

Numerical Linear Algebra for Computational Science and Information Engineering Sparse Data Structures and Basic Linear Algebra Subroutines

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

Outline I

1	Basic linear algebra subprograms (BLAS)	1
2	Sparse matrix data structures Section 9.1 in Darve & Wootters (2021)	10
3	Sparse BLAS Section 9.1 in Darve & Wootters (2021)	28
4	Sparse matrices and graphs Section 9.2 in Darve & Wootters (2021)	29

Basic linear algebra subprograms (BLAS)

Basic linear algebra subprograms (BLAS)

► What is BLAS?

- Originated in the 1970s, as a set of **low-level routines** for common **linear algebra operations**, first written in Fortran.
- Became a **standard** for the specification of linear algebra subroutines.

► Why use BLAS?

- **Performance:** algorithmic optimizations, multi-threading, vectorization, loop unrolling, cache and register blocking, instruction pipelining, ...
- **Portability:** Consistent interface across different platforms.

► Over time, **different BLAS libraries** have been developed, in **different languages**, for **different hardware**:

- **Intel oneAPI MKL:** Proprietary, highly optimized for Intel architectures, GPU support through SYCL, comprehensive.
- **OpenBLAS:** Open source, multi-architecture support, some GPU support, derived from GotoBLAS, community-driven.
- **BLIS:** Open source, research-oriented (UT Austin).
- **ATLAS:** Open source, empirical auto-tuning during build.
- GPU only: Nvidia **cuBLAS**, AMD **rocBLAS**, ...

Common BLAS subroutines

BLAS routines are **organized into levels**, and follow a **naming convention** for most standard operations.

► **Level 1** (**vector** operations, typically $O(n)$ ops.):

- Dot product (**DDOT**, **SDOT**, ...): $x^T y$
- Vector addition (**DAXPY**, **SAXPY**, ...): $y \leftarrow \alpha x + y$
- Vector norms (**DNRM2**, **SNRM2**, ...): $\|x\|_2$

► **Level 2** (**matrix-vector** operations, typically $O(n^2)$ ops.):

- Matrix-vector multiply (**DGEMV**, **SGEMV**): $y \leftarrow \alpha Ax + \beta y$
- Rank-1 update (**DGER**, **SGER**): $A \leftarrow \alpha xy^T + A$
- Triangular solve (**DTRSV**, **STRSV**): $x \leftarrow T^{-1}x$

► **Level 3** (**matrix** operations, typically $O(n^3)$ ops.):

- Matrix-matrix multiply (**DGEMM**, **SGEMM**, ...): $C \leftarrow \alpha AB + \beta C$
- Rank- k update (**DSYRK**, **SSYRK**, ...): $C \leftarrow \alpha AA^T + \beta C$

The first letter in the name of a subroutine represents the data type:

D: double precision real

S: single precision real

C: single precision complex

Z: double precision complex

Common BLAS subroutines, cont'd

Level 1 BLAS

	dim	scalar	vector	scalars	5-element array		prefixes
SUBROUTINE	xROTRG			A, B, C, S)	D1, D2, A, B, C, S)	Generate plane rotation	S, D
SUBROUTINE	xROTMG				PARAM)	Generate modified plane rotation	S, D
SUBROUTINE	xROT	(N,	X, INCX, Y, INCY,			Apply plane rotation	S, D
SUBROUTINE	xROT	(N,	X, INCX, Y, INCY,		PARAM)	Apply modified plane rotation	S, D
SUBROUTINE	xSWAP	(N,	X, INCX, Y, INCY)			$x \leftrightarrow y$	S, D, C, Z
SUBROUTINE	xSCAL	(N,	X, INCX, Y, INCY)	ALPHA, X, INCX)		$x \leftrightarrow \alpha x$	S, D, C, Z, CS, ZD
SUBROUTINE	xCOPY	(N,	X, INCX, Y, INCY)			$y \leftarrow x$	S, D, C, Z
SUBROUTINE	xAXPY	(N,	ALPHA, X, INCX, Y, INCY)			$y \leftarrow \alpha x + y$	S, D, C, Z
FUNCTION	xDOT	(N,	X, INCX, Y, INCY)			$dot \leftarrow x^T y$	S, D, DS
FUNCTION	xDOTU	(N,	X, INCX, Y, INCY)			$dot \leftarrow x^H y$	C, Z
FUNCTION	xDOTC	(N,	X, INCX, Y, INCY)			$dot \leftarrow x^H y$	C, Z
FUNCTION	xDOT	(N,	X, INCX, Y, INCY)			$dot \leftarrow \alpha + x^T y$	SDS
FUNCTION	xNRM2	(N,	X, INCX)			$nrm2 \leftarrow x _2$	S, D, SC, DZ
FUNCTION	xASUM	(N,	X, INCX)			$asum \leftarrow re(x) _1 + im(x) _1$	S, D, SC, DZ
FUNCTION	IXAMAX	(N,	X, INCX)			$amax \leftarrow 1^N k \ni re(x_k) + im(x_k) $	S, D, C, Z
						$= \max(re(x_i) + im(x_i))$	

