substitution

» Consider the system Uz = b with upper triangular matrix

Ul U2 o Ulp
0 wa -+ uzy

U =
0 0 - um

» The algorithm goes as follows:

n. Tp = bp/Uny
n—1. r,_1 = (bn—l - un—l,nxn)/un—l,n—l

1. Ty = (bz — Zj=1'+1 Uijl'j) /u”

1. :’171 = (b1 — Z;-LZQ uljxj) /U11
(n—1)
2

. . n n
» Operation count: n divs. + mults. +

(n—1)
2

adds. = n? ops.

» Breakdown happens iff u;; = 0 for some 1 < i < mn, i.e., iff U is singular.
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General matrices — Forward elimination

» Forward elimination is deployed to try and transform [A|b] to [U|c] where
U is an upper triangular matrix. First, we do so without pivoting.

- First, we want to operate a transformation of the form

ai; a2 a3 o Qip b1 ai; a1z aiz -+ Qin bl

b 0 a) LD

a1 Gz2 A3 - G2p | D2 a%lz) a%%) a%ﬁ 2
k=1

as] ass asz -+ asy | b3 M 0 agy asg - as, bé )

. 1 1 1 1

ap1  Ap2  Gp3 Gpn bn 0 agﬂ) aslg) e aguz b; )

where a1, ..., a,1 are eliminated by setting bz(-l) = b; — mgl)bi and

al(.Jl.) = a; — mgl)alj where mgl)

This is equivalently done by [A|b] — [G1A|G1b] where

= ail/an for 1,] € {2,...,n}.

G1 = I,—vWel is a Gauss transformation matrix with structure I '

. . 1 1 ISkVA
in which v = [0 mg b mT.
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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General matrices — Forward elimination, cont'd;

» Forward elimination is deployed to try and transform [A|b] to [U|c] where
U is an upper triangular matrix. First, we do so without pivoting.

- Then, we want to operate a transformation of the form

ail G122 @13 0 Qlp b1 a1 a2 @13 - Qin b1

1 1 1 1 1 1 1 1
0 afy afy) - aly) | by 0 afy afy - af) | b5)
N N T VSN - B 3
0 afll; a%) a% b%l ) 0 0 a%) aﬁ?,z bf)
where aé;), ey a7(112) are eliminated by setting b?) = bz(»l) - m,EQ)bgl) and
az(?) = az(»jl.) —ml@)a%) where m§2) = al(-;)/aélz) for i,j €{3,...,n}.

This is equivalently done by [G1A|G1b] — [G2G1A|G2G1b] where

Go = I,—vPel is a Gauss transformation matrix with structure | ;

1
1
L.
. . 2
in which v® = [0 0 mg) .o mT
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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General matrices — Forward elimination, cont'ds

» Forward elimination is deployed to try and transform [A|b] to [U|c| where
U is an upper triangular matrix. First, we do so without pivoting.

- Eventually, the row-echelon form [U]c] is obtained after the application of
n — 1 Gaussian transformations:

(Gt ...G1A|Gn_1...G1b] = [U|d]

where G, = I, — v(k)ef in which

0 for1<i<k
v§k)— ey T for <k <n—1,
/a fork<i<n

- Structurally speaklng, U is formed as follows:

L 7 ¢ 1 1
1 1 1 1
L s 0® 1 1 1 =
L 1 ' 1 1
o1 1 4 1
Gna G G, Gy A U
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
oo (1) (n—2)
- Breakdown happens if either of the a11, a5y, ..., a, 1, ; pivots is zero.
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General matrices — Forward elimination, cont'ds
» Operation count of G,,_1...G1 A:

Z (n — k divs. + (n — k)* mults. + (n — k)* adds.)
k=1

n(2n? —3n +1)
6

n(2n? —3n +1)
6

/\

n— )

divs. + mults.

adds.

