
Numerical Linear Algebra
for Computational Science and Information Engineering

Sparse Data Structures and Basic Linear Algebra Subroutines

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich



Outline I
1 Basic linear algebra subprograms (BLAS) 1

2 Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021) 10

3 Sparse BLAS
Section 9.1 in Darve & Wootters (2021) 28

4 Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021) 29

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



Basic linear algebra subprograms (BLAS)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



Basic linear algebra subprograms (BLAS)
▶ What is BLAS?

- Originated in the 1970s, as a set of low-level routines for common
linear algebra operations, first written in Fortran.

- Became a standard for the specification of linear algebra subroutines.
▶ Why use BLAS?

- Performance: algorithmic optimizations, multi-threading, vectorization,
loop unrolling, cache and register blocking, instruction pipelining, ...

- Portability: Consistent interface across different platforms.
▶ Over time, different BLAS libraries have been developed, in different

languages, for different hardware:
- Intel oneAPI MKL: Proprietary, highly optimized for Intel architectures,

GPU support through SYCL, comprehensive.
- OpenBLAS: Open source, multi-architecture support, some GPU

support, derived from GotoBLAS, community-driven.
- BLIS: Open source, research-oriented (UT Austin).
- ATLAS: Open source, empirical auto-tuning during build.
- GPU only: Nvidia cuBLAS, AMD rocBLAS, ...
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 1 / 31



Common BLAS subroutines
BLAS routines are organized into levels, and follow a naming convention
for most standard operations.
▶ Level 1 (vector operations, typically O(n) ops.):

- Dot product (DDOT, SDOT, ...): xT y

- Vector addition (DAXPY, SAXPY, ...): y ← αx+ y

- Vector norms (DNRM2, SNRM2, ...): ∥x∥2
▶ Level 2 (matrix-vector operations, typically O(n2) ops.):

- Matrix-vector multiply (DGEMV, SGEMV): y ← αAx+ βy

- Rank-1 update (DGER, SGER): A← αxyT +A

- Triangular solve (DTRSV, STRSV): x← T−1x
▶ Level 3 (matrix operations, typically O(n3) ops.):

- Matrix-matrix multiply (DGEMM, SGEMM, ...): C ← αAB + βC

- Rank-k update (DSYRK, SSYRK, ...): C ← αAAT + βC

The first letter in the name of a subroutine represents the data type:
D: double precision real S: single precision real
C: single precision complex Z: double precision complex

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2 / 31



Common BLAS subroutines, cont’d

University of Tennessee, Oak Ridge National Laboratory, Numerical Algorithms Group Ltd. (1997). Basic linear algebra
subprograms – A quick reference guide. (https://www.netlib.org/blas)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 3 / 31

https://www.netlib.org/blas


BLAS in practice
▶ BLAS interfaces tend to be mathematically opaque.
▶ Using the Intel oneAPI MKL C interface:

- The Julia code Ax = A*x; AtAx = A'Ax becomes:

- Documentation:
https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-dpcpp/2024-2/blas-routines.html

▶ For interfaces to other implementations, see
- OpenBLAS: https://github.com/OpenMathLib/OpenBLAS
- ATLAS: https://github.com/flame/blis
- BLIS: http://math-atlas.sourceforge.net/

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 4 / 31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://github.com/OpenMathLib/OpenBLAS
https://github.com/flame/blis
http://math-atlas.sourceforge.net/


BLAS in practice, cont’d
▶ The cost of enhanced portability often comes in the form of building

challenges.
- E.g., MKL and OpenBLAS offer support for various CPU vendors and GPUs.

▶ For Intel oneAPI MKL, there is a dedicated web tool to help with the
linking configuration:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5 / 31

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html


Linear algebra package (LAPACK)
▶ What is LAPACK?

- Set of Fortran 90 routines to solve linear systems, eigenvalue
problems, and SVDs with dense but small to moderately sized as
well as structured sparse (banded, tridiagonal, ...) matrices:

- Successor to LINPACK (1979, for linear systems and least squares pbs.)
and EISPACK (1976, for eigenvalue problems).