Level 2 BLAS

	options	dim	b-width	scalar	matrix	vector	scalar	vector	
xGEMV	{ TRANS,	M, N,	ALPHA, A, LDA, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n$		S, D, C, Z
xGEMV	{ TRANS,	M, N, KL, KU,	ALPHA, A, LDA, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n$		S, D, C, Z
xHEMV	{ UPLO,	M, N,	ALPHA, A, LDA, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y$		C, Z
xHEMV	{ UPLO,	M, N,	ALPHA, A, LDA, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y$		C, Z
xHPMV	{ UPLO,	M, N,	ALPHA, AP, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y$		C, Z
xSPMV	{ UPLO,	M, N,	ALPHA, A, LDA, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y$		S, D
xSPMV	{ UPLO,	M, N,	ALPHA, AP, X, INCX,	BETA, Y, INCY)			$y \leftarrow \alpha Ax + \beta y$		S, D
xTPMV	{ UPLO, TRANS, DIAG,	N,	A, LDA, X, INCX)			$y \leftarrow \alpha Ax + \beta y$		S, D	
xTPMV	{ UPLO, TRANS, DIAG,	N, K,	A, LDA, X, INCX)			$x \leftarrow Ax, x \leftarrow A^T x, x \leftarrow A^H x$		S, D, C, Z	
xTPMV	{ UPLO, TRANS, DIAG,	N, K,	AP, X, INCX)			$x \leftarrow Ax, x \leftarrow A^T x, x \leftarrow A^H x$		S, D, C, Z	
xTRSV	{ UPLO, TRANS, DIAG,	N,	A, LDA, X, INCX)			$x \leftarrow Ax, x \leftarrow A^{-T} x, x \leftarrow A^{-H} x$		S, D, C, Z	
xTRSV	{ UPLO, TRANS, DIAG,	N, K,	A, LDA, X, INCX)			$x \leftarrow Ax, x \leftarrow A^{-T} x, x \leftarrow A^{-H} x$		S, D, C, Z	
xTPSV	{ UPLO, TRANS, DIAG,	N, K,	AP, X, INCX)			$x \leftarrow Ax, x \leftarrow A^{-T} x, x \leftarrow A^{-H} x$		S, D, C, Z	
	options	dim	scalar	vector	vector	matrix			
xGCR	{	M, N,	ALPHA, X, INCX, Y, INCY, A, LDA)				$A \leftarrow \alpha x y^T + A, A - m \times n$		S, D
xGENU	{	M, N,	ALPHA, X, INCX, Y, INCY, A, LDA)				$A \leftarrow \alpha x y^T + A, A - m \times n$		C, Z
xGCR	{	M, N,	ALPHA, X, INCX, Y, INCY, A, LDA)				$A \leftarrow \alpha x y^H + A - m \times n$		C, Z
xHER	{ UPLO,	M, N,	ALPHA, X, INCX, A, LDA)				$A \leftarrow \alpha x z^H + A$		C, Z
xHPR	{ UPLO,	M, N,	ALPHA, X, INCX, A)				$A \leftarrow \alpha x z^H + A$		C, Z
xHER2	{ UPLO,	M, N,	ALPHA, X, INCX, Y, INCY, A, LDA)				$A \leftarrow \alpha x y^H + y(\alpha x)^H + A$		C, Z
xHPR2	{ UPLO,	M, N,	ALPHA, X, INCX, Y, INCY, AP)				$A \leftarrow \alpha x y^H + y(\alpha x)^H + A$		C, Z
xSTR	{ UPLO,	M, N,	ALPHA, X, INCX, A, LDA)				$A \leftarrow \alpha x z^T + A$		S, D
xSPR	{ UPLO,	M, N,	ALPHA, X, INCX, AP)				$A \leftarrow \alpha x z^T + A$		S, D
xSTR2	{ UPLO,	M, N,	ALPHA, X, INCX, Y, INCY, A, LDA)				$A \leftarrow \alpha x y^T + \alpha y x^T + A$		S, D
xSPR2	{ UPLO,	M, N,	ALPHA, X, INCX, Y, INCY, AP)				$A \leftarrow \alpha x y^T + \alpha y x^T + A$		S, D

