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QR factorization

> A QR factorization decomposes a matrix as the product of an
orthogonal matrix Q with an upper-triangular matrix R.

> Recall that a matrix Q is orthogonal if Q7Q = I.
» If a matrix is orthogonal, then ||Qz||2 = ||z||2 for all z, i.e., @ doesn't
change the length of vectors.

The operations that do not change the length of vectors are rotations and
reflections, so an orthogonal matrix can be thought of as a map that
combines a rotation with a reflection.

R otation Reflection
7~ N

P P

Multiplication By an orthoaonal matrix

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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QR factorization, cont'd

QR factorization

- Let A be a real m x n matrix with m > n. Then, there is an orthogonal
matrix @@ and an upper-triangular matrix R such that A = QR. This is
called the QR factorization.

- When A is complex, there is still a factorization A = QR, but @ is unitary,

e, QHQ =1. )

For the rest this lecture, we assume A is real, but QR factorizations do exist

for complex matrices.

» There are different forms of QR factorizations, depending on the shapeof A:
A

Q R
- S
A Q R Q R

L E:.\\ 1L l:A = .

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Applications of the QR factorization
The QR factorization has several applications in numerical linear algebra:

@ It can be used to solve least-squares problems, i.e., problems of the form
arg min, || Az — bl|2 where A is tall and skiny.

@ It is used as part of eigen- and singular value algorithms for small dense
matrices.

© It is also used in iterative methods to solve linear systems and compute
eigenvalues, such as in Krylov methods.
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QR factorization and least-squares problems

To see why the QR factorization can be useful, let's look briefly at the
least-squares problem:

» Let A € R™*" with m > n. We want to find z such that Az is closest to
b in Euclidean distance. That is

¥ = argmin ||Az — b||2.
x

To do this, we use the QR factorization, with a square Q, i.e., case III
from slide #2:

|4z = bll2 = |Q" (Az = b)||2 = |QT(QRz — b)|l2 = || Rz — Q" ]2
where we used the fact that for any vector y, ||QTy|2 = ||y||2 because
1QTI3 = (Q"y)"(Q"y) =" QQTy = y" QT Q) y =y Ty =y"y = |lyll3.

As it turns out, it is easier to find 2 that minimizes ||Rz — Q7'b||2 than it
is to minimize ||Ax — bl|2.
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Householder reflections
Section 4.1 in Darve & Wootters (2021)
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Householder reflections

» Householder reflections are one of the most reliable methods to compute a
QR factorization with a square Q, i.e., cases I and III.

» That is, we ask the question, does there exists a matrix Q s.t. Q7 A = R.

» Our goal is thus to create zero entries below the diagonal. Starting by the

first column, we have:
£ Let's focus on this column

Bl

» We need to apply an orthogonal transformation Q7 to transform the first
column of A into a vector in the direction of e;.

Let's write A = [a1]...|an]. Then, since QT does not change the norm of
a1, we should have:

T
Q; a; %|lay |l e
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Householder reflections, cont'd;
» A logical choice for Q7 would be a rotation that maps a; parallel to e;.

However, rotations in high dimensions are not so easy to set up.
Thus, we'll instead choose QT to be a reflection that maps a; parallel to

€1:
.

/
4 [la; |l eq

/

©

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics

Now that we have an idea of what the reflection should be doing, we need

to figure out its mathematical formula.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

6/44



Householder reflections, cont'ds

> Let us consider reflections in general. A reflection is defined by a vector:

v

Reflect over the hyperplane orthoconal to v

Given v, we can reason geometrically about what a reflection is:

x X
v \ /. Teraet v //
// /
i AN
// /
// / i
H _vx >
Say we want to reflect .
x with respect 10 the  Consider the projection Then the tarcet Is
hyperplane orthogonal yofxontov x—2y= (1 -5 )x
tov

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Householder reflections, cont'ds

Reflection
Let P be the matrix which represents a reflection over the hyperplane

orthogonal to some vector v. Then P is given by

P=1-Buw’ where 8 = ——.
vTv

» Now we need to pick v to arrive at a Householder reflection, i.e., to get a
transformation from x to ||z||2e;.
The following geometric argument shows that v = = — ||z||2e1 will work

What is this line? This point is x + ||x||e;.

