Numerical Linear Algebra
for Computational Science and Information Engineering

Sparse Data Structures and Basic Linear Algebra Subroutines

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

TUT



Outline |

@ Basic linear algebra subprograms (BLAS) 1
© Sparse matrix data structures

Section 9.1 in Darve & Wootters (2021) 10
© Sparse BLAS

Section 9.1 in Darve & Wootters (2021) 28

@ Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021) 29

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE



Basic linear algebra subprograms (BLAS)

Numerical Linear Algebra for CS and IE



Basic linear algebra subprograms (BLAS)
» What is BLAS?
- Originated in the 1970s, as a set of low-level routines for common
linear algebra operations, first written in Fortran.
- Became a standard for the specification of linear algebra subroutines.
» Why use BLAS?
- Performance: algorithmic optimizations, multi-threading, vectorization,
loop unrolling, cache and register blocking, instruction pipelining, ...
- Portability: Consistent interface across different platforms.

» Over time, different BLAS libraries have been developed, in different
languages, for different hardware:

- Intel oneAPI MKL: Proprietary, highly optimized for Intel architectures,
GPU support through SYCL, comprehensive.
- OpenBLAS: Open source, multi-architecture support, some GPU
support, derived from GotoBLAS, community-driven.
- BLIS: Open source, research-oriented (UT Austin).
- ATLAS: Open source, empirical auto-tuning during build.
- GPU only: Nvidia cuBLAS, AMD rocBLAS, ...
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Common BLAS subroutines

BLAS routines are organized into levels, and follow a naming convention

for most standard operations.
> Level 1 (vector operations, typically O(n) ops.):
- Dot product  (DDOT, SDOT, ...): 2Ty
- Vector addition (DAXPY, SAXPY, ...): y < ax +y
- Vector norms  (DNRM2, SNRM2, ...): ||z||2
» Level 2 (matrix-vector operations, typically O(n?) ops.):
- Matrix-vector multiply (DGEMV, SGEMV): y < aAz + By
- Rank-1 update (DGER, SGER): A < azxy’ + A
- Triangular solve (DTRSV, STRSV): = + T~ 'z
» Level 3 (matrix operations, typically O(n?) ops.):
- Matrix-matrix multiply (DGEMM, SGEMY, ...): C' < aAB + 5C
- Rank-k update (DSYRK, SSYRK, ...): C + aAAT + 3C

The first letter in the name of a subroutine represents the data type:

D: double precision real S: single precision real

C: single precision complex Z: double precision complex
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Common BLAS subroutines, cont'd