Level 3 BLAS

	options	dim	scalar	matrix	matrix	scalar	matrix	
xGEMM	{ TRANS, TRANS,	M, N, K,	ALPHA, A, LDA, B, LDB, BETA, C, LDC)			$C \leftarrow \alpha op(B) op(B) + \beta C, op(X) = X, X^T, X^H, C - m \times n$		S, D, C, Z
xSTMM	{ SIDE, UPLO,	M, N,	ALPHA, A, LDA, B, LDB, BETA, C, LDC)			$C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = AT$		S, D, C, Z
xHEMM	{ SIDE, UPLO,	M, N,	ALPHA, A, LDA, B, LDB, BETA, C, LDC)			$C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = AH$		C, Z
xSTRK	{ UPLO, TRANS,	N,	K, ALPHA, A, LDA, BETA, C, LDC)			$C \leftarrow \alpha AA^T + \beta C, C \leftarrow \alpha A^T A + \beta C, C - n \times n$		S, D, C, Z
xHERK	{ UPLO, TRANS,	N,	K, ALPHA, A, LDA, BETA, C, LDC)			$C \leftarrow \alpha AA^H + \beta C, C \leftarrow \alpha A^H A + \beta C, C - n \times n$		C, Z
xSTR2K	{ UPLO, TRANS,	N,	K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)			$C \leftarrow \alpha AB^T + \bar{\alpha} BA^T + \beta C, C \leftarrow \alpha A^T B + \bar{\alpha} B^T A + \beta C, C - n \times n$		S, D, C, Z
xHER2K	{ UPLO, TRANS,	N,	K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)			$C \leftarrow \alpha AB^H + \bar{\alpha} BA^H + \beta C, C \leftarrow \alpha A^T B + \bar{\alpha} B^T A + \beta C, C - n \times n$		C, Z
xTRMM	{ SIDE, UPLO, TRANS,	DIAG, M, N,	ALPHA, A, LDA, B, LDB)			$B \leftarrow \alpha op(A) B, B \leftarrow \alpha B op(A), op(A) = A, A^T, A^H, B - m \times n$		S, D, C, Z
xTRMM	{ SIDE, UPLO, TRANS,	DIAG, M, N,	ALPHA, A, LDA, B, LDB)			$B \leftarrow \alpha op(A^{-1}) B, B \leftarrow \alpha B op(A^{-1}), op(A) = A, A^T, A^H, B - m \times n$		S, D, C, Z

2

University of Tennessee, Oak Ridge National Laboratory, Numerical Algorithms Group Ltd. (1997). Basic linear algebra subprograms – A quick reference guide. (<https://www.netlib.org/blas>)

BLAS in practice

- ▶ BLAS interfaces tend to be **mathematically opaque**.
- ▶ Using the **Intel oneAPI MKL C interface**:
 - The Julia code $Ax = A*x$; $AtAx = A'Ax$ becomes:

```
double *x = (double*)mkl_malloc(m * sizeof(double), sizeof(double));
double *Ax = (double*)mkl_malloc(n * sizeof(double), sizeof(double));
double *AtAx = (double*)mkl_malloc(m * sizeof(double), sizeof(double));
for (int i=0; i<m; i++)
    x[i] = rand() / (double) RAND_MAX;
for (int i=0; i<maxit; i++) {
    cblas_dgemv(CblasColMajor, CblasNoTrans, n, m, 1., A, n, x, 1, 0., Ax, 1);
    cblas_dgemv(CblasColMajor, CblasTrans, n, m, 1., A, n, Ax, 1, 0., AtAx, 1);
```

- **Documentation:**
<https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html>
- ▶ For interfaces to other implementations, see
 - **OpenBLAS**: <https://github.com/OpenMathLib/OpenBLAS>
 - **ATLAS**: <https://github.com/flame/blis>
 - **BLIS**: <http://math-atlas.sourceforge.net/>

BLAS in practice, cont'd

- The cost of **enhanced portability** often comes in the form of **building challenges**.
 - E.g., MKL and OpenBLAS offer support for various CPU vendors and GPUs.
- For **Intel oneAPI MKL**, there is a dedicated web tool to help with the linking configuration:

Intel® oneAPI Math Kernel Library (oneMKL) Link Line Advisor v6.23

Select Intel® product:	<input type="button" value="oneMKL 2024"/>
Select OS:	<input type="button" value="Select operating system"/>
Select programming language:	<input type="button" value="Select programming language"/>
Select compiler:	<input type="button" value="Select compiler"/>
Select architecture:	<input type="button" value="Select architecture"/>
Select dynamic or static linking:	<input type="button" value="Select linking"/>
Select Interface layer:	<input type="button" value="Select Interface"/>
Select threading layer:	<input type="button" value="Select threading"/>
Select OpenMP library:	<input type="button" value="Select OpenMP"/>
Enable OpenMP offload feature to GPU:	<input type="checkbox"/>
Select cluster library:	<input type="checkbox"/> Parallel Direct Sparse Solver for Clusters (BLACS required) <input type="checkbox"/> Cluster Discrete Fast Fourier Transform (BLACS required) <input type="checkbox"/> ScalAPACK (BLACS required) <input type="checkbox"/> BLACS
Select MPI library:	<input type="button" value="Select MPI"/>
Select the Fortran 95 Interfaces:	<input type="checkbox"/> BLAS95 <input type="checkbox"/> LAPACK95