X
5% \,*/ ey And this point,
7 \ x—|x|lep, is
/ ; orthogonal to it.
A lxlle L4 xlle

/

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Householder reflections, cont'ds
Let v = & — ||z||2€1, then we see that

U'UT
_ _ T
_ (1_2(95 Hﬂ?llzel);x |2]2€1) )x
(z — ||lzll2e1)T (x — ||z||2e1)

_ (I e lzlen) (@ - HxH2e1)T> )

2([lll3 = 2l|z]l221)

(z — llzllzen) (3 — llll221)
(llzl3 = 2ll=[l221)

=z — (z — |[z[l2e1)

=xr —

= ||lz|2e1

so that, indeed, a reflection over the hyperplane orthogonaltov = = — ||z||2e1,
is a Householder reflection of z.
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lterating Householder reflections

» Now that we know how to operate a first Householder reflection from a
to ||a1||2e1, we can apply a series of Householder transformations to
progressively reduce A to a upper-triangular form.

We proceed by first zeroing entries in the first column, then in the second
column, and so on.

In the end, for A € R™*"™ with m > n, we have
T T
me1---Q1A=R,

which is equivalent to

A=Q1...QnaR=QR

where Q = Q1...Qn—1 € R™*™ and R has zeros in the m — n rows if
m > n.

» In practice, when reducing A to R, the matrix P is never formed explicitly,
instead we compute PA = A — Bu(vl A) which carries a cost O(2mn),
instead of O(m?n) when P is assembled and applied, i.e., as P is dense.
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Givens rotations
Section 4.2 in Darve & Wootters (2021)
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Givens rotations

» When the matrix A is upper Hessenberg, i.e., where a;; = 0 for all
i > j+ 1, most of the subdiagonal components are already zero, and using
Householder transformations in this situation is a bit of an overkill:

A

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
» On every column of A, only one entry needs to be zeroed, so that 2D
rotations, which are easy to set up, can be deployed for the job:

2D rotation

1 -—
1
1
1
1

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Givens rotations, cont'd;

» Zeroing a single subdiagonal entry can be reduced to considering a 2D
vector u = (u1,uz) and finding a rotation G” such that the vector u

becomes aligned with eq:
e
m (Uz)

u
\ Muttiplication By GT
(&)
®,

GTu = ||ullye

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
With some algebra, we find:
Givens rotation
A Givens rotation which rotates u = (u1,u2)” to ||ul|2e1 is the 2 x 2 matrix
defined by ar [c _5] uy us
9

c= §=— .
s ¢ [P ]2
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Givens rotations, cont'ds
» For an upper Hessenberg matrix A of size m x n, we can compute its QR
factorization using a sequence of Givens rotations.

» The algorithm is as follows:
1. Foreachcolumnj=1,...,n—1:
2. Construct a Givens rotation matrix G*' that zeros a1 ;

3. Apply GT to rows j and j + 1 of A

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13 /44



CholeskyQR
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CholeskyQR factorization
» The CholeskyQR algorithm builds an economic factorization (i.e., case
[l) of A € R™™ typically for n < m.

> It proceeds by first obtaining the R factor through a Cholesky factorization
of the Gram matrix AT A, then retrieving the Q factor by forward
substitution:
The algorithm is as follows:
1. X := ATA // BLAS 3
2. Find the upper triangular R s.t. RTR = X // Cholesky factorization
3. Q:= AR™! // triangular solves

» CholeskyQR reaches higher arithmetic intensity and requires less
synchronizations than Householder QR:

— favored for distributed implementations.
» But, unlike Householder QR, CholeskyQR suffers from instability, with

LOO(Q) € O(u - k(A)).
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Reorthogonalized variants

» The lack of stability of an orthogonlization procedure can be partly
remedied by repetition. The repitition of CholeskyQR is referred to as
CholeskyQR2:

1. (@1, R1) = CholeskyQR(A)

2. (@, Rz) <= CholeskyQR(Q1)

3. R:=RoRy

Repeating CholeskyQR significantly improves orthogonality, yielding
LOO(Q) € O(u) under the condition that x(A) € O(u~1/?).

