Numerical Linear Algebra
for Computational Science and Information Engineering

Sparse Data Structures and Basic Linear Algebra Subroutines

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

TUT

Outline |

@ Basic linear algebra subprograms (BLAS) 1
© Sparse matrix data structures

Section 9.1 in Darve & Wootters (2021) 10
© Sparse BLAS

Section 9.1 in Darve & Wootters (2021) 28

@ Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021) 29

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Basic linear algebra subprograms (BLAS)

Numerical Linear Algebra for CS and IE

Basic linear algebra subprograms (BLAS)
» What is BLAS?
- Originated in the 1970s, as a set of low-level routines for common
linear algebra operations, first written in Fortran.
- Became a standard for the specification of linear algebra subroutines.
» Why use BLAS?
- Performance: algorithmic optimizations, multi-threading, vectorization,
loop unrolling, cache and register blocking, instruction pipelining, ...
- Portability: Consistent interface across different platforms.

» Over time, different BLAS libraries have been developed, in different
languages, for different hardware:

- Intel oneAPI MKL: Proprietary, highly optimized for Intel architectures,
GPU support through SYCL, comprehensive.
- OpenBLAS: Open source, multi-architecture support, some GPU
support, derived from GotoBLAS, community-driven.
- BLIS: Open source, research-oriented (UT Austin).
- ATLAS: Open source, empirical auto-tuning during build.
- GPU only: Nvidia cuBLAS, AMD rocBLAS, ...
1/31

Common BLAS subroutines

BLAS routines are organized into levels, and follow a naming convention

for most standard operations.
> Level 1 (vector operations, typically O(n) ops.):
- Dot product (DDOT, SDOT, ...): 2Ty
- Vector addition (DAXPY, SAXPY, ...): y < ax +y
- Vector norms (DNRM2, SNRM2, ...): ||z||2
» Level 2 (matrix-vector operations, typically O(n?) ops.):
- Matrix-vector multiply (DGEMV, SGEMV): y < aAz + By
- Rank-1 update (DGER, SGER): A < azxy’ + A
- Triangular solve (DTRSV, STRSV): = + T~ 'z
» Level 3 (matrix operations, typically O(n?) ops.):
- Matrix-matrix multiply (DGEMM, SGEMY, ...): C' < aAB + 5C
- Rank-k update (DSYRK, SSYRK, ...): C + aAAT + 3C

The first letter in the name of a subroutine represents the data type:

D: double precision real S: single precision real

C: single precision complex Z: double precision complex

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

2/31

Common BLAS subroutines, cont'd

Level 1 BLAS

ain scalar vector vector scalars 5-elenent array
SUBROUTLNE xRDIG (AB G S
SUBROUTINE xRDTHG(b1, D2, A, B, PARAH)
SUBROUTINE xROT (X, X, INCX, ¥, DNGY, s
SUBROUTINE xROTH (X, X, INCX, ¥, TNCY, BARAN)
SUBROUTINE xSHAP (X, X, INCX, Y, TNCY)
SUBROUTINE XSCAL (X, ALPHA, X, INCX)
SUBROUTINE xCOPY (X, L INCX, ¥, THOY)
SUBROUTINE xAXPY (X, ALPHA, X, INCX, Y, LNCY)
FUNCTION o, INCK, ¥, TACY)
FUNCTION xDDTU (X, X, INCX, ¥, TCY)
FUNCTION xDOTC (X, X, INCX, Y, TNCY)
FUNCTION xxDOT (X, X, INCX, ¥, THCY)
FUNCTION xKRM2 (X, X, 00X)
FUNCTION xASUM (X, X, CX)
FUNCTION LxAMAX(X, X, 100K)
Level 2 BLAS
opsions ain bevidth scalar metrix vector scalar vector
BNV (TRANS, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
BNV TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCK, BETA, Y, INCY)
XHEWY (UPLO, u, WA, A, LDA, X, TNCX, BETA, Y, INCY)
HBNV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
HEWY (UPLO, u, ALPHA X, LiCK, BETA, ¥, LKCY)
=Sy (UPLO, u, ALPHA, A, LDA, X, TNCX, BETA, Y, INCY)
XSBNV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
=semy (UPLO u, ALe | TNCX, BETA, Y, IKCY)
=TRMY (UPLO, TRANS, DIAG, W, . LoA, X, 1M0X)
XTBNV (UPLO, TRANS, DIAG, N, K, A, LDA, X, TNCX)
TPMY (UPLO, TRAWS, DIAG, N, AP, . miex)
XTRSV (UPLO, TRANS, DIAG, N, A, LDA, X, TCX)
XTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, TCX)
XTPSY (UPLO, TRAMS, DIAG, M, P, X, ioX)
options in scalar vactor vector matrix
WGER M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
XGERU (M, N, ALPHA, X, INCX, Y, TNCY, A, LDA)
XGERC (M, N, ALPHA, X, INCX, Y, TNGY, &, LDA)
XHER (UPLO, N, ALPHA, X, INCK, &, 10A)
MR (UPLO, N, ALPHA, X, INCX,)
XHER2 (UPLO, N, ALPHA, X, INCX, Y, TNCY, &, LDA)
xHPR2 (UPLO, N, ALPHA, X, INCX, Y, INGY, AP)
C vpLo, N, ALPHA, X, THOX, A, A)
SPR(UPLO, N, ALPHA, X, INCX, [LS)
=SYR2 (UPLD, N, ALPHA, X, INCX, Y, TNCY, &, LDA)
xSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
Level 3 BLAS
opsions ain scaler macrix metrix scalar masrix
E TRANSA, TRANSB M, N, K, ALPEA, A, LDA, B, LDB, BETA, C, LDC
xSy (SIDE, UPLD, , N, ALPHA, A, LDA, B, LDB, BETA, C, LOC
xhim (SIDE, UPLD, LN, ALPMA, A, LDA, B, LDB, BETA, C, LOC
XSTRK (UPLD, TRAYS, N, K, ALPHA, A, LDA, BETA, C, LDC
HERK (PLD, TRAYS, N, K, ALPEA, A, LDA, BETA, G, LDC
mmax UPLD, TRAXS, N, K, ALPEA, A, LDA, B, LDB, BETA, C, LDC
. TRANS, N, K, ALPA, A, LDA, B, LDB, BETA, C, LDC

T« SIDE, UrLo, ThASK,
XTRSH (SIDE, UPLO, TRANSA,

DIAG, M, N, ALPHA, A, LDA, B, LDB
DIAG, M, N, ALPEA, A, LDA, B, LD8)

Generate plane zotation
Generate madified plane rotation
Apply plano rotation

Apply modifed plane rotation
sy

oo

yes

yeaziy

dot + zty

dot 2Ty

dot

dot ot aTy

nrm2 e s
asum o [[re(e)] 1+ Jim(a)| o

amaz — 14 > re{amy)]| 4 [im(ze)
mas(jre(:)| + [im(z:))

v ada | By 0ATe | Byy oAfls | B A mxn
e adetiyy AT+ Byy Az + Gy A mxn
e adz+ By

ye s | By

i adct By

v oty

vzt By

ot By

@ Az ATe,x e ABy

e Az e ATele e Ay

z 4 AM2,2 AT,z 4 A-Hz

A ozy’ + AA-mxn
Aany” + AA mxn
Acomgh | AA mxn
Avozz + A
A oazzf 4 A
A azyl +ylan) +A

A ouyH 4 ylaa)® +A
A awe® + A4

A azat 1A

A ony! | ays? 1A
A« azy’ + aya’

© + aomlA)on(B) + 6C,(X) = X, XT, X*,C ~mxn
C 4+ aAB +8C,C + aBA+BC,C - m xn,A= AT
C - aB 4 5C,C aBA+ BC,C— m x m A= A

€A G0 C AT AL O C
C e aAAf 19C,C « aAB AL 5C,C

AT L aBAT § OC o A 1 aBA 1 AOC wxn
B,

C e aAB" 4 aBAM £ 6C.C e aA Bt anl A+
B ¢~ aop(A)B, B « aBop(A), op(A)