Select SYCL domain library:	<input type="button" value="Select Domain"/>
Link with Intel® oneMKL libraries explicitly:	<input type="checkbox"/>
Link with DPC++ debug runtime compatible libraries:	<input type="checkbox"/>
Use this link line: <Please select all required parameters above>	
Compiler options:	
Notes: o Set INCLUDE, MKLROOT, TBBROOT, LD_LIBRARY_PATH, LIBRARY_PATH, CPATH and NLSPATH environment variables in the command shell using the Intel(R) oneAPI setvars script in Intel(R) oneAPI root directory. Please also see the Intel(R) oneMKL Developer Guide.	

<https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemk1-link-line-advisor.html>

Linear algebra package (LAPACK)

► What is LAPACK?

- Set of Fortran 90 routines to solve **linear systems**, **eigenvalue problems**, and **SVDs** with **dense but small to moderately sized** as well as **structured sparse** (banded, tridiagonal, ...) matrices.
- Successor to LINPACK (1979, for linear systems and least squares pbs.) and EISPACK (1976, for eigenvalue problems).
- Developed and maintained by an international **team of researchers**.

► Key characteristics:

- Optimized for **performance**, **portability** and **numerical stability**.
- Relies heavily on **BLAS**, especially Level 2 and 3.
- Performance depends critically on the **BLAS implementation** used.
- Handles **higher-level algorithms** and delegates operations to **BLAS**.

► Available through various implementations:

- Reference **LAPACK**: Standard implementation, focus on correctness.
- Intel **MKL**: Optimized LAPACK routines alongside BLAS.
- GPU only: Nvidia **cuSOLVER**, AMD **rocSOLVER**.

Nomenclature of LAPACK subroutines

LAPACK routines follow a **structured naming convention**: XYYZZZ

► Data types (X):

D: double precision real

S: single precision real

C: single precision complex

Z: double precision complex

► Common matrix types (YY):

GE: general

SY: symmetric

HG: upper Hessenberg

PO: SPD/HPD

TR: triangular

BD: bidiagonal

► Common computational tasks (ZZZ):

SV: solve linear system

TRF: triangular factorization

TRS: solve using factorization

CON: estimate conditioning

EV: solve eigenvalue problem

► Examples of (driver) subroutines:

- DGE_SV: linear solve with real general matrix in double precision.

- CPO_SV: linear solve with (complex) HPD matrix in single precision.

- ZGEEV: eigensolve with general complex matrix in double precision.

Structure of LAPACK subroutines

- There are three types of LAPACK routines:
 - **Driver** routines: solves a **complete problem**, e.g., linear systems, eigenvalue problems, least-squares problems, ...
 - **Computational** routines: performs an **intermediate level task**, e.g., LU factorization, tridiagonal reduction, ...
 - **Auxiliary** routines: **unblocked sub-tasks of block algorithms**, BLAS-like operations, other low level tasks.

- **Driver** routines listed in the online documentation:

<https://www.netlib.org/lapack/explore-html/modules.html>

- **Computational** routines listed by module:

<https://www.netlib.org/lapack/lug/node37.html>

- **Auxiliary** routines listed by category:

<https://www.netlib.org/lapack/lug/node144.html>

BLAS and LAPACK in Julia

- ▶ Default implementation:
 - Ships with **multi-threaded OpenBLAS** and **reference LAPACK**.
 - **Flexible**, i.e., can use other implementations, e.g., **MKL**, **BLIS**, ...
- ▶ Three **implementation-independent** levels of **access** (like in Python):
 - **Interface wrappers** via `LinearAlgebra.{BLAS,LAPACK}`:

<code>BLAS.gemm!</code> , <code>LAPACK.getrf!</code> , ...		
most control	no extra copies/allocations	math-implicit
 - **Intermediate level functions**:

<code>dot(x,y)</code> , <code>mul!(C,A,B)</code> , <code>lu(A)</code> , ...		
less control	in-place versions available	good compromise
 - **High-level syntax**:

	<code>A * x</code> , <code>A \ b</code> , <code>A / B</code> , ...	
least control	extra copies/allocations	math-explicit
- ▶ Key features:
 - **Matrix type** specified by **data structure**, e.g., `Symmetric`, `Tridiagonal`.
 - **Multiple dispatch**: function behavior depends on types of **all** arguments.
 - Operations **preserve matrix structure** when applicable.