- Developed and maintained by an international team of researchers.
▶ Key characteristics:

- Optimized for performance, portability and numerical stability.
- Relies heavily on BLAS, especially Level 2 and 3.
- Performance depends critically on the BLAS implementation used.
- Handles higher-level algorithms and delegates operations to BLAS.

▶ Available through various implementations:
- Reference LAPACK: Standard implementation, focus on correctness.
- Intel MKL: Optimized LAPACK routines alongside BLAS.
- GPU only: Nvidia cuSOLVER, AMD rocSOLVER.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 6 / 31



Nomenclature of LAPACK subroutines
LAPACK routines follow a structured naming convention: XYYZZZ
▶ Data types (X):

D: double precision real S: single precision real
C: single precision complex Z: double precision complex

▶ Common matrix types (YY):
GE: general SY: symmetric HG: upper Hessenberg
PO: SPD/HPD TR: triangular BD: bidiagonal

▶ Common computational tasks (ZZZ):
SV: solve linear system TRF: triangular factorization

TRS: solve using factorization CON: estimate conditioning
EV: solve eigenvalue problem

▶ Examples of (driver) subroutines:
- DGESV: linear solve with real general matrix in double precision.
- CPOSV: linear solve with (complex) HPD matrix in single precision.
- ZGEEV: eigensolve with general complex matrix in double precision.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 7 / 31



Structure of LAPACK subroutines
▶ There are three types of LAPACK routines:

- Driver routines: solves a complete problem, e.g.,
linear systems, eigenvalue problems, least-squares problems, ...

- Computational routines: performs an intermediate level task, e.g.,
LU factorization, tridiagonal reduction, ...

- Auxiliary routines: unblocked sub-tasks of block algorithms,
BLAS-like operations, other low level tasks.

▶ Driver routines listed in the online documentation:

https://www.netlib.org/lapack/explore-html/modules.html
▶ Computational routines listed by module:

https://www.netlib.org/lapack/lug/node37.html
▶ Auxiliary routines listed by category:

https://www.netlib.org/lapack/lug/node144.html
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8 / 31

https://www.netlib.org/lapack/explore-html/modules.html
https://www.netlib.org/lapack/lug/node37.html
https://www.netlib.org/lapack/lug/node144.html


BLAS and LAPACK in Julia
▶ Default implementation:

- Ships with multi-threaded OpenBLAS and reference LAPACK.
- Flexible, i.e., can use other implementations, e.g., MKL, BLIS, ...

▶ Three implementation-independent levels of access (like in Python):
- Interface wrappers via LinearAlgebra.{BLAS,LAPACK}:

BLAS.gemm!, LAPACK.getrf!, ...
most control no extra copies/allocations math-implicit

- Intermediate level functions:
dot(x,y), mul!(C,A,B), lu(A), ...

less control in-place versions available good compromise
- High-level syntax:

A * x, A \ b, A / B, ...
least control extra copies/allocations math-explicit

▶ Key features:
-Matrix type specified by data structure, e.g., Symmetric, Tridiagonal.
-Multiple dispatch: function behavior depends on types of all arguments.
- Operations preserve matrix structure when applicable.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 9 / 31



Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



Sparse matrices
▶ Sparse matrices are matrices with relatively few non-zero components.
▶ Natural occurrence in scientific applications:

- Discretized differential equations:
o ODEs: chemical reactions, multi-body systems with short-range

interactions, multi-agent systems with local interactions, ...
o PDEs: fluid dynamics, solid mechanics, electromagnetics, ...
o DAEs: circuit simulation, power grid modeling, ...

- Networks and graphs:
o Adjacency, transition and Laplacian matrices of sparse graphs.

- Data science:
o Feature matrices in high-dimensional data.

▶ Important properties:
- Inverses of sparse matrices are generally dense, i.e., not sparse.
- Factorizations of sparse matrices may be reasonably sparse.
- Dense matrices can be approximated by sparse matrices, i.e.,

using sparse approximate inverses (SPAI).
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 10 / 31



Repository of sparse matrices
▶ Researchers and developers often need multiple sparse matrices with

documented characteristics to benchmark NLA algorithms.
▶ In particular, the SuiteSparse Matrix Collection is widely used for this:

https://sparse.tamu.edu/

- Close to 3,000 matrices available.
- Matrices from all sorts of applications.
- Metadata available include: author, application field, rank, condition

number, singular values, definiteness, symmetry and lack thereof, ...
▶ We can generally distinguish between two types of sparse matrices:

- Structured: typically coming from differential equations discretized on
structured grids/meshes.