Level 1 BLAS

ain scalar vector vector scalars 5-elenent array
SUBROUTLNE xRDIG ( AB G S
SUBROUTINE xRDTHG( b1, D2, A, B, PARAH )
SUBROUTINE xROT (X, X, INCX, ¥, DNGY, s
SUBROUTINE xROTH ( X, X, INCX, ¥, TNCY, BARAN )
SUBROUTINE xSHAP ( X, X, INCX, Y, TNCY )
SUBROUTINE XSCAL ( X, ALPHA, X, INCX )
SUBROUTINE xCOPY ( X, L INCX, ¥, THOY )
SUBROUTINE xAXPY ( X, ALPHA, X, INCX, Y, LNCY )
FUNCTION o, INCK, ¥, TACY )
FUNCTION  xDDTU ( X, X, INCX, ¥, TCY )
FUNCTION  xDOTC ( X, X, INCX, Y, TNCY )
FUNCTION  xxDOT ( X, X, INCX, ¥, THCY )
FUNCTION  xKRM2 ( X, X, 00X )
FUNCTION  xASUM ( X, X, CX )
FUNCTION  LxAMAX( X, X, 100K )
Level 2 BLAS
opsions ain  bevidth scalar metrix vector  scalar vector
BNV ( TRANS, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
BNV TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCK, BETA, Y, INCY )
XHEWY ( UPLO, u, WA, A, LDA, X, TNCX, BETA, Y, INCY )
HBNV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
HEWY ( UPLO, u, ALPHA X, LiCK, BETA, ¥, LKCY )
=Sy ( UPLO, u, ALPHA, A, LDA, X, TNCX, BETA, Y, INCY )
XSBNV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
=semy ( UPLO u, ALe | TNCX, BETA, Y, IKCY )
=TRMY ( UPLO, TRANS, DIAG, W, . LoA, X, 1M0X )
XTBNV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, TNCX )
TPMY ( UPLO, TRAWS, DIAG, N, AP, . miex )
XTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, TCX )
XTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, TCX )
XTPSY ( UPLO, TRAMS, DIAG, M, P, X, ioX )
options in  scalar vactor vector matrix
WGER M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
XGERU ( M, N, ALPHA, X, INCX, Y, TNCY, A, LDA )
XGERC ( M, N, ALPHA, X, INCX, Y, TNGY, &, LDA )
XHER  ( UPLO, N, ALPHA, X, INCK, &, 10A)
MR ( UPLO, N, ALPHA, X, INCX, )
XHER2 ( UPLO, N, ALPHA, X, INCX, Y, TNCY, &, LDA )
xHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INGY, AP )
C vpLo, N, ALPHA, X, THOX, A, A )
SPR( UPLO, N, ALPHA, X, INCX, [LS)
=SYR2 ( UPLD, N, ALPHA, X, INCX, Y, TNCY, &, LDA )
xSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
Level 3 BLAS
opsions ain scaler macrix metrix scalar masrix
E TRANSA, TRANSB M, N, K, ALPEA, A, LDA, B, LDB, BETA, C, LDC
xSy ( SIDE, UPLD, , N, ALPHA, A, LDA, B, LDB, BETA, C, LOC
xhim (SIDE, UPLD, LN, ALPMA, A, LDA, B, LDB, BETA, C, LOC
XSTRK ( UPLD, TRAYS, N, K, ALPHA, A, LDA, BETA, C, LDC
HERK ( PLD, TRAYS, N, K, ALPEA, A, LDA, BETA, G, LDC
mmax UPLD, TRAXS, N, K, ALPEA, A, LDA, B, LDB, BETA, C, LDC
. TRANS, N, K, ALPA, A, LDA, B, LDB, BETA, C, LDC

T« SIDE, UrLo, ThASK,
XTRSH ( SIDE, UPLO, TRANSA,

DIAG, M, N,  ALPHA, A, LDA, B, LDB
DIAG, M, N,  ALPEA, A, LDA, B, LD8 )
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University of Tennessee, Oak Ridge National Laboratory, Numerical Algorithms Group Ltd. (1997). Basic linear algebra
subprograms — A quick reference guide. (https://www.netlib.org/blas)
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BLAS in practice

» BLAS interfaces tend to be mathematically opaque.
» Using the Intel oneAPlI MKL C interface:
- The Julia code Ax =

Axx; AtAx = A'Ax becomes:

- Documentation:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-dpcpp/2024-2/blas-routines.html
» For interfaces to other implementations, see
- OpenBLAS: https://github.com/0OpenMathLib/0penBLAS
- ATLAS: https://github.com/flame/blis
- BLIS: http://math-atlas.sourceforge.net/
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BLAS in practice, cont'd

» The cost of enhanced portability often comes in the form of building
challenges.

- E.g., MKL and OpenBLAS offer support for various CPU vendors and GPUs.

» For Intel oneAPI MKL, there is a dedicated web tool to help with the
linking configuration:

Intel® oneAPI Math Kernel Library (oneMKL) Link Line Advisor v6.23 Select SYCL domain library: v
\ﬂ‘ Link with Intel® oneMKL libraries (m]
Select Intel® product: explicitly:
Select 0S: Link with DPC++ debug runtime
compatible libraries:
Select programming language: r Juage> v

Select compiler: Use this link line:

<Please select all required parameters above>

Select architecture:
Select dynamic or static linking:
Select Interface layer:

4
Select threading layer: v

Compiler options:
Select OpenMP library: enMP> v p! P

Enable OpenMP offload feature to
GPU:

Select cluster library: O Parallel Direct Sparse Solver for Clusters
(BLACS required)

[ Cluster Discrete Fast Fourier Transform (BLACS =
required .
) ScaLAPACK (BLACS required) Notes:
LBAcS 0 Set INCLUDE, MKLROOT, TBBROOT, LD_LIBRARY_PATH, LIBRARY_PATH, CPATH and
Select MPI library: v NLSPATH environment variables in the command shell using the Intel(R) oneAPT
setvars script in Intel(R) oneAPI root directory. Please also see the Intel(R) oneMKL
Select the Fortran 95 interfaces: BLASSS Developer Guide.
LAPACK9S

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-1link-1line-advisor.html
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Linear algebra package (LAPACK)

» What is LAPACK?