B e aop(A~1)B, B ¢ aBop(A)), op(4) = 4, AT, AM, B

“nxn
A AT AR B mxn

prefixes

8,
s,
5
s
s,
B
B
E
c

SoEnnpPEDECEED
88

BEE
aue

50,7
5,D,C,Z
c,

c

c,

s

s,

s,

8D, C,%
8,D,C, 2
s, 7
s, z
s, z
5,D,C 2

CTOUNNNNNNT DDESDESOSNNND

s
c
c
G
c
<

University of Tennessee, Oak Ridge National Laboratory, Numerical Algorithms Group Ltd. (1997). Basic linear algebra
subprograms — A quick reference guide. (https://www.netlib.org/blas)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

3/31

https://www.netlib.org/blas

BLAS in practice

» BLAS interfaces tend to be mathematically opaque.
» Using the Intel oneAPlI MKL C interface:
- The Julia code Ax =

Axx; AtAx = A'Ax becomes:

- Documentation:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-dpcpp/2024-2/blas-routines.html
» For interfaces to other implementations, see
- OpenBLAS: https://github.com/0OpenMathLib/0penBLAS
- ATLAS: https://github.com/flame/blis
- BLIS: http://math-atlas.sourceforge.net/

nicolas.venkovic@tum.de 4/31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://github.com/OpenMathLib/OpenBLAS
https://github.com/flame/blis
http://math-atlas.sourceforge.net/

BLAS in practice, cont'd

» The cost of enhanced portability often comes in the form of building
challenges.

- E.g., MKL and OpenBLAS offer support for various CPU vendors and GPUs.

» For Intel oneAPI MKL, there is a dedicated web tool to help with the
linking configuration:

Intel® oneAPI Math Kernel Library (oneMKL) Link Line Advisor v6.23 Select SYCL domain library: v
\ﬂ‘ Link with Intel® oneMKL libraries (m]
Select Intel® product: explicitly:
Select 0S: Link with DPC++ debug runtime
compatible libraries:
Select programming language: r Juage> v

Select compiler: Use this link line:

<Please select all required parameters above>

Select architecture:
Select dynamic or static linking:
Select Interface layer:

4
Select threading layer: v

Compiler options:
Select OpenMP library: enMP> v p! P

Enable OpenMP offload feature to
GPU:

Select cluster library: O Parallel Direct Sparse Solver for Clusters
(BLACS required)

[Cluster Discrete Fast Fourier Transform (BLACS =
required .
) ScaLAPACK (BLACS required) Notes:
LBAcS 0 Set INCLUDE, MKLROOT, TBBROOT, LD_LIBRARY_PATH, LIBRARY_PATH, CPATH and
Select MPI library: v NLSPATH environment variables in the command shell using the Intel(R) oneAPT
setvars script in Intel(R) oneAPI root directory. Please also see the Intel(R) oneMKL
Select the Fortran 95 interfaces: BLASSS Developer Guide.
LAPACK9S

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-1link-1line-advisor.html

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5/31

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

Linear algebra package (LAPACK)

» What is LAPACK?

- Set of Fortran 90 routines to solve linear systems, eigenvalue
problems, and SVDs with dense but small to moderately sized as
well as structured sparse (banded, tridiagonal, ...) matrices:

- Successor to LINPACK (1979, for linear systems and least squares pbs.)

and EISPACK (1976, for eigenvalue problems).

- Developed and maintained by an international team of researchers.

» Key characteristics:

- Optimized for performance, portability and numerical stability.

- Relies heavily on BLAS, especially Level 2 and 3.

- Performance depends critically on the BLAS implementation used.

- Handles higher-level algorithms and delegates operations to BLAS.

» Available through various implementations:

- Reference LAPACK: Standard implementation, focus on correctness.

- Intel MKL: Optimized LAPACK routines alongside BLAS.

- GPU only: Nvidia cuSOLVER, AMD rocSOLVER.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 6/31

Nomenclature of LAPACK subroutines

LAPACK routines follow a structured naming convention: XYYZZZ
» Data types (X):

D: double precision real S: single precision real
C: single precision complex Z: double precision complex
» Common matrix types (YY):
. general : symmetric . upper Hessenberg
: SPD/HPD . triangular : bidiagonal
» Common computational tasks (ZZZ):
SV: solve linear system TRF: triangular factorization
TRS: solve using factorization CON: estimate conditioning

EV: solve eigenvalue problem
» Examples of (driver) subroutines:
- DGESV: linear solve with real general matrix in double precision.
- CPOSV: linear solve with (complex) HPD matrix in single precision.
- ZGEEV: eigensolve with general complex matrix in double precision.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 7/31

Structure of LAPACK subroutines

» There are three types of LAPACK routines:

- Driver routines: solves a complete problem, e.g.,
linear systems, eigenvalue problems, least-squares problems, ...