E.g., sherman5 (computational fluid dynamics problem):

- Unstructured: most other cases.

E.g., bp_1000 (optimization problem):

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 11 / 31

https://sparse.tamu.edu/


Sparse matrix data structures
▶ The use of proper data structures is essential to

limit memory requirements and achieve good performance
when deploying basic linear algebra operations and NLA algorithms with
sparse matrices.

▶ There is no unique sparse matrix data structure to optimally serve all
purposes in all situations.

▶ In general, the choice of a sparse data structure can be influenced by
- Sparsity pattern of the matrix.
- Hardware architecture:

o Memory layout.
o Sequential vs parallel with shared and/or distributed memory vs GPU.

- Algorithm and operations:
o Type of access.
o BLAS level, i.e., 1, 2 or 3.

- Implementation requirements.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 12 / 31



Sparse matrix data structures, cont’d1
▶ There are many sparse matrix data structure formats. In particular:

- Coordinate (COO)

intuitive/explicit not efficient large community support
most convenient/used for construction

- Compressed sparse row (CSR), compressed sparse column (CSC)

lowest memory need efficient large community support
most used

▶ Variants of CSR and CSC:
- Block sparse row (BSR/BCSR), block sparse column (BSC/BCSC)

good for block matrices overhead otherwise large support
- Mapped block row (MBR) sparse

lower memory need more efficient limited community support
- Modified sparse row (MSR/MCSR), modified sparse column (MSC/MCSC)

fast diagonal access square matrices only
limited community support

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13 / 31



Sparse matrix data structures, cont’d2
▶ Vector architectures and GPU:

- Ellpack (ELL)
good for uniform sparsity community support GPU-friendly

▶ Banded matrices:
- Diagonal (DIA)

good for fixed bandwidth wasteful otherwise
moderate support

- Non-symmetric skyline (NSK), symmetric skyline (SSK)
good for variable bandwidth wasteful for isolated bands

moderate support

▶ Pythonic environment:
- List of lists (LIL)

used for construction Python-specific support not efficient
- Dictionary of keys (DOK)

used for construction Python-specific support not efficient
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 14 / 31



Coordinate (COO) format
▶ A COO data structures format is composed of:

- Array of non-zero components (val)
- Array of row indices of each component (row_idx)
- Array of column indices of each components (col_idx)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a12, a13, a21, a22, a33, a34, a43]

row_idx = [1, 1, 1, 2, 2, 3, 3, 4]

col_idx = [1, 2, 3, 1, 2, 3, 4, 3]

▶ Key characteristics:
- Explicit storage of all indices (higher memory usage)
- No particular ordering required
- Duplicates allowed (values must be summed)
- Flexible for matrix construction and modification
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 / 31



Compressed sparse row (CSR) format
▶ A CSR data structures format is composed of:

- Array of non-zero components (val)
- Array of column indices of each component (col_idx)
- Array of non-zero value indices where each row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a12, a13, a21, a22, a33, a34, a43]

col_idx = [1, 2, 3, 1, 2, 3, 4, 3]

row_start = [1, 4, 6, 8, 9]

▶ Key characteristics:
- Compact storage (lower memory than COO)
- Fast row access
- Values must be ordered by row
- Difficult to modify structure dynamically
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 / 31



Compressed sparse column (CSC) format
▶ A CSC data structures format is composed of:

- Array of non-zero components (val)
- Array of row indices of each component (row_idx)
- Array of non-zero indices where each column starts (col_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a21, a12, a22, a13, a33, a43, a34]

row_idx = [1, 2, 1, 2, 1, 3, 4, 3]

col_start = [1, 3, 5, 8, 9]

▶ Key characteristics:
- Compact storage (lower memory than COO)
- Fast column access
- Values must be ordered by column
- Difficult to modify structure dynamically
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 17 / 31



Block sparse row (BSR) format
▶ A BSR (or BCSR) data structure format is composed of:

- Block dimensions (r×c)
- Array (or matrix) of all components of non-zero blocks (val)
- Array of non-zero block column indices (col_idx)
- Array of block indices where each block row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


r = 2, c = 2

val = [a11, a12, a21, a22, a13, 0, 0, 0, a33, a34, a43, 0]

col_idx = [1, 2, 2]

row_start = [1, 3, 4]

▶ Key characteristics:
- Zero values within non-zero blocks are stored
- Similar to CSR but operates on blocks
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 18 / 31



Mapped block row (MBR) format
▶ A MBR data structure format is composed of:

- Block dimensions (r×c)
- Array of non-zero components of non-zero blocks (val)
- Array of non-zero block column indices (col_idx)
- Array of sparsity pattern encoding (b_map)
- Array of block indices where each block row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


r = 2, c = 2

val = [a11, a12, a21, a22, a13, a33, a34, a43]

col_idx = [1, 2, 2] b_map = [15, 1, 7] row_start = [1, 3, 4]

▶ Key characteristic:
- Non-zero values within non-zero blocks are not stored
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 19 / 31



Modified sparse row (MSR) format
▶ A MSR data structure format is composed of:

- Array of diagonal elements first, then other non-zeros (val)
- Composite array idx := [row_start, col_idx] where:

o row_start contains the index of off-diagonal non-zero value
where each row starts.

o col_idx contains column indices of each off-diagonal non-zero
component.

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a22, a33, 0,−1, a12, a13, a21, a34, a43]
idx = [6, 8, 9, 10, 11, 2, 3, 1, 4, 3]

▶ Key characteristics:
- Diagonal elements stored first =⇒ Fast diagonal access
- Dummy element, here −1, stored in val for consistency with idx (?).
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20 / 31



Ellpack (ELL) format
▶ An ELL data structure format is composed of:

- Maximum number of non-zero components on a row (row_nnz)
- Array of all components stored in column-major order, from the

block of left-aligned non-zero components (val)
- Array of column indices of stored components (col_idx)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


row_nnz = 3

val = [a11, a21, a33, a43, a12, a22, a34, 0, a13, 0, 0, 0]

col_idx = [1, 1, 3, 3, 2, 2, 4,−1, 3,−1,−1,−1]
▶ Key characteristics:

- Stores 2×row_nnz values, including some zeros
- Wasteful if number of non-zero components varies significanly from one

row to another
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21 / 31



Diagonal (DIA) format
▶ A DIA data structure format is composed of:

- Array of components on non-zero diagonals padded to n (val)
- Array of offset indices (ioff)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [∗, a21, 0, a43, a11, a22, a33, 0, a12, 0, a34, ∗, a13, 0, ∗, ∗]

ioff = [−1, 0, 1, 2]

▶ Key characteristics:
- Fast diagonal access
- Wasteful for diagonal with large offset indices (?)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 / 31



List of list (LIL) format
▶ A LIL data structure format is composed of:

- A list (rows) of lists, one per row, each list storing column indices
of non-zero components.

- A list (data) of lists, one per row, each list storing non-zero
components, ordered consistently with the indices in rows.

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0

 rows =


[1, 2, 3]
[1, 2]
[3, 4]
[3]

 data =


[a11, a12, a13]
[a21, a22]
[a33, a34]
[a43]


▶ Key characteristics:

- No particular ordering required for column indices
- Unordered column indices slows down access
- Mostly used for matrix construction, particularly in Python

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 / 31



Sparse matrix data structures in practice
▶ Intel oneAPI MKL supports sparse vectors, and the sparse matrix data

structures CSR, CSC, COO and BSR.
For example, using the C interface:
- A COO matrix can be created as follows:

- Sparse matrices can be defined in other formats, namely CSR, CSC
and BSR, directly from their underlying data structures.

- Only two functions to convert constructed sparse matrices into
CSR (mkl_sparse_convert_csr)

and BSR (mkl_sparse_convert_bsr).
Possible to convert A into CSC, by using the CSR representation of AT .