_n(4n* —3n-1)
6
» Operation count of G,,_1...G1b:

ops. = O(n?) ops.

n—1

Ty(n) := Y (1 div.+ 1 mult. + 1 add.)
k=1
=(n —1) mults. + (n — 1) adds.
=2(n—1) ops. = O(n) ops.
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Tridiagonal matrices — Forward elimination

» Consider the system Tx = b with tridiagonal matrix 7. Then, assuming no
breakdown happens, the forward elimination yields a bidiagonal matrix.
- The first set of row operations, i.e., k = 1, yields

t11 t12 by t11 t1o by
lo1 taa  lag be 0 t%) tos bél)
t32 133 t34 b3 (k;D> t32 t33 t34 b3

tn,n—l tnn bn

The application of forward elimination starts by bgl) = by — mgl)bg and

t%) = tQj_ mgl)tlj where mgl) = t21/t11 for j € {2, ey n}
Since t13 = - -+ = t1, = 0, we have
th) =l — mgl)t12, but t%) = tgj for JjE {3, . ,’I’l}.
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Tridiagonal matrices — Forward elimination, cont'd

» Consider the system Tz = b with tridiagonal matrix T'. Then, assuming no
breakdown happens, the forward elimination yields a bidiagonal matrix.
- Then, the row operations for k = 2 yield

t11  ti2 b1 t11 ti2 b1
tél2) to3 b(l) thQ) tos bgl)
t32 t3z  taa by | =2, 0 8ty b2
tn,nfl tnn bn tn,n—l tnn bn

Similarly, since tog = - -+ = t9, = 0, we have

t%) =133 — mgf)t%, but t:%) = tgj 'FOFj S {4, - ,n}.

- Andsoonfork=3,...,n—1.
» Operation count: Tp(n) = 3(n — 1) ops. and Ty(n) = (n — 1) ops.
» Breakdown happens iff t; = 0 for some 1 < i < n.
10/26



Bidiagonal matrices — Simplified backward substitution
» Consider the system Bx = b with (upper) bidiagonal matrix

b1 b2
bao  bog

» The algorithm goes as follows:
n. Tp = byp/bpn
n—1. r,_1 = (bn—l - bn—l,nxn)/bn—l,n—l
i @= (bi — biit1it1) [bii
1. 21 = (b1 — b12z2) /b11
» Operation count: n divs. + (n — 1) mults. 4+ (n — 1) adds. = 3n — 2 ops.

» Breakdown happens iff b;; = 0 for some 1 < i < n, i.e., iff B is singular.
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LU factorization without pivoting
Section 3.1 in Darve & Wootters (2021)
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LU factorization

» So far, we considered forward elimination without pivoting. If no
breakdown happens, this process yields an upper-triangular matrix

U=Gp-1---G1A

where the Gauss transformation matrix Gy, = I, — v®e] is
lower-triangular, with ones on the diagonal, thus non-singular.
» You can verify that G,:l =1I,+ v(k)ef.

> Given the structure of v®) = [0 ... 0 m,(ﬁl .. m™)T we also have

that k < £ implies GG, = I, + vWel +v®el.
» Consequently, we have

Gitgliu=4
(In +oWel 4. 4 U("_l)ez_l) U=A
LU=A

where L := Gfl e G;Lil is lower-triangular.
12/26



LU factorization, cont'd

» The components below the diagonal of the k-th column of L are given by
the non-zero components of o) e

1
1
L= my
: 1
m® D

so that L is a by-product of the forward elimination procedure, i.e., we

have
w _ag
mp =
al(ck :
where az(-ffl) are components of A*~1) .= G,_;---G1A4, and a®) .= aij.

(5]
» If A is non-singular, and the upper-triangular matrix U is obtained by
forward elimination without breakdown, then it can be shown that there is

a unique lower-triangular matrix L such that LU = A.
13 /26



Solving linear systems with an LU factorization

» Given an LU factorization of an invertible matrix A:

-—
—

A L U

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
the linear system Ax = b can be recast into Lz = b, where Uz = z, so
that one can solve for = in two steps:

Step |: Solve E D - U
L =z b

Step 2: Solve [I = U
X z

U

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
» Then, solving Az = b requires two triangular solves, i.e., a forward
substitution, followed by a backward propagation, totaling 2n? operations.
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Breakdown and instability of LU

factorization
Section 3.1 and 3.3 in Darve & Wootters (2021)
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Breakdown of LU factorization without pivoting

» So far, we assumed no breakdown happens during forward elimination.
» However, breakdowns do happen, even when using exact arithmetic

and A is invertible:

E.g., applying forward elimination to A :=

invertible, will break down.