- Set of Fortran 90 routines to solve linear systems, eigenvalue
problems, and SVDs with dense but small to moderately sized as
well as structured sparse (banded, tridiagonal, ...) matrices:

- Successor to LINPACK (1979, for linear systems and least squares pbs.)

and EISPACK (1976, for eigenvalue problems).

- Developed and maintained by an international team of researchers.

» Key characteristics:

- Optimized for performance, portability and numerical stability.

- Relies heavily on BLAS, especially Level 2 and 3.

- Performance depends critically on the BLAS implementation used.

- Handles higher-level algorithms and delegates operations to BLAS.

» Available through various implementations:

- Reference LAPACK: Standard implementation, focus on correctness.

- Intel MKL: Optimized LAPACK routines alongside BLAS.

- GPU only: Nvidia cuSOLVER, AMD rocSOLVER.
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Nomenclature of LAPACK subroutines

LAPACK routines follow a structured naming convention: XYYZZZ
» Data types (X):

D: double precision real S: single precision real
C: single precision complex Z: double precision complex
» Common matrix types (YY):
. general : symmetric . upper Hessenberg
: SPD/HPD . triangular : bidiagonal
» Common computational tasks (ZZZ):
SV: solve linear system TRF: triangular factorization
TRS: solve using factorization CON: estimate conditioning

EV: solve eigenvalue problem
» Examples of (driver) subroutines:
- DGESV: linear solve with real general matrix in double precision.
- CPOSV: linear solve with (complex) HPD matrix in single precision.
- ZGEEV: eigensolve with general complex matrix in double precision.
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Structure of LAPACK subroutines

» There are three types of LAPACK routines:

- Driver routines: solves a complete problem, e.g.,
linear systems, eigenvalue problems, least-squares problems, ...

- Computational routines: performs an intermediate level task, e.g.,
LU factorization, tridiagonal reduction, ...

- Auxiliary routines: unblocked sub-tasks of block algorithms,
BLAS-like operations, other low level tasks.

» Driver routines listed in the online documentation:

https://www.netlib.org/lapack/explore-html/modules.html
» Computational routines listed by module:
https://www.netlib.org/lapack/lug/node37.html

» Auxiliary routines listed by category:
https://www.netlib.org/lapack/lug/node144 . .html
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BLAS and LAPACK in Julia

» Default implementation:

- Ships with multi-threaded OpenBLAS and reference LAPACK.
- Flexible, i.e., can use other implementations, e.g., MKL, BLIS, ...
» Three implementation-independent levels of access (like in Python):
- Interface wrappers via LinearAlgebra.{BLAS,LAPACK}:
BLAS.gemm!, LAPACK.getrf!, ...
most control no extra copies/allocations math-implicit
- Intermediate level functions:
dot(x,y), mul!(C,A,B), 1u(d), ...

in-place versions available

good compromise
- High-level syntax:

A *x, A\ Db A/B, ..

least control extra copies/allocations math-explicit

> Key features:

- Matrix type specified by data structure, e.g., Symmetric, Tridiagonal.
- Multiple dispatch: function behavior depends on types of all arguments.
- Operations preserve matrix structure when applicable.
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Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021)
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Sparse matrices

» Sparse matrices are matrices with relatively few non-zero components.

» Natural occurrence in scientific applications:
- Discretized differential equations:

o ODEs: chemical reactions, multi-body systems with short-range
interactions, multi-agent systems with local interactions, ...
o PDEs: fluid dynamics, solid mechanics, electromagnetics, ...
o DAEs: circuit simulation, power grid modeling, ...
- Networks and graphs:

o Adjacency, transition and Laplacian matrices of sparse graphs.
- Data science:

o Feature matrices in high-dimensional data.
» Important properties:
- Inverses of sparse matrices are generally dense, i.e., not sparse.
- Factorizations of sparse matrices may be reasonably sparse.
- Dense matrices can be approximated by sparse matrices, i.e.,
using sparse approximate inverses (SPAI).
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Repository of sparse matrices

» Researchers and developers often need multiple sparse matrices with
documented characteristics to benchmark NLA algorithms.
» In particular, the SuiteSparse Matrix Collection is widely used for this:
https://sparse.tamu.edu/
- Close to 3,000 matrices available.
- Matrices from all sorts of applications.
- Metadata available include: author, application field, rank, condition
number, singular values, definiteness, symmetry and lack thereof, ...
» We can generally distinguish between two types of sparse matrices:
- Structured: typically coming from differential equations discretized on
structured grids/meshes.