- Computational routines: performs an intermediate level task, e.g.,
LU factorization, tridiagonal reduction, ...

- Auxiliary routines: unblocked sub-tasks of block algorithms,
BLAS-like operations, other low level tasks.

» Driver routines listed in the online documentation:

https://www.netlib.org/lapack/explore-html/modules.html
» Computational routines listed by module:
https://www.netlib.org/lapack/lug/node37.html

» Auxiliary routines listed by category:
https://www.netlib.org/lapack/lug/node144 . .html

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8/31

https://www.netlib.org/lapack/explore-html/modules.html
https://www.netlib.org/lapack/lug/node37.html
https://www.netlib.org/lapack/lug/node144.html

BLAS and LAPACK in Julia

» Default implementation:

- Ships with multi-threaded OpenBLAS and reference LAPACK.
- Flexible, i.e., can use other implementations, e.g., MKL, BLIS, ...
» Three implementation-independent levels of access (like in Python):
- Interface wrappers via LinearAlgebra.{BLAS,LAPACK}:
BLAS.gemm!, LAPACK.getrf!, ...
most control no extra copies/allocations math-implicit
- Intermediate level functions:
dot(x,y), mul!(C,A,B), 1u(d), ...

in-place versions available

good compromise
- High-level syntax:

A *x, A\ Db A/B, ..

least control extra copies/allocations math-explicit

> Key features:

- Matrix type specified by data structure, e.g., Symmetric, Tridiagonal.
- Multiple dispatch: function behavior depends on types of all arguments.
- Operations preserve matrix structure when applicable.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

9/31

Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Sparse matrices

» Sparse matrices are matrices with relatively few non-zero components.

» Natural occurrence in scientific applications:
- Discretized differential equations:

o ODEs: chemical reactions, multi-body systems with short-range
interactions, multi-agent systems with local interactions, ...
o PDEs: fluid dynamics, solid mechanics, electromagnetics, ...
o DAEs: circuit simulation, power grid modeling, ...
- Networks and graphs:

o Adjacency, transition and Laplacian matrices of sparse graphs.
- Data science:

o Feature matrices in high-dimensional data.
» Important properties:
- Inverses of sparse matrices are generally dense, i.e., not sparse.
- Factorizations of sparse matrices may be reasonably sparse.
- Dense matrices can be approximated by sparse matrices, i.e.,
using sparse approximate inverses (SPAI).
10/31

Repository of sparse matrices

» Researchers and developers often need multiple sparse matrices with
documented characteristics to benchmark NLA algorithms.
» In particular, the SuiteSparse Matrix Collection is widely used for this:
https://sparse.tamu.edu/
- Close to 3,000 matrices available.
- Matrices from all sorts of applications.
- Metadata available include: author, application field, rank, condition
number, singular values, definiteness, symmetry and lack thereof, ...
» We can generally distinguish between two types of sparse matrices:
- Structured: typically coming from differential equations discretized on
structured grids/meshes.

A
E.g., sherman5 (computational fluid dynamics problem): ~ \ -

AN
- Unstructured: most other cases.

E.g., bp_1000 (optimization problem):

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 11/31

https://sparse.tamu.edu/

Sparse matrix data structures

» The use of proper data structures is essential to
limit memory requirements and achieve good performance
when deploying basic linear algebra operations and NLA algorithms with
sparse matrices.
» There is no unique sparse matrix data structure to optimally serve all
purposes in all situations.
» In general, the choice of a sparse data structure can be influenced by
- Sparsity pattern of the matrix.
- Hardware architecture:
o Memory layout.
o Sequential vs parallel with shared and/or distributed memory vs GPU.
- Algorithm and operations:

o Type of access.
o BLAS level, i.e., 1, 2 or 3.