» Another way to improve the stability of CholeskyQR is to shift the Gram
matrix, decreasing its condition number, thus improving the stability of the
Cholesky factorization. The resulting Shifted CholeskyQR is given by:
1. X :=ATA
2. s:=11(mn +n(n+ 1))u|A||2 // calculate shift
3. X :=X +sl, // shift Gram matrix
4. Find the upper triangular R s.t. RTR = X // Cholesky factorization
5. Q := AR™1 // triangular solves
which ensures x(Q) € O(u~1/?) as long as k(A) € O(u™1).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 /44



Reorthogonalized variants, cont'd
» Therefore, Shifted CholeskyQR can be used as a preconditioner to
CholeskyQR2. This procedure is referred to as Shifted CholeskyQR3:
1. (Q1, Ry) < Shifted CholeskyQR(A)
2. (@, Ry) <+ CholeskyQR2(Q1)
3. R:= R2R1
which yields LOO(Q) € O(u) as long as k(A) € O(u™t).

Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., & Fukaya, T. (2015). Roundoff error analysis of the CholeskyQR2
algorithm. Electron. Trans. Numer. Anal, 44(01), 306-326.

Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y., & Yanagisawa, Y. (2020). Shifted Cholesky QR for
computing the QR factorization of ill-conditioned matrices. SIAM Journal on Scientific Computing, 42(1), A477-A503.
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Tall-and-skinny QR
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Tall-and-skinny QR (TSQR)

» Householder QR is unconditionally stable but memory-bound, and
CholeskyQR variants, although they achieve high arithmetic intensity, offer
limited stability.

» Tall-and-skinny (TSQR) algorithms offer both unconditional stability and
high arithmetic intensity.

TSQR is particularly relevant when only the upper triangular factor R is
needed.

» The key idea of TSQR is to partition the matrix A into blocks and
compute QR factorizations hierarchically.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 17 / 44



Tall-and-skinny QR (TSQR), cont'd;
» For a matrix A € R™*™ with m > n, we partition A into p blocks:
Ay
A
A= |7
Ap
where each A; € R(m/p)xn
» We then compute the QR factorization of each block independently:
AZ:QZR’H Z:1)7p

» This gives us:

Q1R Q1 Ry
A Q2.RQ _ Q2 | R.2
QpRy Qp| [Byp

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 18 /44



Tall-and-skinny QR (TSQR), cont'd,

» Next, we need to compute the QR factorization of the stacked R matrices:

Ry
Ry -
.| = QR
Ry
where Q € R®P)*" and R € R™*™,
» The final QR factorization is then:
1
Q - -
A= 2 OR = QR
Q@p

where @ = diag(Q1,Q2,...,Qp)Q.
» Key advantage: Each block can be processed independently, making
TSQR highly parallelizable.
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Tall-and-skinny QR (TSQR), cont'ds
» The TSQR algorithm is as follows:
1. Partition A into p blocks: A = [AT, AT, ... AT]T
2. Parallelizable step: Compute (Q;, R;) = QR(4;) fori=1,...,p
3. Stack the R factors: A = [RT, RY,... ,RZ]T
4. Compute (Q, R) = QR(A)
5. If only R is needed, return R. Otherwise, Q = diag(Q1, - . .7Qp)C~2

» The loss of orthogonality of TSQR is such that LOO(Q) € O(u)
irrespective of A, i.e., TSQR is unconditionally stable.

» TSQR combines the best of both worlds: numerical stability of
Householder QR with high arithmetic intensity and parallelizability.

—> TSQR favored for high-performance implementations.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20/ 44



Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021)
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Gram-Schmidt procedures

» Householder reflections and Givens rotations produce a square matrix
Q € R™ ™ even when A € R™*"™ with m > n, i.e., case III.

On the other hand, Gram-Schmidt procedures will produce a
rectangular, tall-and-skinny matrix Q) € R™*" j.e., like in case II.

» Another peculiarity of Gram-Schmidt procedures is that they work
column-by-column, i.e., to compute ¢; in Q = [q1, - .., ¢n], you only need
access to a; from A =lay,...,ay] and q1, ..., qr—1.

This feature of the Gram-Schmidt procedures is particularly useful in
Krylov methods where A is not available all at once, and the new column
a; to orthogonalize is only available after an performing a full iteration of
computations.