A
E.g., sherman5 (computational fluid dynamics problem): ~ \ -

AN
- Unstructured: most other cases.

E.g., bp_1000 (optimization problem):
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Sparse matrix data structures

» The use of proper data structures is essential to
limit memory requirements and achieve good performance
when deploying basic linear algebra operations and NLA algorithms with
sparse matrices.
» There is no unique sparse matrix data structure to optimally serve all
purposes in all situations.
» In general, the choice of a sparse data structure can be influenced by
- Sparsity pattern of the matrix.
- Hardware architecture:
o Memory layout.
o Sequential vs parallel with shared and/or distributed memory vs GPU.
- Algorithm and operations:

o Type of access.
o BLAS level, i.e., 1, 2 or 3.

- Implementation requirements.
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Sparse matrix data structures, cont'd;
» There are many sparse matrix data structure formats. In particular:
- Coordinate (C00)

intuitive /explicit not efficient large community support

most convenient/used for construction

- Compressed sparse row (CSR), compressed sparse column (CSC)

lowest memory need efficient large community support

most used

» Variants of CSR and CSC:
- Block sparse row (BSR/BCSR), block sparse column (BSC/BCSC)
good for block matrices overhead otherwise large support

- Mapped block row (MBR) sparse
lower memory need more efficient limited community support
- Modified sparse row (MSR/MCSR), modified sparse column (MSC/MCSC)
fast diagonal access square matrices only
limited community support
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Sparse matrix data structures, cont'd,

» Vector architectures and GPU:
- Ellpack (ELL)
good for uniform sparsity community support GPU-friendly

\4

Banded matrices:
- Diagonal (DIA)
good for fixed bandwidth wasteful otherwise
moderate support
- Non-symmetric skyline (NSK), symmetric skyline (SSK)
good for variable bandwidth wasteful for isolated bands
moderate support

» Pythonic environment:
- List of lists (LIL)

used for construction Python-specific support not efficient
- Dictionary of keys (DOK)
used for construction Python-specific support not efficient
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Coordinate (C0Q) format

» A COO data structures format is composed of:
- Array of non-zero components (val)
- Array of row indices of each component (row_idx)

- Array of column indices of each components (col_idx)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 azz as
0 0 a43 0

val = [a11, @12, 13, 21, A22, A33, A34, A43)]

row_idx = [1,1,1,2,2,3,3, 4]
col_idx = [1,2,3,1,2,3,4, 3]
» Key characteristics:

- Explicit storage of all indices (higher memory usage)

- No particular ordering required

- Duplicates allowed (values must be summed)

- Flexible for matrix construction and modification

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE
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Compressed sparse row (CSR) format
> A CSR data structures format is composed of:
- Array of non-zero components (val)
- Array of column indices of each component (col_idx)

- Array of non-zero value indices where each row starts (row_start)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 a3z ass
0 0 a43 0

val = [a11, @12, @13, G21, 422, 433, A34, G43]
col_idx = [1,2,3,1,2,3,4,3]
row_start = [1,4,6,8,9]
» Key characteristics:

- Compact storage (lower memory than COO)
- Fast row access

- Values must be ordered by row

- Difficult to modify structure dynamically
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Compressed sparse column (CSC) format
» A CSC data structures format is composed of:
- Array of non-zero components (val)
- Array of row indices of each component (row_idx)

- Array of non-zero indices where each column starts (col_start)
» Example:

air a2 a3 0
_|a21 a22 0 0
A= 0 0 a3z ass
0 0 a43 0

val = [a11, a1, @12, A22, A13, 433, 443, A34]
row_idx = [1,2,1,2,1,3,4, 3]
col_start = [1,3,5,8,9]
» Key characteristics:

- Compact storage (lower memory than COO)
- Fast column access

- Values must be ordered by column

- Difficult to modify structure dynamically

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

17 /31



Block sparse row (BSR) format

» A BSR (or BCSR) data structure format is composed of:

- Block dimensions (rxc)

- Array (or matrix) of all components of non-zero blocks (val)

- Array of non-zero block column indices (col_idx)

- Array of block indices where each block row starts (row_start)

