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Solving sparse triangular linear systems
Section 9.3 in Darve & Wotters (2021)
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When L is sparse and b is dense

» We want to solve Lx = b where L is a sparse lower-triangular matrix
with non-zero diagonal entries.

» Remember how to proceed when L is dense:
1.z =bi/ln
2. w9 = (ba — l2171) /22

i xz = (bi -0 lz‘j%‘) [lis

n. T, = (bn -y znjxj) Jlun

» When L is sparse, we simply need to skip the zero components [;; in
each summand.

» We will see in practice session that this can easily be implemented.

» The final form of the implementation depends on the sparse matrix
data structure used to store L.
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When both L and b are sparse

» When L and b are sparse, then the solution x may be sparse.
» Ideally, we would like to solve for z as follows:

1. fori=1,...,n:

2. ifax; #£0:

3. x;  bifli;

4. forj=1,...;i—1:

5. if £;; #0:

5. X x — L [

» But iterating over the non-zero components of x requires to know the
structure of z.

» For any non-zero x;, we have either or both
(a) bi 7é 0
(b) there is some j < ¢ such that ¢;; # 0 and z; # 0.
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When both L and b are sparse, cont'd;
» Let G = (V, E) be the graph associated with L, then we denote by X CV
the minimal set of vertices so that either or both (a) and (b) hold.
That is, X C V' is the minimal set such that:
b #0 = iGXandEij#OandjeX = 1€ X.

Definition (Reachability & Reach)

- A vertex i € V in a directed graph G = (V, E) is reachable from a vertex
j € V, if there is a directed path from j to i in G. That is, if there is a sequence
of edges (j,41), (i1,%2), ..., (ix—1,k), (i, ?) where all the edges are in E.

- The set of vertices i € V reachable from a vertex j € V is the reach of j.

Suppose that x; #0

.

1234956789

// \
V2 2 /—)CK
o Then every
vertex i reachaile
] from 3 may also
- ﬁ) . . have x; #0

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

> If j € X, then
every vertex in
the reach of j,
is also in X.

i R e T
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When both L and b are sparse, cont'd,

» Then, if we let B C V be the set of vertices i € V such that b; # 0, then
X is the set of vertices reachable from B.

» Consequently, the set X can be found by operating on the graph G=(V, E)
associated with L.
Namely, the set X can be found using a depth-first traversal (DFS, i.e.,
for depth-first search) from every vertex in B.

» Depth-first traversal starts from some node j, and explores as far as
possible along each branch in the graph before backtracking.

» We will see an implementation of depth-first traversal in the practice
session.

» Procedure to solve Lz = b where both L and b are sparse is as follows:

Linear solve of Lz = b where both L and b are sparse
1. Define the set B from the sparsity pattern of b.
2. Find the set X of non-zero & components using DFS on B.

3. Run modified version of the algorithm to solve Lz = b with a sparse L, but
compute z; only if i € X.
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Cholesky factorization
Section 9.4 in Darve & Wotters (2021)
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Up-looking Cholesky algorithm

» Now that we know how to solve sparse triangular systems, we can use this
to obtain a sparse Cholesky factorization.

» In particular, the up-looking Cholesky algorithm performs a Cholesky
factorization by doing a series of sparse triangular solves.

» Proceeding by construction, assume the (n — 1)-dimensional leading block
L' of the Cholesky factor L of A is already known, leading the following
structure of the LLT = A factorization:

)T |
L, _ x
xT [ b"

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

L/

First, we have [L',0(,,_1)x1] Lﬂ = b which simplifies to L'z = b.

x
Second, we have [z7 w] [ ] =a and w > 0 so that w = Va — z7z.
w
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Up-looking Cholesky algorithm, cont'd;
» This leads to the following algorithm:

Up-looking Cholesky algorithm

Given a sparse SPD matrix A € R™*" initialize L' := \/a1;.
Fork=2,....n:

!

ng a} where A’ is the
(k — 1)-dimensional leading block, b is (k — 1)-by-1 and a is a scalar.

- Let the leading k-by-k block of A be written as

- Solve for z € R¥=1 such that L'z = b where L’ and b are sparse.

- Compute w := va — Tz, and update

L' 0
l._
v=5 0l

Return L := L'

Consequently, the sparse Cholesky factor L of the sparse matrix A is
formed by performing n — 1 sparse triangular solves of sizes 1,...,n — 1.
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Up-looking Cholesky algorithm, cont'd,

» Consider a matrix A with the following non-zero pattern:

» Since the 2-by-2 leading block A’ of A is diagonal, so is the corresponding
2-by-2 Cholesky factor L’ such that L'L'" = A’

/
Let the vector B complete the 3-by-3 leading block [;} Z] of A.

b
Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L'z = b. The reach of node 1
in the araph
associated with L’ is
just 1 itself.