Sparse matrix data structures

Section 9.1 in Darve & Wootters (2021)

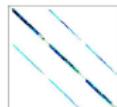
Sparse matrices

- ▶ **Sparse matrices** are **matrices** with relatively **few non-zero components**.
- ▶ Natural occurrence in scientific applications:
 - **Discretized differential equations**:
 - ODEs: chemical reactions, multi-body systems with short-range interactions, multi-agent systems with local interactions, ...
 - PDEs: fluid dynamics, solid mechanics, electromagnetics, ...
 - DAEs: circuit simulation, power grid modeling, ...
 - **Networks and graphs**:
 - Adjacency, transition and Laplacian matrices of sparse graphs.
 - **Data science**:
 - Feature matrices in high-dimensional data.
- ▶ Important properties:
 - **Inverses** of sparse matrices are generally **dense**, i.e., not sparse.
 - **Factorizations** of sparse matrices **may be reasonably sparse**.
 - **Dense matrices** can be **approximated by sparse matrices**, i.e., using sparse approximate inverses (SPAI).

Repository of sparse matrices

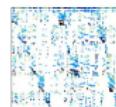
- ▶ Researchers and developers often need multiple sparse matrices with documented characteristics to benchmark NLA algorithms.
- ▶ In particular, the **SuiteSparse Matrix Collection** is widely used for this:
<https://sparse.tamu.edu/>
 - Close to 3,000 matrices available.
 - Matrices from all sorts of applications.
 - Metadata available include: author, application field, rank, condition number, singular values, definiteness, symmetry and lack thereof, ...
- ▶ We can generally distinguish between two types of sparse matrices:
 - **Structured**: typically coming from differential equations discretized on structured grids/meshes.

E.g., `sherman5` (computational fluid dynamics problem):



- **Unstructured**: most other cases.

E.g., `bp_1000` (optimization problem):



Sparse matrix data structures

- ▶ The use of **proper data structures** is essential to
 - limit memory requirements and achieve good performance when deploying basic linear algebra operations and NLA algorithms with sparse matrices.
- ▶ There is **no unique sparse matrix data structure** to optimally serve all purposes in all situations.
- ▶ In general, the **choice of** a sparse data structure can be **influenced** by
 - **Sparsity pattern** of the matrix.
 - **Hardware architecture**:
 - Memory layout.
 - Sequential vs parallel with shared and/or distributed memory vs GPU.
 - **Algorithm and operations**:
 - Type of access.
 - BLAS level, i.e., 1, 2 or 3.
 - **Implementation requirements**.

Sparse matrix data structures, cont'd₁

- There are many sparse matrix data structure formats. In particular:

- Coordinate (COO)

intuitive/explicit	not efficient	large community support
most convenient/used for construction		

- Compressed sparse row (CSR), compressed sparse column (CSC)

lowest memory need	efficient	large community support
most used		

- Variants of CSR and CSC:

- Block sparse row (BSR/BCSR), block sparse column (BSC/BCSC)
good for block matrices overhead otherwise large support
 - Mapped block row (MBR) sparse
lower memory need more efficient limited community support
 - Modified sparse row (MSR/MCSR), modified sparse column (MSC/MCSC)
fast diagonal access square matrices only
limited community support

Sparse matrix data structures, cont'd₂

- ▶ Vector architectures and GPU:
 - Ellpack (ELL)
good for uniform sparsity **community support** **GPU-friendly**
- ▶ Banded matrices:
 - Diagonal (DIA)
good for fixed bandwidth **wasteful otherwise**
moderate support
 - Non-symmetric skyline (NSK), symmetric skyline (SSK)
good for variable bandwidth **wasteful for isolated bands**
moderate support
- ▶ Pythonic environment:
 - List of lists (LIL)
used for construction **Python-specific support** **not efficient**
 - Dictionary of keys (DOK)
used for construction **Python-specific support** **not efficient**

Coordinate (COO) format

- ▶ A COO data structures format is composed of:
 - Array of **non-zero components** (`val`)
 - Array of **row indices of each component** (`row_idx`)
 - Array of **column indices of each components** (`col_idx`)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\text{val} = [a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{33}, a_{34}, a_{43}]$$

$$\text{row_idx} = [1, 1, 1, 2, 2, 3, 3, 4]$$

$$\text{col_idx} = [1, 2, 3, 1, 2, 3, 4, 3]$$

- ▶ Key characteristics:

- Explicit storage of all indices (higher memory usage)
- **No particular ordering** required
- **Duplicates allowed** (values must be summed)
- **Flexible** for matrix **construction** and **modification**