- Implementation requirements.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 12/31

Sparse matrix data structures, cont'd;
» There are many sparse matrix data structure formats. In particular:
- Coordinate (C00)

intuitive /explicit not efficient large community support

most convenient/used for construction

- Compressed sparse row (CSR), compressed sparse column (CSC)

lowest memory need efficient large community support

most used

» Variants of CSR and CSC:
- Block sparse row (BSR/BCSR), block sparse column (BSC/BCSC)
good for block matrices overhead otherwise large support

- Mapped block row (MBR) sparse
lower memory need more efficient limited community support
- Modified sparse row (MSR/MCSR), modified sparse column (MSC/MCSC)
fast diagonal access square matrices only
limited community support

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13/31

Sparse matrix data structures, cont'd,

» Vector architectures and GPU:
- Ellpack (ELL)
good for uniform sparsity community support GPU-friendly

\4

Banded matrices:
- Diagonal (DIA)
good for fixed bandwidth wasteful otherwise
moderate support
- Non-symmetric skyline (NSK), symmetric skyline (SSK)
good for variable bandwidth wasteful for isolated bands
moderate support

» Pythonic environment:
- List of lists (LIL)

used for construction Python-specific support not efficient
- Dictionary of keys (DOK)
used for construction Python-specific support not efficient

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 14 /31

Coordinate (C0Q) format

» A COO data structures format is composed of:
- Array of non-zero components (val)
- Array of row indices of each component (row_idx)

- Array of column indices of each components (col_idx)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 azz as
0 0 a43 0

val = [a11, @12, 13, 21, A22, A33, A34, A43)]

row_idx = [1,1,1,2,2,3,3, 4]
col_idx = [1,2,3,1,2,3,4, 3]
» Key characteristics:

- Explicit storage of all indices (higher memory usage)

- No particular ordering required

- Duplicates allowed (values must be summed)

- Flexible for matrix construction and modification

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

15 /31

Compressed sparse row (CSR) format
> A CSR data structures format is composed of:
- Array of non-zero components (val)
- Array of column indices of each component (col_idx)

- Array of non-zero value indices where each row starts (row_start)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 a3z ass
0 0 a43 0

val = [a11, @12, @13, G21, 422, 433, A34, G43]
col_idx = [1,2,3,1,2,3,4,3]
row_start = [1,4,6,8,9]
» Key characteristics:

- Compact storage (lower memory than COO)
- Fast row access

- Values must be ordered by row

- Difficult to modify structure dynamically

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

16 /31

Compressed sparse column (CSC) format
» A CSC data structures format is composed of:
- Array of non-zero components (val)
- Array of row indices of each component (row_idx)

- Array of non-zero indices where each column starts (col_start)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 a3z ass
0 0 a43 0

val = [a11, a1, @12, A22, A13, 433, 443, A34]
row_idx = [1,2,1,2,1,3,4, 3]
col_start = [1,3,5,8,9]
» Key characteristics:

- Compact storage (lower memory than COO)
- Fast column access

- Values must be ordered by column

- Difficult to modify structure dynamically

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

17 /31

Block sparse row (BSR) format

» A BSR (or BCSR) data structure format is composed of:

- Block dimensions (rxc)

- Array (or matrix) of all components of non-zero blocks (val)

- Array of non-zero block column indices (col_idx)

- Array of block indices where each block row starts (row_start)

> .
Example: a1 ay a0

ag1 agy 0 0

A= 0 0 ass as
0 0 a3 O
r=2,c=2

col_idx = [1,2,2]
row_start = [1, 3, 4]

val = [a11, @12, a21, a22,a13,0,0,0, ass, ags, as3, 0]

» Key characteristics:
- Zero values within non-zero blocks are stored

- Similar to CSR but operates on blocks

18 /31

Mapped block row (MBR) format
» A MBR data structure format is composed of:

- Block dimensions (rxc)

- Array of non-zero components of non-zero blocks (val)

- Array of non-zero block column indices (col_idx)

- Array of sparsity pattern encoding (b_map)

- Array of block indices where each block row starts (row_start)