> |If a(k D _

S = O =

B
We say that A1) = [0

1
i’ which is
1

O O = O
o = O O

= 0, then breakdown will happen when applying Gi to A*~1 -

has a zero-pivot.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

In particular, breakdown happens as we attempt to divide by zero to form

)

m® —agk /akk Yofor i=k+1,.
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Understanding the source of breakdown
» We can think of the block A~1[1:k,1:k] as

(Gr—r...G)[1:k, 1:n]A[L:n,1:k]) = AFD[1:k, 1:K).
But since (Gr—1...G1)[1:k,k+ 1:n] =0, we have

(Gee1...Gy)[1:k, 1:kJA[1:k,1:k) = A% D[1:k, 1:K).
Thus, we can focus our investigation on the leading principal blocks:

A[1l:k,1:k]

S

ll :jj]le; i%l :Bg

Gy_1--Gy A
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Numerical Linear Algebra for CS and IE 16 / 26
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Understanding the source of breakdown, cont'd

The leading block A®~D[1:k, 1:k] is singular because it is

i o triangular with a zero on the diagonal, i.e., agz_l) =0.

The leading block (G—1...G1)[1:k,1:k] of the product
1 of Gauss transformation matrices is non-singular because
o1 it is triangular with a ones on the diagonal.

- Therefore, the leading block A[1:k, 1: k] must be singular.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
Theorem (Existence of an LU factorization without pivoting)

A matrix A € F"*™ admits an LU factorization without pivoting iff its n — 1
leading principal sub-matrices are non-singular.
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Backward error of LU factorization without pivoting

» Consider a matrix A whose leading principal sub-matrices are non-singular,
and let L and U be approximations of the factors L and U of A.

» Backward error analysis considers that L and U are exact factors of a
perturbed matrix, i.e., there exists § A such that

A+S5A=LU.
The analysis consists then of bounding this perturbation.

» In Lecture 03, we introduced backward error analysis in a way that is
agnostic to the algorithm. For the LU factorization, this is not the case:

- L and U are specifically assumed to be computed by forward
elimination with floating-point arithmetic.
- Then, the perturbation § A is bounded component-wise by

I0A] <, - |L||U]

where v, 1= nu/(1 —nu) and nu < 1, in which w is the unit roundoff.
- In general, the components of |L||U| can take arbitrary large values, i.e.,

forward elimination without pivoting is not backward stable.
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LU factorization with pivoting
Section 3.4 in Darve & Wootters (2021)
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Row pivoting
> For a given matrix A, one way to reduce the backward error of an
approximate LU factorization is to contain the components of |L|.
Since L[i, k] = (k) = a! k /a(k Yfori =k + 1,...,n, this can be
done if we allow ourselves to permute the rows of A®~1[k+41,1:n] such
that a,(jgl) > agllz*l) fori=k+1,...,n. Then we would have |L| < 1.

v

£ we switch these
rows, our updated L
matrix l0oks like this:

L W
)

12

I$ we didnt switch, we’d
et some pretty Big
nuweers in L:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Row pivoting, cont'd;

» When row pivoting is introduced in forward elimination, it is expressed as
Gn_1Puo_1---G1P1A, where Py, ..., P, denote row swap permutations.

» The similarity transformation PG, P~! of a Gauss transformation matrix
G with pivot column k using a permutation matrix P, is another Gauss
transformation matrix G, with pivot column , e.g.,

P, swaps rows 2 P;! swaps The result is
. and 4 Of G columns 2 and 4 <till 8 Gauss

y of G, transformation!

1 7 1
K
1 1 Py /l\
- 1 = A 1 | These cot
i 1 B< 1 == swapped
4 1 1 v \/1
P2 P2—1

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

» Then, as we let C:’k =P, Pk+1GkP,;+11 e Pill, you can show that

n
Gn—lpn—l tee G1P1A - Gn—l e Glpn—l tee PlA =:U.
20/26



Row pivoting, cont'd,

» Similarly as without pivoting, this can be recast as

Go1--GiPy 1 PLA=U
Py i--PLA=G7'---G LU
PA=LU

where L = él_l e é;}l and P=P,_1---P.
» That is, there is a permutation P such that an LU factorization of PA
exists, and can be obtained by forward elimination without pivoting.