» The first k columns q1, ..., q; formed by Gram-Schmidt procedure in Q
are an orthonormal basis of the subspace spanned by as, ..., ax.
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Gram-Schmidt procedures, cont'd;

» Visualizing the column a, = QR. i, and the fact that R. ; has k non-zero
entries followed by m — k zeros on the subdiagonal, we can write
ar = Q. 1.6 Rk ke

Consider just this part of the equation

el

aka., ai lies in
l the span of the

first k columns

= of Q, and the
kth column of R

Gives the
coefficients.
A a ££

Darve, E., & Wootters, M. (2021). Numerlcal linear algebra with Julia. Society for Industrial and Applied Mathematics
That is, ag is formed by linear combination of ¢1, ..., ¢:

ap = rigq1 + -+ TekqQk-

» Thus, instead of searching for the matrix Q that makes Q7 A upper

triangular, we are rather going to search for the upper triangular matrix R
such that every ay is given by linear combination of ¢, ..., qx.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE
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Gram-Schmidt procedures, cont'd,

> First, since we have a; = r11q1, and ¢; has unit norm, we set 711 = [|a]|2
and ¢1 = a1 /ri1.

» Then, we continue iteratively, i.e., as = r12¢q1 + 722¢2 so that ¢ is a unit
vector in span{qi, as} = spanf{ai, as}, orthogonal to ¢:

We already know q; = a;/ry; g, is 8 unit vector
| in span{q;,a,} which
is orthogonal to
q,. That determines
it, up to a sian

This is the span of et

{q1, a3}, which is the
samwe as the span of

{a1, a5} Now ry; and ry, are whatever they
need 10 Be t0 make this ceometry
work out!

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Then r15 and r9y are found to close the system.

Numerical Linear Algebra for CS and IE 23 /44
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Classical Gram-Schmidt (CGS) procedure

» More formally, for each 1 < k < n, we write

k k-1
ag = Zriqu' = Tkkqk + Z Tikdi
i=1 i=1

Assuming we already know ¢; and r;; for all j < k and i < j, we can then
use this formula to find expressions for the 7;,'s and ¢;..

First, multiplying by ¢! and invoking the orthonormality of the basis given
by q1,. ., qr, we get
k

T T T .
q; ak:E TikG; @G = Tik = Tik = q; ay for i < k.
i=1

Next, to find 7, we have gpri, = ap — Zf;ll r1q; Where g has unit
norm so that

Tkk =

k—1
ag — E Tikqi
=1 2

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 24 /44




Classical Gram-Schmidt (CGS) procedure, cont'dy

Note that 7 could also be chosen to be negative. However, it is standard
to let R have positive components on the diagonal.

Finally, we have

1 k—1
4k = ——— (ak - Zﬁ'k%’) .

"kk i=1

This procedure is referred to as the classical Gram-Schmidt algorithm.
We see indeed that, in order to compute g, you need access to a; and
q1,-- -5 4qk—1-

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /44



Classical Gram-Schmidt (CGS) procedure, cont'd;

When we aet the kth column of A:

have already Been orthozonalized. STEP |: Set the kth column of R

( QU 5\ E"- This matrix has

rows that are
ax q1---» Qk—1-

STEP 2: Update a;
This matrix projects
a a; onto the space
< ||- orthogonal to
n I H \‘I I “

STEP 3: Renormalize a;
and set ry; appropriately.

Now we've turned q; into q; L qq,...,q_1! Move on to the next column

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Classical Gram-Schmidt (CGS) procedure, cont'ds
» So the CGS algorithm is implemented as follows:
Lo = flaallz ¢ i=aa/ri
2. Foreachk=2,...,n:
3. Run_1k = QT yar // BLAS 2
gk = ar — Q. 1:k—1Ri:k—1,% // BLAS 2
Tek = llakll2; ax = qr /i

o

so that CGS relies on two BLAS 2 calls per iteration.
Similarly, we can write

—_

T11 = ||a1||2; q1 = a1/7“11

2. Foreachk=2,...,n:

3. qx =1k 1a;

4 ek = llakllzs gk = ae/Tri

where IT; 1 := I, — Q.14-1Q7,.._, is an orthogonal projector onto the
subspace 1range(Q:71;;.c_1)L so, indeed, g, is made orthogonal to the
previously formed vectors q1, ..., qr_1.

27 /44



Instability of CGS

» CGS is known to not being very stable.

1 1 1
» For example, consider the matrix A = e 00 )
0 € O
0 0 ¢
If we assume 2 is smaller than the unit roundoff u, then the Q matrix
1 0 0
generated by CGS is Q = (5) _11/\\[f _1(/)\/5 .
0 0 1/V2
Then we see that ¢o and g3 are far from being orthogonal as we have

gz =1/2.