Compressed sparse row (CSR) format

- ▶ A CSR data structures format is composed of:
 - Array of **non-zero components** (`val`)
 - Array of **column indices of each component** (`col_idx`)
 - Array of **non-zero value indices where each row starts** (`row_start`)
- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\text{val} = [a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{33}, a_{34}, a_{43}]$$

$$\text{col_idx} = [1, 2, 3, 1, 2, 3, 4, 3]$$

$$\text{row_start} = [1, 4, 6, 8, 9]$$

- ▶ Key characteristics:
 - Compact storage (lower memory than COO)
 - **Fast row access**
 - **Values must be ordered by row**
 - **Difficult to modify structure dynamically**

Compressed sparse column (CSC) format

- ▶ A CSC data structures format is composed of:
 - Array of **non-zero components** (val)
 - Array of **row indices of each component** (row_idx)
 - Array of **non-zero indices where each column starts** (col_start)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\text{val} = [a_{11}, a_{21}, a_{12}, a_{22}, a_{13}, a_{33}, a_{43}, a_{34}]$$

$$\text{row_idx} = [1, 2, 1, 2, 1, 3, 4, 3]$$

$$\text{col_start} = [1, 3, 5, 8, 9]$$

- ▶ Key characteristics:

- Compact storage (lower memory than COO)
- **Fast column access**
- **Values must be ordered by column**
- **Difficult to modify structure dynamically**

Block sparse row (BSR) format

- ▶ A BSR (or BCSR) data structure format is composed of:
 - **Block dimensions** ($r \times c$)
 - Array (or matrix) of **all components of non-zero blocks** (val)
 - Array of **non-zero block column indices** (col_idx)
 - Array of **block indices where each block row starts** (row_start)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$r = 2, c = 2$$

$$\text{val} = [a_{11}, a_{12}, a_{21}, a_{22}, a_{13}, 0, 0, 0, a_{33}, a_{34}, a_{43}, 0]$$

$$\text{col_idx} = [1, 2, 2]$$

$$\text{row_start} = [1, 3, 4]$$

- ▶ Key characteristics:

- **Zero values within non-zero blocks are stored**
- **Similar to CSR but operates on blocks**

Mapped block row (MBR) format

- ▶ A MBR data structure format is composed of:
 - **Block dimensions** ($r \times c$)
 - Array of **non-zero components of non-zero blocks** (`val`)
 - Array of **non-zero block column indices** (`col_idx`)
 - Array of **sparsity pattern encoding** (`b_map`)
 - Array of **block indices where each block row starts** (`row_start`)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$r = 2, c = 2$$

$$\text{val} = [a_{11}, a_{12}, a_{21}, a_{22}, a_{13}, a_{33}, a_{34}, a_{43}]$$

$$\text{col_idx} = [1, 2, 2] \quad \text{b_map} = [15, 1, 7] \quad \text{row_start} = [1, 3, 4]$$

- ▶ Key characteristic:

- **Non-zero values within non-zero blocks are not stored**

Modified sparse row (MSR) format

- A MSR data structure format is composed of:
 - Array of **diagonal elements first**, then **other non-zeros** (`val`)
 - Composite array `idx` := $[row_start, col_idx]$ where:
 - o `row_start` contains the **index of off-diagonal non-zero value where each row starts**.
 - o `col_idx` contains **column indices of each off-diagonal non-zero component**.
- Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

`val` = $[a_{11}, a_{22}, a_{33}, 0, -1, a_{12}, a_{13}, a_{21}, a_{34}, a_{43}]$

`idx` = $[6, 8, 9, 10, 11, 2, 3, 1, 4, 3]$
- Key characteristics:
 - **Diagonal elements stored first** \implies **Fast diagonal access**
 - Dummy element, here -1 , stored in `val` for consistency with `idx` (?)

Ellpack (ELL) format

- ▶ An ELL data structure format is composed of:
 - Maximum number of non-zero components on a row (`row_nnz`)
 - Array of all components stored in column-major order, from the block of left-aligned non-zero components (`val`)
 - Array of column indices of stored components (`col_idx`)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\text{row_nnz} = 3$$

$$\text{val} = [a_{11}, a_{21}, a_{33}, a_{43}, a_{12}, a_{22}, a_{34}, 0, a_{13}, 0, 0, 0]$$

$$\text{col_idx} = [1, 1, 3, 3, 2, 2, 4, -1, 3, -1, -1, -1]$$

- ▶ Key characteristics:

- Stores $2 \times \text{row_nnz}$ values, including some zeros
- Wasteful if number of non-zero components varies significantly from one row to another

Diagonal (DIA) format

- ▶ A DIA data structure format is composed of:
 - Array of **components on non-zero diagonals** padded to n (val)
 - Array of **offset indices** (ioff)

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\text{val} = [* , a_{21}, 0, a_{43}, a_{11}, a_{22}, a_{33}, 0, a_{12}, 0, a_{34}, *, a_{13}, 0, *, *]$$

$$\text{ioff} = [-1, 0, 1, 2]$$

- ▶ Key characteristics:

- **Fast diagonal access**
- Wasteful for diagonal with large offset indices (?)

