
Numerical Linear Algebra
for Computational Science and Information Engineering

Orthogonalization and Least-Squares Problems

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Outline I
1 QR factorization

Section 4 in Darve & Wootters (2021) 1

2 Householder reflections
Section 4.1 in Darve & Wootters (2021) 5

3 Givens rotations
Section 4.2 in Darve & Wootters (2021) 11

4 CholeskyQR 14

5 Tall-and-skinny QR 17

6 Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021) 21

7 Least-squares problems
Section 4.4 in Darve & Wootters (2021) 32

8 LSQR 40

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

QR factorization
Section 4 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

QR factorization
▶ A QR factorization decomposes a matrix as the product of an

orthogonal matrix Q with an upper-triangular matrix R.
▶ Recall that a matrix Q is orthogonal if QTQ = I.
▶ If a matrix is orthogonal, then ∥Qx∥2 = ∥x∥2 for all x, i.e., Q doesn’t

change the length of vectors.
The operations that do not change the length of vectors are rotations and
reflections, so an orthogonal matrix can be thought of as a map that
combines a rotation with a reflection.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 1 / 44

QR factorization, cont’d
QR factorization
- Let A be a real m× n matrix with m ≥ n. Then, there is an orthogonal

matrix Q and an upper-triangular matrix R such that A = QR. This is
called the QR factorization.

- When A is complex, there is still a factorization A = QR, but Q is unitary,
i.e., QHQ = I.

For the rest this lecture, we assume A is real, but QR factorizations do exist
for complex matrices.
▶ There are different forms of QR factorizations, depending on the shape ofA:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2 / 44

Applications of the QR factorization
The QR factorization has several applications in numerical linear algebra:
1 It can be used to solve least-squares problems, i.e., problems of the form

argminx ∥Ax− b∥2 where A is tall and skiny.
2 It is used as part of eigen- and singular value algorithms for small dense

matrices.
3 It is also used in iterative methods to solve linear systems and compute

eigenvalues, such as in Krylov methods.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 3 / 44

QR factorization and least-squares problems
To see why the QR factorization can be useful, let’s look briefly at the
least-squares problem:
▶ Let A ∈ Rm×n with m > n. We want to find x such that Ax is closest to

b in Euclidean distance. That is

x∗ = argmin
x
∥Ax− b∥2.

To do this, we use the QR factorization, with a square Q, i.e., case III
from slide #2:

∥Ax− b∥2 = ∥QT (Ax− b)∥2 = ∥QT (QRx− b)∥2 = ∥Rx−QT b∥2

where we used the fact that for any vector y, ∥QT y∥2 = ∥y∥2 because

∥QT y∥22 = (QT y)T (QT y) = yTQQT y = yT (QTQ)T y = yT IT y = yT y = ∥y∥22.

As it turns out, it is easier to find x that minimizes ∥Rx−QT b∥2 than it
is to minimize ∥Ax− b∥2.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 4 / 44

Householder reflections
Section 4.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Householder reflections
▶ Householder reflections are one of the most reliable methods to compute a

QR factorization with a square Q, i.e., cases I and III.
▶ That is, we ask the question, does there exists a matrix Q s.t. QTA = R.
▶ Our goal is thus to create zero entries below the diagonal. Starting by the

first column, we have:

▶ We need to apply an orthogonal transformation QT
1 to transform the first

column of A into a vector in the direction of e1.
Let’s write A = [a1| . . . |an]. Then, since QT

1 does not change the norm of
a1, we should have:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5 / 44

Householder reflections, cont’d1

▶ A logical choice for QT
1 would be a rotation that maps a1 parallel to e1.

However, rotations in high dimensions are not so easy to set up.
Thus, we’ll instead choose QT

1 to be a reflection that maps a1 parallel to
e1:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Now that we have an idea of what the reflection should be doing, we need
to figure out its mathematical formula.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 6 / 44

Householder reflections, cont’d2
▶ Let us consider reflections in general. A reflection is defined by a vector:

Given v, we can reason geometrically about what a reflection is:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 7 / 44

Householder reflections, cont’d3

Reflection
Let P be the matrix which represents a reflection over the hyperplane
orthogonal to some vector v. Then P is given by

P = I − βvvT where β =
2

vT v
.