» Numerical stability is measured with respect to the loss of orthogonality,
LOO, defined by LOO(Q) := ||I,, — QT Q|2.

» With CGS, the LOO depends on A4, i.e., LOO € O(u - k"~ 1(A4)),
irrespective of x(A), although this bound is not sharp.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 28 /44



Re-orthogonalization, CGS2

» An alternative is to orthogonalize twice by CGS, leading to CGS2:

L org = laill2;s ¢1 := a1 /ri L 1= |laill2; ¢1 := a1/
2. Foreachk=2,...,n: 2. Foreachk=2,...,n:
3. qr =g _1ak 3. Rl;kfl,k = Q?:l:k—lak

4. qp =Tk _1qk 4
5. ik = |larll2s qr = qr /TR 5.
6
7.

where Iy := I, — Q:,l:kle:j:I:k—l'

k= ar — Q. 1h—1Rip—1k
Str—1 = QL 1an

ar = qr — Q. 1:k—151:6—1
ek = |akll2; ar = ar/rrk

» The loss of orthogonality becomes LOO(Q) € O(u) under the assumption

that k(A4) € O(u™1).

» However, CGS2 requires 4mn? FLOPs instead of 2mn? for CGS.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20 /44



Modified Gram-Schmidt, MGS

> Another alternative to CGS, referred to as modified Gram-Schmidt (MGS),
is obtained by letting ITj,_1 := (I, — quk—quk—l) O - q;’lqa) in

L7 = larll2; 1 == a1/r1a

2. Foreachk=2,...,n:

3. qr =1 104

5. ik = |lakll2r ak = ar /TR

Assuming perfect arithmetic, this is equivalent to CGS, but it relies on
BLAS 1 instead BLAS 2 operations:

L= |laill2i @1 == a1 /1

2. Foreachk=2,...,n:

qk ‘= g

Foreach/=1,...,k—1:
Tek = qlqr // BLAS 1
Q= qr —Texqe // BLAS 1

Tek = [qrll2; k= Qr/TER

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30/44
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Modified Gram-Schmidt, MGS, cont'd

» The loss of orthogonality of MGS is LOO(Q) € O(u - k(A)), irrespective
of k(A), so that it is more stable than CGS.

1 1 1
. . . e 00 9
» Considering once again the matrix A = 0 & 0 where % < u,
0 0 ¢
1 0 0
. e =12 —1/V6
MGS yields a @ matrix A = 0 12 —1/v6|
0 0 V33

Contrarily to CGS, we see that g2 and ¢3 are exactly orthogonal, i.e.,
q3'q3 = 0, and ¢ is nearly orthogonal to g2 and g3, with |¢f ¢o| = £/+/2
and |q{ g3| = ¢/V6.

» In practice, MGS and CGS2 are used instead of CGS.

» MGS is often preferred by default, but CGS2 is more stable and reaches

higher arithmetic intensity.
31/44



Least-squares problems
Section 4.4 in Darve & Wootters (2021)
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Geometry of least-squares
One of the applications of the QR decomposition is the solving of

least-squares problems arg min,, || Az — bl|o:
Since A is tall and skinny, there are more

equations than unknowns! So there may
Nnot Be some x so that Ax =b. The

least-squares proelem is to $ind the x so
that Ax is closest 10 b, in 2-norm.

| 2
A_ib
|

with a tall-and-skinny matrix A € R™*" and a vector b € R".
» To minimize the 2-norm from a point b to a subspace { Az, x € R"}, we

can just do an orthogonal projection:

i+

*b
The point Ax which is
l [EEN D' Ax closest to b in 2-norm
is the orthoconal
projection of b
4 s onto the sugspace

{Ax : x eR"}

X o

X — Ax
R R™ {Ax | x € R"}

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Method of normal equations

» As per property of orthogonal projections, the z that minimizes || Az — bl|2
has an error e := Az — b which is orthogonal to the range of A. This can
be written as

AT(Az —b) =0. (1)

Assuming A is full-rank, this equation can be used to solve for = by a
method called normal equations.