E H ) B © =
X =
&
S - @
L 0 A b
> =
The Cholesky factor L' : [mT w] of [bT a] has structure E

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Up-looking Cholesky algorithm, cont'ds

» Consider a matrix A with the following non-zero pattern:

/
» Let the vector B complete the 4-by-4 leading block [;} Z] of A.

b
Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L'z = b. The reach of node 1
in the araph
associated with L' is 1

; ® ..
NS

L' 0 A b
r_
The Cholesky factor L' := LUT w] of [bT a] has structure

\4

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Up-looking Cholesky algorithm, cont'dy

» Consider a matrix A with the following non-zero pattern:

!/
» Let the vector [| complete the decomposition [bT Z] of A.

b
Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L'z = b. The reach of nodes

1 and 2 in the araph
associated with L' is 1,
2,3,and 4 i
] = %‘ :_> X =
@
L X b
L' 0 A b
» The Cholesky factor L' := | 7 ] of [ T has structure
0w b* a

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Up-looking Cholesky algorithm, cont'ds
» The up-looking Cholesky algorithm yield a factor with the following
non-zero pattern:
©,

QP

Note that the sparsity of L resembles that of A, with additional fill-ins:

» While the up-looking algorithm is better than performing a dense Cholesky
factorization, it does require many DFS in graphs.
» We'll now try to do better than the up-looking algorithm.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Elimination tree

» The graph associated with the sparsity pattern of a Cholesky factor L
has a special property which allows to ignore many of its edges and
retain the same reach.

» Consider what happens when we ignore all the non-zero entries of L
below the first subdiagonal non-zero component. E.g.,

Removing these entries results in a sparsification of the associated
graph:

®
Ci/ g

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Elimination tree, cont'd

®
Ci/ g

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Two general properties are observed:

@ The reach of every vertex remains unchanged by sparsification.

@ Every vertex of the sparsified graph has at most one edge leading out of it.
l.e., if the graph is connected, then it is a directed tree.

Remarks:

e The sparsified graph is called an elimination tree.

o The elimination tree may be disconnected, in which case it is a forest, but
even then, it will be called an elimination tree.

o The elimination tree is an important data structure that can be used to
simplify all reach calculations in a sparse Cholesky factorization.
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Non-zero pattern of L
» Say we aim to compute the i-th line of the Cholesky factor L of an SPD A.
» We are equipped with L' := L[1:i—1,1:¢—1]:
[

s s _ 17T

is rix is ckogzsli.iéor\:]‘tke
L'=L[1:i—-1,1:i—1

[L:i-t1:i-1] ith row of A

The solution x will Be
L[i,1:i—1]", the next row of L

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
» \We saw the non-zero entries of L[i, 1 : i — 1] are the non-zero entries of
the solution z of the above system with right-hand side b := A[1 : i — 1,1].
» Remember from our sparse triangular solves, z; = ¢;; is non-zero either if
(a) bj = a;; # 0, or if (b) Ik < j so that both £;; # 0 and xj, = £;, # 0.
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Non-zero pattern of L, cont'd
» Therefore, the pattern of non-zero values of L is characterized as follows:

Graph of (possible) non-zero entries of L

Let j < i, then /;; is non-zero if

(a)ai; #0, or

(b) there is a column index k < j such that ¢;; and ¢;;, are non-zero.

We denote by G, the graph with fewest edges that respect (a) and (b).

That is, G, is the minimal graph such that a;; # 0 = (j,7) € G, and
(j’ k)) (7’7 k) € Gch => (.77 Z) S Gch-

v

» The graph G, is a superset of the non-zero pattern of the Cholesky factor
L of A.

It can be that (j,i) € G, but £;; numerically cancels out. However, if so,
a tiny perturbation of A with fixed sparsity is enough to make ¢;; # 0.

Therefore, the graph Gy, is best referred to as the graph of possible
non-zero entries of the Cholesky factor L.
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Definition of the elimination tree

» The elimination tree can be defined as follows:

Elimination tree

Let A be an SPD matrix, and G, be the graph representing the non-zero
entries of the Cholesky factor L of A.

The elimination tree is obtained as follows.

For each node 7 in Gy,:

- Let V; be the set of nodes j of G, for which there is an edge (7, j) € Gep, i.e.,

V; is the set of out-neighbors of i. Let p; = min V; be the smallest-indexed node
in V.

- Remove the edges (4, ) for all j € V; \ {p;} from G, i.e., remove all the the
edges leaving i except for (i, p;).

The elimination tree is what's left of G,.

Example: @ /@\
< 4

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Properties of the elimination tree

» Since for each vertex i in G, the elimination tree is formed by removing
all but one out-neighbors, each vertex is left with at most one single
out-neighbor, and the elimination tree is indeed a tree, or at least a forest.

» Consider the following example for a graph G, of non-zero entries of the

Cholesky factor L:
Gy = \ '\
®

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

As Gy, is, the reach of k is 7, 1.
If £ < j <1, the elimination tree is formed by removing the edge (k,1).
Then, the reach of k in the elimination tree is still j, 1.

Theorem (Conservation of reach)

For a given graph G, of non-zero entries of a Cholesky factor L of A, for
any 1 < i < n, the reach of the corresponding elimination tree is the same as
the reach of i in Gy,

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 /25



Computing the elimination tree from A

» Since the elimination tree has the same reach as GG, but is sparser than
Gp, it can be used to more efficiently identify the non-zero entries of the
Cholesky factor.