▶ Now we need to pick v to arrive at a Householder reflection, i.e., to get a
transformation from x to ∥x∥2e1.
The following geometric argument shows that v = x− ∥x∥2e1 will work

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8 / 44

Householder reflections, cont’d3
Let v = x− ∥x∥2e1, then we see that

Px =

(
I − 2

vvT

vT v

)
x

=

(
I − 2

(x− ∥x∥2e1)(x− ∥x∥2e1)T

(x− ∥x∥2e1)T (x− ∥x∥2e1)

)
x

=

(
I − 2

(x− ∥x∥2e1)(x− ∥x∥2e1)T

2(∥x∥22 − 2∥x∥2x1)

)
x

=x− (x− ∥x∥2e1)(∥x∥22 − ∥x∥2x1)
(∥x∥22 − 2∥x∥2x1)

=x− (x− ∥x∥2e1)
= ∥x∥2e1

so that, indeed, a reflection over the hyperplane orthogonal to v = x− ∥x∥2e1,
is a Householder reflection of x.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 9 / 44

Iterating Householder reflections
▶ Now that we know how to operate a first Householder reflection from a1

to ∥a1∥2e1, we can apply a series of Householder transformations to
progressively reduce A to a upper-triangular form.
We proceed by first zeroing entries in the first column, then in the second
column, and so on.
In the end, for A ∈ Rm×n with m ≥ n, we have

QT
n−1 . . . Q

T
1 A = R,

which is equivalent to

A = Q1 . . . Qn−1R = QR

where Q = Q1 . . . Qn−1 ∈ Rm×m, and R has zeros in the m− n rows if
m > n.

▶ In practice, when reducing A to R, the matrix P is never formed explicitly,
instead we compute PA = A− βv(vTA) which carries a cost O(2mn),
instead of O(m2n) when P is assembled and applied, i.e., as P is dense.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 10 / 44

Givens rotations
Section 4.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Givens rotations
▶ When the matrix A is upper Hessenberg, i.e., where aij = 0 for all

i > j + 1, most of the subdiagonal components are already zero, and using
Householder transformations in this situation is a bit of an overkill:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ On every column of A, only one entry needs to be zeroed, so that 2D
rotations, which are easy to set up, can be deployed for the job:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 11 / 44

Givens rotations, cont’d1
▶ Zeroing a single subdiagonal entry can be reduced to considering a 2D

vector u = (u1, u2) and finding a rotation GT such that the vector u
becomes aligned with e1:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

With some algebra, we find:
Givens rotation
A Givens rotation which rotates u = (u1, u2)

T to ∥u∥2e1 is the 2 x 2 matrix
defined by

GT =

[
c −s
s c

]
, c =

u1
∥u∥2

, s = − u2
∥u∥2

.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 12 / 44

Givens rotations, cont’d2

▶ For an upper Hessenberg matrix A of size m× n, we can compute its QR
factorization using a sequence of Givens rotations.

▶ The algorithm is as follows:
1. For each column j = 1, . . . , n− 1 :
2. Construct a Givens rotation matrix GT that zeros aj+1,j

3. Apply GT to rows j and j + 1 of A

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 13 / 44

CholeskyQR

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

CholeskyQR factorization
▶ The CholeskyQR algorithm builds an economic factorization (i.e., case

III) of A ∈ Rm×n, typically for n≪ m.
▶ It proceeds by first obtaining the R factor through a Cholesky factorization

of the Gram matrix ATA, then retrieving the Q factor by forward
substitution:
The algorithm is as follows:
1. X := ATA // BLAS 3
2. Find the upper triangular R s.t. RTR = X // Cholesky factorization
3. Q := AR−1 // triangular solves

▶ CholeskyQR reaches higher arithmetic intensity and requires less
synchronizations than Householder QR:

=⇒ favored for distributed implementations.
▶ But, unlike Householder QR, CholeskyQR suffers from instability, with

LOO(Q) ∈ O(u · κ(A)).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 14 / 44

Reorthogonalized variants
▶ The lack of stability of an orthogonlization procedure can be partly

remedied by repetition. The repitition of CholeskyQR is referred to as
CholeskyQR2:
1. (Q1, R1)← [CholeskyQR(A)

2. (Q,R2)←[CholeskyQR(Q1)

3. R := R2R1

Repeating CholeskyQR significantly improves orthogonality, yielding
LOO(Q) ∈ O(u) under the condition that κ(A) ∈ O(u−1/2).