> .
Example: a1 ay a0

ag1 agy 0 0

A= 0 0 ass as
0 0 a3 O
r=2,c=2

col_idx = [1,2,2]
row_start = [1, 3, 4]

val = [a11, @12, a21, a22,a13,0,0,0, ass, ags, as3, 0]

» Key characteristics:
- Zero values within non-zero blocks are stored

- Similar to CSR but operates on blocks
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Mapped block row (MBR) format
» A MBR data structure format is composed of:

- Block dimensions (rxc)

- Array of non-zero components of non-zero blocks (val)

- Array of non-zero block column indices (col_idx)

- Array of sparsity pattern encoding (b_map)

- Array of block indices where each block row starts (row_start)

» Example:

air a2 a3 0
A _ asr a2 O O
0 0 a3z asq
0 0 asz O
r=2c=2
val = [a11, @12, a21, G22, A13, 33, 434, (43]
col_idx = [1,2,2] b_map = [15,1,7] row_start = [1,3,4]

» Key characteristic:
- Non-zero values within non-zero blocks are not stored
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Modified sparse row (MSR) format
» A MSR data structure format is composed of:

- Array of diagonal elements first, then other non-zeros (val)
- Composite array idx := [row_start, col_idx] where:
o row_start contains the index of off-diagonal non-zero value
where each row starts.
o col_idx contains column indices of each off-diagonal non-zero
component.
» Example:

a1 a2 a3 0
a1 a2 0 O

A o O 0 a3z as4
0 0 a43 0

val = [a11, ag, ass, 0, —1, a12, ais, as1, ass, ags
idx = [6,8,9,10,11,2,3,1,4, 3]
» Key characteristics:

- Diagonal elements stored first = Fast diagonal access
- Dummy element, here —1, stored in val for consistency with idx (7).
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Ellpack (ELL) format

» An ELL data structure format is composed of:

- Maximum number of non-zero components on a row (row_nnz)
- Array of all components stored in column-major order, from the

block of left-aligned non-zero components (val)

- Array of column indices of stored components (col_idx)

> .
Example: a1 ay a0

a1 azxp 0 O
0 0 ass as
0 0 ag3 O

A=

row_nnz = 3

col_idx =[1,1,3,3,2,2,4,—1,3,—1,—1,

val = [a11, @21, as3, a43, a1z, a2, a34,0, a3, 0,0, 0]
)

» Key characteristics:
- Stores 2xrow_nnz values, including some zeros

- Wasteful if number of non-zero components varies significanly from one

row to another
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Diagonal (DIA) format

» A DIA data structure format is composed of:

- Array of components on non-zero diagonals padded to n (val)
- Array of offset indices (ioff)

» Example:
P a1 a2 a3 0

_|a21 a22 0 0
A= 0 0 a3z as
0 0 a43 0

val = [*7 ai, 07 a43,a11,a22, a33, 07 a2, 07 a34, *,0a13, 07 *, *]
ioff = [~1,0,1,2]

» Key characteristics:

- Fast diagonal access
- Wasteful for diagonal with large offset indices (7)
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List of list (LIL) format
» A LIL data structure format is composed of:

- A list (rows) of lists, one per row, each list storing column indices
of non-zero components.
- A list (data) of lists, one per row, each list storing non-zero

components, ordered consistently with the indices in rows
» Example:

a1 a2 a3 0 11,2, 3] [a11,a12, a13]
a1 azx 0 O [1,2] [az1, azso]
A= rows = data =
0 0 ass assg| " (3, 4] lass, az4]
0 0 ag3 O [3] [a ]

» Key characteristics:

- No particular ordering required for column indices
- Unordered column indices slows down access

- Mostly used for matrix construction, particularly in Python
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Sparse matrix data structures in practice

» Intel oneAPI MKL supports sparse vectors, and the sparse matrix data
structures CSR, CSC, CO0 and BSR.
For example, using the C interface:
- A CO0 matrix can be created as follows:

- Sparse matrices can be defined in other formats, namely CSR, CSC
and BSR, directly from their underlying data structures.