Eq. (1) may also be derived from calculus, namely, the optimal = which
minimizes the cost function

f(x) = || Az — b]|3 = (Az — b)T(Az — b) = 2T AT Az — 227 ATH + bTd
is obtained for V f(x) = 0 where
Vf(z) =2AT Az — 2AT,

which equivalently yields Eq. (1).
33/44



Method of normal equations, cont'd

» Assuming A is full-rank, AT A is SPD so that we may compute its
Cholesky factorization and solve for x in AT Az = ATb.

Normal equations

Finding the solution x to the least-suqares problem arg min || Az — b||2 by
solving the system AT Az = ATb is called the method of normal equations.

» Since the condition number of AT A is the square of that of A, the method
of normal equations can run into issues when A is poorly conditioned.

» For cases where A is poorly conditioned, the QR factorization can be used
to yield a more accurate computation of the solution z to the least-squares

problem.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 34 /44



QR factorization for least-squares problems
» The origin of the method of normal equations stems from saying that the
error Ax — b is orthogonal to the range of A.

But if we know a QR factorization A = QR where Q € R™*™, then the
range of A is the same as the range of Q.

The orthogonality condition can then be re-stated as
QT (Azx —b) =0. (2)

Since @ is orthogonal, it is necessarily well-conditioned, and the
conditioning problem of the method of normal equations can be avoided.

Since A = QR, due to the orthogonality of @, we have Q7 A = R so that
Eq. (2) becomes

Rz =Q"b

where R is non-singular as long as A is non-singular, so that there exists a
unique solution z.
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Case of rank-deficient A

» If A is rank-deficient, the null space of A is non-trivial. Then, for some x
that minimizes ||Ax — b||2, there are infinitely many dz € null(A) such
that A(x 4 dx) = Ax. Hence, the solution to the least-squares problem is
not unique.

» In case of non-uniqueness of solution, one can search for the unique xg
which minimizes both ||Axz — b||2 and ||z]|2:

b
X
\ 0 x]
AXO :AXI
p
X — Ax
o
N(A) R(A)
R" R™

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
We can see the zy we are after is orthogonal to the null space of A, while

any other solution z7 is of the form zy + dz.
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SVD method for solving least-squares with rank-deficient A

> Let A € R™*" be of rank 7 < n < m have an SVD given by A = UXVT
with U € R™*™ V€ R™™™ and ¥ € R™*"™ where X has zeros from row

r+1tom.
Then we can ignore the columns of U and V' that correspond to zeros in X

to create the thin SVD A = USVT:
VT
U

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

z
» Now, Az = 0 if and only if VT2 =0, which means that the null space of
A'is the same as that of V7T, i.e., null(A4) = null(V7T).
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SVD method for solving least-squares with rank-deficient A

» We know that any solution z to the least-squares problem satisfies

AT Az = ATh
OUSVHTUSVT e = (USVTTh
VETsvTe = vsTuTh

SV e =0T
where 7 < n so that ©V7 is not full-column-rank and this equation admits
infinitely many solutions.
» However, we can find one solution as follows.

First, let's solve the system Sw = UTb for w € R”. This gives

al'b
W; = —=<
Oig
where U = [tiy, ..., %] and ¥ = diag(d11,. . .,5m).
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SVD method for solving least-squares with rank-deficient A

Then, since w = S~1UTb, we have
SVIWw) =svIvsoTe =0"b

so that zg := Vw is solution of if/%o = UTb and thus, as explained
before, it is also solution of the least-squares problem.

Note that x( := Vw is the solution with smallest norm.

To see this, we need to show xy L null(A). First, let
nll(V7) = {y e R", VTy =0}
and consider that for each y € null(V7), we have
vy = (Vo) y=wVTy=0

so that zo L null(VT).
But since null(V7) = null(4), we have that z L null(A).
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LSQR
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Iterative solve of normal equations

» We saw that the least-squares solution z, of mingcgn [|Azx — b||2 for
A € R™*™ and b € R™ with m > n is such that AT Az, = ATb, ie., z, is
solution of the normal equation.

» For very large matrices, the cost of computing a QR factorization by
Householder QR, or even by CholeskyQR, can be prohibitive. When the
matrix is sparse, computing a QR factorization is generally an overkill.

» In future lectures, we will look into iterative methods to solve linear
systems of the form Bx = b with a square matrix B € R™*".

In particular, if A is full-rank, one can use the conjugate gradient algorithm
to solve AT Az, = b.

However, in practice, for cases where A is ill-conditioned, this approach
can suffer from significantly delayed convergence.