List of list (LIL) format

- ▶ A LIL data structure format is composed of:
 - A **list (rows) of lists**, one per row, **each list storing column indices of non-zero components**.
 - A **list (data) of lists**, one per row, **each list storing non-zero components, ordered consistently with the indices in rows**.

- ▶ Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix} \text{rows} = \begin{bmatrix} [1, 2, 3] \\ [1, 2] \\ [3, 4] \\ [3] \end{bmatrix} \text{data} = \begin{bmatrix} [a_{11}, a_{12}, a_{13}] \\ [a_{21}, a_{22}] \\ [a_{33}, a_{34}] \\ [a_{43}] \end{bmatrix}$$

- ▶ Key characteristics:
 - **No particular ordering** required for column indices
 - **Unordered column indices** slows down access
 - Mostly used for matrix **construction**, particularly in **Python**

Sparse matrix data structures in practice

- ▶ Intel oneAPI MKL supports sparse vectors, and the sparse matrix data structures CSR, CSC, COO and BSR.

For example, using the C interface:

- A COO matrix can be **created** as follows:

```
double val[] = {1., 2., 3.};
MKL_INT row_idx[] = {0, 2, 1};
MKL_INT col_idx[] = {0, 1, 2};
sparse_matrix_t A;
mkl_sparse_d_create_coo(&A, SPARSE_INDEX_BASE_ZERO, 3, 3, 3, row_idx, col_idx, val);
```

- Sparse matrices can be **defined in other formats**, namely CSR, CSC and BSR, **directly from their underlying data structures**.
- Only two functions to **convert constructed sparse matrices** into
CSR (`mkl_sparse_convert_csr`)
and BSR (`mkl_sparse_convert_bsr`).

Possible to convert A into CSC, by using the CSR representation of A^T .

- **Documentation:**

<https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html>

Sparse matrix data structures in practice, cont'd

- ▶ **Nvidia cuSPARSE** also supports several vectors, and several sparse matrix data structures:
 - COO, CSR, CSC and BSR
 - Sliced Ellpack (SELL)
 - Blocked Ellpack (BLOCKED-ELL)

Documentation:

<https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats>

- ▶ Other implementations:
 - **AMD ROCsparse**: proprietary, for GPU
 - **SuiteSparse, PETSc, Trilinos, OSKI, PSBLAS, ...** : open-source

Sparse matrix data structures in Julia

- ▶ Support of basic structured formats through `LinearAlgebra.jl`:
Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal, ...
- ▶ Standard library support through `SparseArrays.jl`:
 - Only CSC (`SparseMatrixCSC`) is supported by default:

```
struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrixCSC{Tv,Ti}
    m::Int           # Number of rows
    n::Int           # Number of columns
    colptr::Vector{Ti} # Column j is in colptr[j]:(colptr[j+1]-1)
    rowval::Vector{Ti} # Row indices of stored values
    nzval::Vector{Tv} # Stored values, typically nonzeros
end
```

- Construction using COO-style input:

```
Is = [1, 3, 2]; Js = [1, 2, 3]; Vs = [1., 2., 3.]
A = sparse(Is, Js, Vs, 3, 3)
```

with immediate **conversion** to CSC.

- Construction using the `SparseMatrixCSC` struct:

```
A = SparseMatrixCSC(3, 3,
                    [1, 2, 3, 4],
                    [1, 3, 2],
                    [1., 2., 3.])
```

Sparse matrix data structures in Julia, cont'd

- **Random** constructor for **sparse matrix** of density d with iid non-zero elements **distributed uniformly** in $[0, 1]$, `sprand(m, n, d)`.
- **Random** constructor for **sparse matrix** of density d with iid non-zero elements **distributed according to the standard normal distribution**, `sprandn(m, n, d)`.

► More formats supported through other packages:

- `SparseMatricesCSR.jl`: Julia native implementation of CSR formats.
- `MKLSparse.jl`: Julia wrappers to Intel oneAPI MKL sparse interface.
- `SuiteSparse.jl`: Julia wrappers to SuiteSparse library.