» Upon applying row pivoting during forward elimination, such a
permutation P is recovered along with the triangular factors L and U such
that PA=LU.

Then, one can solve for x such that Az = b by
1. Solving for z such that Lz = Pb
2. Solving for x such that Uz = z.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21/26



Material we skip, for now
» Column pivoting (p. 101 in Darve and Wootters (2021))
- Column pivoting is introduced to allow for the computation of rank

e ¢

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics

revealing factorizations:

» Full pivoting (p. 102 in Darve and Wootters (2021))
- Performing both row and column swaps allows for the computation of
rank revealing factorization while maintaining stability.
» Rook pivoting (p. 103 in Darve and Wootters (2021))
- Reduces the cost of full pivoting by simplifying the search for swaps.
> Pivots and singular values (p. 104 in Darve and Wootters (2021))
- Pivoting strategies can also be used to compute approximately optimal

low-rank matrix approximations.
» We may come back to these topics in our talk about preconditioners.
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Cholesky factorization
Section 3.5 in Darve & Wootters (2021)
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Cholesky factorization

» LU factorization is intended for general square matrices. For Hermitian
positive-definite matrices, it is possible to leverage the properties of such
matrices to yield a better behaved factorization.

Theorem (Cholesky factorization)

- If A € F™*" [s Hermitian positive-definite, then there exists a lower-triangular
matrix L € F»*" such that A = LLH .

- If we limit our search to lower-triangular matrices with positive components on
the diagonal, then L is unique.

» The existence of such factors L is proven by inductive construction.
In particular, A being Hermitian, if L exists, we must have

H H
e oa| |l O] |l 4 {1 0
A= {al AJ - [zl Ll] [o pi| where L=1,"

where, due to positive definiteness, a1 > 0, and the principal block A7 is
Hermitian positive-definite.
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Cholesky factorization, cont'd;
all a{{ o l%l lnl{{
ar Ar]  [lnlh Lol + 0|

By construction, we impose 111 > 0, so that we have

111 = \/ail and ll = al/ln.

We rely here on the assumption that the Cholesky factorization
LlL{{ = A — lll{{ exists. To show that, A can be recast into X BXH

ail a{l 1 0 l%l 0 1 l{{/lll
A _= _= H
al A1 l1/l11 Infl 0 A1 — llll 0 Infl

1 0 [y 0
where X = [ll/ln In1:| and B = [0 A lll{{]

Since A is Hermitian positive-definite, and X is non-singular, then B must
be positive-definite.
Moreover, since the principal sub-matrices of a Hermitian positive-definite
matrix are positive-definite, so is A1 — lllfl.

24 /26
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Cholesky factorization, cont'd,

» To complete the construction of L, we assume that the /;; components of

L are known fori=1,...,kand j=1,...,4, s.t. l11,...,lx > 0 and
a1 ... Qg1 afl 111 11 ... llTl l{{
A= | H _ | : o .
agr  -.. Qg G lkl NN lkk lkkz lk
aj e af Ak ll N lk Lk LkH
where Ay, — lklf — .- — 11 is Hermitian positive-definite with Cholesky

factorization Lj L.

» The construction of L is completed by showing that Ly.; can be defined
under similar conditions.

» The uniqueness of L is revealed with the final requirement |L,|? = ay,.

Since both a,, and L, need be strictly positive, we simply have L,, = an,.
L]

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /26



Computation of the Cholesky factorization
» The procedure to compute a Cholesky factor follows the lines of our
constructive proof.

It requires about half the number of operations than that of calculating an
LU factorization by forward elimination.

» Backward error analysis considers that L is an exact factor of a
perturbed matrix, i.e., there exists § A such that
A+0A=LLY.
The analysis consists then of bounding this perturbation.

- Such analyses assume L is specifically computed using the procedure we
described, with floating-point arithmetic.

- Then, the perturbation § A is bounded component-wise by

|6A| < Ot gdT where d = [a}{Q a2
I =Y+
with v, := nu/(1 — nu) and nu < 1, in which u is the unit roundoff.

- Therefore, computing the Cholesky factorization is a backward stable
procedure, and thus, it does not require pivoting.
26 /26
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