» LSQR is an algorithm proposed by Paige and Sanders (1982) which, in
case of exact arithmetic, reproduces the iterates of the conjugate gradient
algorithm applied to the normal equation but, in practice, is more reliable.

Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software (TOMS), 8(1), 43-71.
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Bidiagonalization

» Bidiagonalization is a procedure proposed by Golub and Kahan (1965)
which reduces any general matrix A € R"™*™ into lower bidiagonal form.
Let zg € R™ be an initial approximation of x, with residual rg := b — Axg.
Starting the bidiagonalization procedure with rg goes as follows:

T
Brur = ro, cquy = A"y

Bit1tit1 = Av; — oy,

. fori=1,2...
Qip1vip1 = A" uip1 — Bit1v;

where the scalars a; > 0 and 8; > 0 are chosen so that ||u;||2 = [Jvi]|2 = 1.
Let Uy := [ug, ... ug), Vi :=[v1,..., k],

(o] @1

1
B2 a2 Pz oz
By := ] ) and B, :=
' Bk ak

Br o
Br+1

Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society

for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2), 205-224.

Paige, C. C. (1974). Bidiagonalization of matrices and solution of linear equations. SIAM Journal on Numerical

Analysis, 11(1), 197-209.
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Bidiagonalization, cont'd

Then, we have

Uk+1(Bre1) =ro (e1 := Ipya[: 1])
AVk = Uk—&—lﬁk = UkBk + Bk+1uk+1e£ ((i’k = I;,{:. ]{,’D
ATU].H_l = Vkﬁ% + ak+1vk+1€£+1. <()/lc+l = I;‘u+1 {Z, k + 1})

In exact arithmetic, we have UEUk = I and VkTVk = I.

Clearly, UIZ;_IAV]C = Ek' U,?AVk = Bk, ap = uzAvk and ﬂk = ugAvk_l.
Moreover, the columns of Uy and V. are orthonormal bases of Krylov
subspaces of AAT and AT A, respectively, i.e.,

range(Uy) = K (AAT, uy) = span {ul, AA Ty, .., (AAT)kflul} ,
range(V;.) = Kr(AT A, v1) = span {vl, AT Avy, ..., (ATA)k_lvl} .

Bidiagonalization is an orthogonal equivalence transformation which plays
a key role in the iterative solve of singular value decompositions.

Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society
for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2), 205-224.

Paige, C. C. (1974). Bidiagonalization of matrices and solution of linear equations. SIAM Journal on Numerical
Analysis, 11(1), 197-209.
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LSQR

> LSQR defines a sequence of iterates x1, xo, ...,z which approximate the
solution z, of min,eprn ||b — Azl||2 by

T €29+ ’Ck(ATA, ’1)1).

That is, we search for x, = x¢ + Viyr such that

xp = argmin ||b— Az|s = yr =argmin||b — A(zo + Viy)|l2
x€zo+range(Vy) yERE
=argmin|ro — Ux1Byll2
yERK
=argmin|| Uy 1(B1re1) — Upr1Bryll2
yERkK

=arg min||1e; — Bryl|2.
yERF

In exact arithmetic, the LSQR iterates exhibit monotonic decrease of
residual norm, i.e., ||rg11ll2 < ||7%||2-
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LSQR, cont'd

» A basic implementation of the LSQR algorithm goes as follows:
1. To = b— A.’EO

2. ug =1, B1 = |lua]l2, w1 i=w /P
3. vy = ATy, ag := ||lvr]|2, v1 = v1 /g
4. fori=1,2,...
5. wiy1 = Avp — iy, Bivr = [Jwigall2, wivr = w1 /Biga
6. vig1:= ATUiJrl - 5i+1vi. Qi1 = ||Ui+1||2, Vi41 = Ui+1/ai+1
7. y; »=argmin||fier — Byl
yER?

When convergence is achieved, the iterate xz; := x¢ + V;y; is formed.

Convergence monitoring is reliant on the evaluation of ||r;|2 and ||AT7r;]|.
Note that we have

[7ill2 = b — A(wo + Viyi)ll2 = [|t;|l2 where &, := Bie1 — B,y;
IATrill2 = |ATUisatsllz = |(ViB] + ciravicieli)tille = [ Bt

so that convergence can be monitored without forming neither x; nor r;.
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