- Only two functions to convert constructed sparse matrices into
CSR (mkl_sparse_convert_csr)
and BSR (mkl_sparse_convert_bsr).
Possible to convert A into CSC, by using the CSR representation of A%
- Documentation:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/matrix-manipulation-routines.html
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Sparse matrix data structures in practice, cont'd

» Nvidia cuSPARSE also supports several vectors, and several sparse
matrix data structures:

- €00, CSR, CSC and BSR

- Sliced Ellpack (SELL)

- Blocked Ellpack (BLOCKED-ELL)
Documentation:

https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats
» Other implementations:

- AMD ROCsparse: proprietary, for GPU
- SuiteSparse, PETSc, Trilinos, OSKI, PSBLAS, ...

. open-source

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /31


https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats

Sparse matrix data structures in Julia
» Support of basic structured formats through LinearAlgebra.jl:

Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal, ...

» Standard library support through SparseArrays. j1:
- Only CsC (SparseMatrGCSC) is supported by default:

with immediate conversion to CSC.

- Construction usmg the SparseMatrGCSC struct:

nicolas.venkovic@tum.de 26 /31



Sparse matrix data structures in Julia, cont'd
- Random constructor for sparse matrix of density d with iid non-zero
elements distributed uniformly in [0,1), sprand(m,n,d).

- Random constructor for sparse matrix of density d with iid non-zero

elements distributed according to the standard normal distribution,
sprandn(m,n,d).

» More formats supported through other packages:
- SparseMatricesCSR.j1: Julia native implementation of CSR formats.
- MKLSparse. jl: Julia wrappers to Intel oneAPI MKL sparse interface.
- SuiteSparse.jl: Julia wrappers to SuiteSparse library.
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Sparse BLAS

Section 9.1 in Darve & Wootters (2021)
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Sparse basic linear algebra subprograms

» Sparse BLAS is the extension of BLAS for sparse matrices and vectors.
> Level 1 (vector operations):
Intel oneAPI MKL functions use a compressed sparse vector format:
https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/sparse-blas-level-1-routines.html
- Sparse y < ax + y (SpAXPY): mkl_sparse_x_axpy
» Level 2-3 functions have format-specific implementations.
Intel oneAPI MKL offers access through an Inspector-Executor API:

https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-c/2024-2/
inspector-executor-sparse-blas-execution-routines.html

- Level 2 (matrix-vector operations):

o Sparse matrix-vector product (SpMV): mkl_sparse_x_mv
- Level 3 (matrix-matrix operations):
o Sparse matrix-(dense) matrix product (SpMM): mkl_sparse_x_mm
o Sparse matrix-(sparse) matrix product (SpGEMM): mk1_sparse_spmm
28/31
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Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021)
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A few definitions
» Basics of graph theory are essential to sparse matrix computation.
Definition (Graph)

- An undirected graph is a pair G = (V, E) formed by a non-empty finite set V'
of vertices and a set £ C V x V of unordered pairs of vertices referred to as
edges.

- A directed graph G = (V, E) is formed by a set E of ordered edges.

L

An undirected araph A directed araph
with vertices with vertices
V ={A,B,C,D} and V ={a,b,c,d} and
edaes E = edees E =

{(4,0),(¢,B),(C,D),(B,D)}.  {(a,c),(d,c),(b,d),(d,b)}

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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A few definitions, cont'd

» A path from a vertex u to another vertex v is a sequence of edges
(ug,u1), ..., (ut—1,us) such that ug = u and u; = v.

> A graph is connected if there is a path from any vertex u to any
vertex v.

> A tree is a connected graph without cycles, i.e., with no path from a
vertex to itself.

A tree has a root, i.e., a designated vertex O
represented at the top of the tree.
» If a tree has an edge (u,v), and u is closer to ® ©
the root r than v is, then we say that v is a
- . 06 0®OG
parent and u is a child.
Each vertex in a tree has a unique parent. Q
> A leaf is a vertex in a tree with no children.
. . . . A tree. Vertex 1 is the root, and
» Family logic applies to define descendants and vertices 4,5,6,9,8 are leaves.
Vertex 8 is 3's child, and 3 is 8's
ancestors. parent. Vertex 9 is 3's descendant,

and 3 is 9's ancestor.
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Graph representation of sparsity patterns

» The sparsity pattern of a square matrix A € F™*™ can be represented as
a directed graph with n vertices.

» In Darve and Wooters (2021), the convention is that a directed edge
(4,7) from vertex j to vertex 7 exists if and only if a;; # 0.

For example:

1 23 45€¢€
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@)
(o.) \?—
e
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Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

» The sparsity pattern of symmetric matrices can be represented by

undirected graphs.
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