For that, we need to figure out how to efficiently compute the elimination
tree from the given sparsity pattern of A.

» The idea behind computing the elimination tree of A is to proceed one
vertex at a time, maintaining a forest which contains all the vertices added
so far. The elimination tree shall be obtained once all the vertices are added.

» Suppose we have a forest which has all the vertices 1,...,7 — 1 at the
correct place. To proceed with the i-th vertex, if a;; # 0 for some k < i,
then we'll want ¢ to be in the reach of k. In order to avoid potential
redundant edges, we should then connect 7 to whichever vertex j which is
at the leaf of the tree containing k.
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Computing the elimination tree from A, cont'd

» The pseudocode of the algorithm to build the elimination tree from the
sparsity pattern of A is given by
1. Initialize a forest F =0 :
2. Fori=1,...,n:
3. Add vertex i to F
4 For all k < ¢ such that a0 :
5. Find vertex j at the leaf of k's tree
6 Add the edge (j,7) to F

Taking the same sparse matrix A as earlier, the elimination tree is then
built as follows:

®© 00 @g @

A= © OXO
@ ®

®

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

We see that the same elimination tree is obtained as before.
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Summary
To compute a sparse Cholesky factor L of a sparse matrix A, we

© Build the elimination tree of A, at cost O(|A|), where |A] is the number of
non-zero entries in A.

@ Find the graph G, of possible non-zero entries of L using reaches of the
elimination tree.

© Perform the up-looking Cholesky factorization to build L.

Pseudocode of the up-looking Cholesky factorization to build row & of L:
1. Lk, 1: k] := Ak, 1: k]

2. For each j < k such that £;; # 0:

3. gy L/l

4. For each 7 > j such that /;; # 0 :

5. Cri < lri — Lij [ lrj
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Nested dissesction
Section 9.5 in Darve & Wotters (2021)
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Reducing fill-ins in L
» While the row and column permutations of a matrix do not really impact
the solution of a linear system (i.e., P, AP, - P'x = P.b), they can have a
significant impact on the sparsity pattern, i.e., the graph G, of the
Cholesky factor:

E E
A Ly
E E
Ay Ly
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
Even though only one row and one column are permuted between A; and
Ay, the difference between the numbers of fill-ins in Ly and Lo is very

significant.

» How should a matrix be ordered to reduce the number of fill-ins in
the Cholesky factor L?
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One step of nested dissection

> Nested dissection is a strategy for ordering a matrix A in a way that
closely minimizes the number of fill-ins in L.

» Nested dissection is a recursive method based on graph partitioning.

» Consider the symmetric matrix A with an associated graph G.
Let the vertices of G be decomposed in the disjoint union of V4, V5 and S,
so that there are no edges between vertices of V; and V5.
If G1 and Gs are the induced graph on V; and V5, respectively, then we
have

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

where S is referred to as a separator.
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One step of nested dissection, cont'd;

» A node separator set S partitions the graph G of A into three disjoint
sets of vertices V7, V5 and S such that none of the nodes of V; are
connected to any of the nodes of V5, and vice-versa.

» The removal of S from the graph G leads to two subgraphs G1 and Go,
disconnected from each other.

» Consider what happens when we order the vertices as

(vertices of Gy, vertices of Gg,.5)

we obtain the matrix G G S

A
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

which is structurally close to the A; matrix with small number of fill-ins.
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One step of nested dissection, cont'd,
G, Gy S

A
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

As a result of the block diagonal structure due to G; and G5, the Cholesky
factor L of the reordered matrix will preserve a block diagonal structure.

If the blue blocks are dense, the sparsity of L is exactly given by that of A.
In general, each block of L will be sparse. From here:

» Entries in S. For these entries, we give up and accept whatever fill-ins
happen. Thus we want S to be as small as possible.

» Entries in G; and G5. For these entries, we will recurse on the blocks
G1 x G1 and G3 x Gy, i.e., find small separators S1 and S for G and
G4, respectively, and so on.
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Nested dissection

» The basic idea of nested dissection is to recursively apply the procedure
we just described, and yield a nested dissection ordering of the graph

nodes. Pseudocode for the nested dissection algorithm

function nested_dissection(G::Graph)
# returns a nested dissection ordering of the nodes of G
if size(G) < threshold
# This is the base case of the recursion
return nodes(G) # nodes of graph G
end
[G1, G2, S] = find_separator_set(G)
# G1 and G2 are two disconnected subgraphs
# S is the node separator set
P1 = nested_dissection(G1)
P2 = nested_dissection(G2)
return [P1; P2; S]
end

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
» The description of find_separator_set is beyond the scope of this class.
A good separator set has as few nodes as possible, and it decomposes the
graph in roughly equally sized subgraphs.
Finding a good separator set is actually a NP-hard problem.
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Nested dissection, cont'd

» In the matrix, the recursive process of nested dissection looks like this:

Gl Gz S Gi1 Gz 81 G G225, S

Gi11—1

_~

G
G, Sy I

G,

S

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

As we can see, if good separators are chosen, the "down-and-right-arrow"
patterns shows up at all scales, and we can guarantee that more and more
entries of L will be zero.
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