- Documentation:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/matrix-manipulation-routines.html
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 24 / 31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html


Sparse matrix data structures in practice, cont’d
▶ Nvidia cuSPARSE also supports several vectors, and several sparse

matrix data structures:
- COO, CSR, CSC and BSR
- Sliced Ellpack (SELL)
- Blocked Ellpack (BLOCKED-ELL)
Documentation:
https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats

▶ Other implementations:
- AMD ROCsparse: proprietary, for GPU
- SuiteSparse, PETSc,Trilinos, OSKI, PSBLAS, ... : open-source

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 / 31

https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats


Sparse matrix data structures in Julia
▶ Support of basic structured formats through LinearAlgebra.jl:

Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal, ...
▶ Standard library support through SparseArrays.jl:

- Only CSC (SparseMatrixCSC) is supported by default:

- Construction using COO-style input:

with immediate conversion to CSC.
- Construction using the SparseMatrixCSC struct:

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 26 / 31



Sparse matrix data structures in Julia, cont’d
- Random constructor for sparse matrix of density d with iid non-zero

elements distributed uniformly in [0, 1), sprand(m,n,d).
- Random constructor for sparse matrix of density d with iid non-zero

elements distributed according to the standard normal distribution,
sprandn(m,n,d).

▶ More formats supported through other packages:
- SparseMatricesCSR.jl: Julia native implementation of CSR formats.
- MKLSparse.jl: Julia wrappers to Intel oneAPI MKL sparse interface.
- SuiteSparse.jl: Julia wrappers to SuiteSparse library.

...
...

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 27 / 31



Sparse BLAS
Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



Sparse basic linear algebra subprograms
▶ Sparse BLAS is the extension of BLAS for sparse matrices and vectors.
▶ Level 1 (vector operations):

Intel oneAPI MKL functions use a compressed sparse vector format:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/sparse-blas-level-1-routines.html

- Sparse y ← αx+ y (SpAXPY): mkl_sparse_x_axpy
▶ Level 2-3 functions have format-specific implementations.

Intel oneAPI MKL offers access through an Inspector-Executor API:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/
inspector-executor-sparse-blas-execution-routines.html

- Level 2 (matrix-vector operations):
o Sparse matrix-vector product (SpMV): mkl_sparse_x_mv

- Level 3 (matrix-matrix operations):
o Sparse matrix-(dense) matrix product (SpMM): mkl_sparse_x_mm
o Sparse matrix-(sparse) matrix product (SpGEMM): mkl_sparse_spmm

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 28 / 31

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html


Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



A few definitions
▶ Basics of graph theory are essential to sparse matrix computation.

Definition (Graph)
- An undirected graph is a pair G = (V,E) formed by a non-empty finite set V

of vertices and a set E ⊆ V × V of unordered pairs of vertices referred to as
edges.

- A directed graph G = (V,E) is formed by a set E of ordered edges.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 29 / 31



A few definitions, cont’d
▶ A path from a vertex u to another vertex v is a sequence of edges

(u0, u1), . . . , (ut−1, ut) such that u0 = u and ut = v.
▶ A graph is connected if there is a path from any vertex u to any

vertex v.
▶ A tree is a connected graph without cycles, i.e., with no path from a

vertex to itself.
A tree has a root, i.e., a designated vertex
represented at the top of the tree.

▶ If a tree has an edge (u, v), and u is closer to
the root r than v is, then we say that v is a
parent and u is a child.
Each vertex in a tree has a unique parent.

▶ A leaf is a vertex in a tree with no children.
▶ Family logic applies to define descendants and

ancestors.
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30 / 31



Graph representation of sparsity patterns
▶ The sparsity pattern of a square matrix A ∈ Fn×n can be represented as

a directed graph with n vertices.
▶ In Darve and Wooters (2021), the convention is that a directed edge

(i, j) from vertex j to vertex i exists if and only if aij ̸= 0.
For example:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ The sparsity pattern of symmetric matrices can be represented by
undirected graphs.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 31 / 31


	Basic linear algebra subprograms (BLAS)
	Sparse matrix data structures Section 9.1 in Darve & Wootters (2021)
	Sparse BLAS Section 9.1 in Darve & Wootters (2021)
	Sparse matrices and graphs Section 9.2 in Darve & Wootters (2021)