⋮

⋮

Sparse BLAS

Section 9.1 in Darve & Wootters (2021)

Sparse basic linear algebra subprograms

- ▶ Sparse BLAS is the extension of BLAS for **sparse matrices and vectors**.
- ▶ **Level 1 (vector operations):**

Intel oneAPI MKL functions use a compressed sparse vector format:

<https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html>

- Sparse $y \leftarrow \alpha x + y$ (SpAXPY): `mkl_sparse_x_axpy`

- ▶ **Level 2-3 functions have format-specific implementations.**

Intel oneAPI MKL offers access through an Inspector-Executor API:

<https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html>

- **Level 2 (matrix-vector operations):**
 - Sparse matrix-vector product (SpMV): `mkl_sparse_x_mv`
- **Level 3 (matrix-matrix operations):**
 - Sparse matrix-(dense) matrix product (SpMM): `mkl_sparse_x_mm`
 - Sparse matrix-(sparse) matrix product (SpGEMM): `mkl_sparse_spmm`

Sparse matrices and graphs

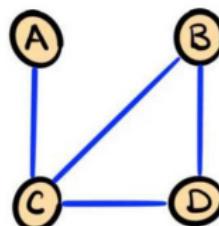
Section 9.2 in Darve & Wootters (2021)

A few definitions

- Basics of graph theory are essential to sparse matrix computation.

Definition (Graph)

- An **undirected graph** is a pair $G = (V, E)$ formed by a non-empty finite set V of **vertices** and a set $E \subseteq V \times V$ of **unordered pairs of vertices** referred to as **edges**.
- A **directed graph** $G = (V, E)$ is formed by a set E of **ordered edges**.



An undirected graph with vertices $V = \{A, B, C, D\}$ and edges $E = \{(A, C), (C, B), (C, D), (B, D)\}$.



A directed graph with vertices $V = \{a, b, c, d\}$ and edges $E = \{(a, c), (b, b), (b, d), (c, d), (d, b)\}$.

A few definitions, cont'd

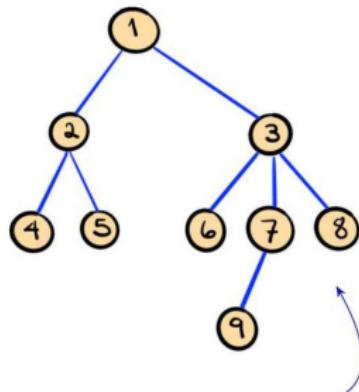
- ▶ A **path** from a vertex u to another vertex v is a **sequence of edges** $(u_0, u_1), \dots, (u_{t-1}, u_t)$ such that $u_0 = u$ and $u_t = v$.
- ▶ A graph is **connected** if there is a **path from any vertex u to any vertex v** .
- ▶ A **tree** is a **connected graph without cycles**, i.e., with no path from a vertex to itself.

A tree has a **root**, i.e., a **designated vertex** represented **at the top** of the tree.

- ▶ If a tree has an edge (u, v) , and u is **closer to the root r than v is**, then we say that v is a **parent** and u is a **child**.

Each vertex in a tree has a unique parent.

- ▶ A **leaf** is a **vertex in a tree with no children**.
- ▶ Family logic applies to define **descendants** and **ancestors**.

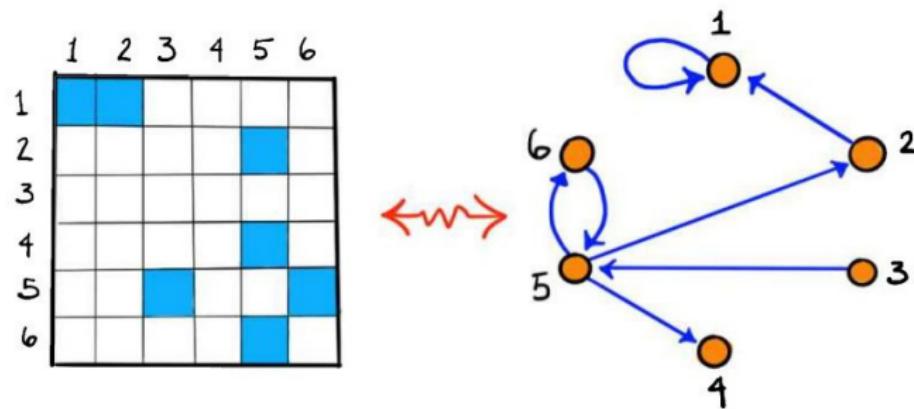


A tree. Vertex 1 is the root, and vertices 4, 5, 6, 9, 8 are leaves. Vertex 8 is 3's child, and 3 is 8's parent. Vertex 9 is 3's descendant, and 3 is 9's ancestor.

Graph representation of sparsity patterns

- ▶ The **sparsity pattern** of a square matrix $A \in \mathbb{F}^{n \times n}$ can be represented as a **directed graph** with n vertices.
- ▶ In Darve and Wootters (2021), the convention is that a **directed edge** (i, j) from vertex j to vertex i exists if and only if $a_{ij} \neq 0$.

For example:



Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

- ▶ The sparsity pattern of **symmetric matrices** can be represented by **undirected graphs**.