» Example:

air a2 a3 0
A _ asr a2 O O
0 0 a3z asq
0 0 asz O
r=2c=2
val = [a11, @12, a21, G22, A13, 33, 434, (43]
col_idx = [1,2,2] b_map = [15,1,7] row_start = [1,3,4]

» Key characteristic:
- Non-zero values within non-zero blocks are not stored

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 19/31

Modified sparse row (MSR) format
» A MSR data structure format is composed of:

- Array of diagonal elements first, then other non-zeros (val)
- Composite array idx := [row_start, col_idx] where:
o row_start contains the index of off-diagonal non-zero value
where each row starts.
o col_idx contains column indices of each off-diagonal non-zero
component.
» Example:

a1 a2 a3 0
a1 a2 0 O

A o O 0 a3z as4
0 0 a43 0

val = [a11, ag, ass, 0, —1, a12, ais, as1, ass, ags
idx = [6,8,9,10,11,2,3,1,4, 3]
» Key characteristics:

- Diagonal elements stored first = Fast diagonal access
- Dummy element, here —1, stored in val for consistency with idx (7).
20/31

Ellpack (ELL) format

» An ELL data structure format is composed of:

- Maximum number of non-zero components on a row (row_nnz)
- Array of all components stored in column-major order, from the

block of left-aligned non-zero components (val)

- Array of column indices of stored components (col_idx)

> .
Example: a1 ay a0

a1 azxp 0 O
0 0 ass as
0 0 ag3 O

A=

row_nnz = 3

col_idx =[1,1,3,3,2,2,4,—1,3,—1,—1,

val = [a11, @21, as3, a43, a1z, a2, a34,0, a3, 0,0, 0]
)

» Key characteristics:
- Stores 2xrow_nnz values, including some zeros

- Wasteful if number of non-zero components varies significanly from one

row to another

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

21/31

Diagonal (DIA) format

» A DIA data structure format is composed of:

- Array of components on non-zero diagonals padded to n (val)
- Array of offset indices (ioff)

» Example:
P a1 a2 a3 0

_|a21 a22 0 0
A= 0 0 a3z as
0 0 a43 0

val = [*7 ai, 07 a43,a11,a22, a33, 07 a2, 07 a34, *,0a13, 07 *, *]
ioff = [~1,0,1,2]

» Key characteristics:

- Fast diagonal access
- Wasteful for diagonal with large offset indices (7)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 /31

List of list (LIL) format
» A LIL data structure format is composed of:

- A list (rows) of lists, one per row, each list storing column indices
of non-zero components.
- A list (data) of lists, one per row, each list storing non-zero

components, ordered consistently with the indices in rows
» Example:

a1 a2 a3 0 11,2, 3] [a11,a12, a13]
a1 azx 0 O [1,2] [az1, azso]
A= rows = data =
0 0 ass assg| " (3, 4] lass, az4]
0 0 ag3 O [3] [a]

» Key characteristics:

- No particular ordering required for column indices
- Unordered column indices slows down access

- Mostly used for matrix construction, particularly in Python

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 /31

Sparse matrix data structures in practice

» Intel oneAPI MKL supports sparse vectors, and the sparse matrix data
structures CSR, CSC, CO0 and BSR.
For example, using the C interface:
- A CO0 matrix can be created as follows:

- Sparse matrices can be defined in other formats, namely CSR, CSC
and BSR, directly from their underlying data structures.

- Only two functions to convert constructed sparse matrices into
CSR (mkl_sparse_convert_csr)
and BSR (mkl_sparse_convert_bsr).
Possible to convert A into CSC, by using the CSR representation of A%
- Documentation:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/matrix-manipulation-routines.html

nicolas.venkovic@tum.de 24 /31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html

Sparse matrix data structures in practice, cont'd

» Nvidia cuSPARSE also supports several vectors, and several sparse
matrix data structures:

- €00, CSR, CSC and BSR

- Sliced Ellpack (SELL)

- Blocked Ellpack (BLOCKED-ELL)
Documentation:

https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats
» Other implementations:

- AMD ROCsparse: proprietary, for GPU
- SuiteSparse, PETSc, Trilinos, OSKI, PSBLAS, ...

. open-source

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /31

https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats

Sparse matrix data structures in Julia
» Support of basic structured formats through LinearAlgebra.jl:

Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal, ...

» Standard library support through SparseArrays. j1:
- Only CsC (SparseMatrGCSC) is supported by default:

with immediate conversion to CSC.

- Construction usmg the SparseMatrGCSC struct:

nicolas.venkovic@tum.de 26 /31

Sparse matrix data structures in Julia, cont'd
- Random constructor for sparse matrix of density d with iid non-zero
elements distributed uniformly in [0,1), sprand(m,n,d).

- Random constructor for sparse matrix of density d with iid non-zero

elements distributed according to the standard normal distribution,
sprandn(m,n,d).

» More formats supported through other packages:
- SparseMatricesCSR.j1: Julia native implementation of CSR formats.
- MKLSparse. jl: Julia wrappers to Intel oneAPI MKL sparse interface.
- SuiteSparse.jl: Julia wrappers to SuiteSparse library.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 27 /31

Sparse BLAS

Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Sparse basic linear algebra subprograms

» Sparse BLAS is the extension of BLAS for sparse matrices and vectors.
> Level 1 (vector operations):
Intel oneAPI MKL functions use a compressed sparse vector format:
https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/sparse-blas-level-1-routines.html
- Sparse y < ax + y (SpAXPY): mkl_sparse_x_axpy
» Level 2-3 functions have format-specific implementations.
Intel oneAPI MKL offers access through an Inspector-Executor API:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/
inspector-executor-sparse-blas-execution-routines.html

- Level 2 (matrix-vector operations):

o Sparse matrix-vector product (SpMV): mkl_sparse_x_mv
- Level 3 (matrix-matrix operations):
o Sparse matrix-(dense) matrix product (SpMM): mkl_sparse_x_mm
o Sparse matrix-(sparse) matrix product (SpGEMM): mk1_sparse_spmm
28/31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html

Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

A few definitions
» Basics of graph theory are essential to sparse matrix computation.
Definition (Graph)

- An undirected graph is a pair G = (V, E) formed by a non-empty finite set V'
of vertices and a set £ C V x V of unordered pairs of vertices referred to as
edges.

- A directed graph G = (V, E) is formed by a set E of ordered edges.

L

An undirected araph A directed araph
with vertices with vertices
V ={A,B,C,D} and V ={a,b,c,d} and
edaes E = edees E =

{(4,0),(¢,B),(C,D),(B,D)}. {(a,c),(d,c),(b,d),(d,b)}

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 29 /31

A few definitions, cont'd

» A path from a vertex u to another vertex v is a sequence of edges
(ug,u1), ..., (ut—1,us) such that ug = u and u; = v.

> A graph is connected if there is a path from any vertex u to any
vertex v.

> A tree is a connected graph without cycles, i.e., with no path from a
vertex to itself.

A tree has a root, i.e., a designated vertex O
represented at the top of the tree.
» If a tree has an edge (u,v), and u is closer to ® ©
the root r than v is, then we say that v is a
- . 06 0®OG
parent and u is a child.
Each vertex in a tree has a unique parent. Q
> A leaf is a vertex in a tree with no children.
. . . . A tree. Vertex 1 is the root, and
» Family logic applies to define descendants and vertices 4,5,6,9,8 are leaves.
Vertex 8 is 3's child, and 3 is 8's
ancestors. parent. Vertex 9 is 3's descendant,

and 3 is 9's ancestor.
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30/31

Graph representation of sparsity patterns

» The sparsity pattern of a square matrix A € F™*™ can be represented as
a directed graph with n vertices.

» In Darve and Wooters (2021), the convention is that a directed edge
(4,7) from vertex j to vertex 7 exists if and only if a;; # 0.

For example:

1 23 45€¢€

__H

& 4+ W

@)
(o.) \?—
e

@)
4

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

» The sparsity pattern of symmetric matrices can be represented by

undirected graphs.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

31/31

	Basic linear algebra subprograms (BLAS)
	Sparse matrix data structures Section 9.1 in Darve & Wootters (2021)
	Sparse BLAS Section 9.1 in Darve & Wootters (2021)
	Sparse matrices and graphs Section 9.2 in Darve & Wootters (2021)