▶ Another way to improve the stability of CholeskyQR is to shift the Gram
matrix, decreasing its condition number, thus improving the stability of the
Cholesky factorization. The resulting Shifted CholeskyQR is given by:
1. X := ATA

2. s := 11(mn+ n(n+ 1))u∥A∥22 // calculate shift
3. X := X + sIn // shift Gram matrix
4. Find the upper triangular R s.t. RTR = X // Cholesky factorization
5. Q := AR−1 // triangular solves
which ensures κ(Q) ∈ O(u−1/2) as long as κ(A) ∈ O(u−1).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 / 44

Reorthogonalized variants, cont’d
▶ Therefore, Shifted CholeskyQR can be used as a preconditioner to

CholeskyQR2. This procedure is referred to as Shifted CholeskyQR3:
1. (Q1, R1)←[Shifted CholeskyQR(A)

2. (Q,R2)← [CholeskyQR2(Q1)

3. R := R2R1

which yields LOO(Q) ∈ O(u) as long as κ(A) ∈ O(u−1).

Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., & Fukaya, T. (2015). Roundoff error analysis of the CholeskyQR2
algorithm. Electron. Trans. Numer. Anal, 44(01), 306-326.

Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y., & Yanagisawa, Y. (2020). Shifted Cholesky QR for
computing the QR factorization of ill-conditioned matrices. SIAM Journal on Scientific Computing, 42(1), A477-A503.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 / 44

Tall-and-skinny QR

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Tall-and-skinny QR (TSQR)
▶ Householder QR is unconditionally stable but memory-bound, and

CholeskyQR variants, although they achieve high arithmetic intensity, offer
limited stability.

▶ Tall-and-skinny (TSQR) algorithms offer both unconditional stability and
high arithmetic intensity.
TSQR is particularly relevant when only the upper triangular factor R is
needed.

▶ The key idea of TSQR is to partition the matrix A into blocks and
compute QR factorizations hierarchically.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 17 / 44

Tall-and-skinny QR (TSQR), cont’d1
▶ For a matrix A ∈ Rm×n with m≫ n, we partition A into p blocks:

A =


A1

A2
...
Ap


where each Ai ∈ R(m/p)×n.

▶ We then compute the QR factorization of each block independently:

Ai = QiRi, i = 1, . . . , p.

▶ This gives us:

A =


Q1R1

Q2R2
...

QpRp

 =


Q1

Q2

. . .
Qp



R1

R2
...
Rp

 .

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 18 / 44

Tall-and-skinny QR (TSQR), cont’d2
▶ Next, we need to compute the QR factorization of the stacked R matrices:

R1

R2
...
Rp

 = Q̃R̃

where Q̃ ∈ R(pn)×n and R̃ ∈ Rn×n.
▶ The final QR factorization is then:

A =


Q1

Q2

. . .
Qp

 Q̃R̃ = QR̃

where Q = diag(Q1, Q2, . . . , Qp)Q̃.
▶ Key advantage: Each block can be processed independently, making

TSQR highly parallelizable.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 19 / 44

Tall-and-skinny QR (TSQR), cont’d3
▶ The TSQR algorithm is as follows:

1. Partition A into p blocks: A = [AT
1 , A

T
2 , . . . , A

T
p]

T

2. Parallelizable step: Compute (Qi, Ri) = QR(Ai) for i = 1, . . . , p

3. Stack the R factors: Ã = [RT
1 , R

T
2 , . . . , R

T
p]

T

4. Compute (Q̃, R̃) = QR(Ã)

5. If only R is needed, return R̃. Otherwise, Q = diag(Q1, . . . , Qp)Q̃

▶ The loss of orthogonality of TSQR is such that LOO(Q) ∈ O(u)
irrespective of A, i.e., TSQR is unconditionally stable.

▶ TSQR combines the best of both worlds: numerical stability of
Householder QR with high arithmetic intensity and parallelizability.

=⇒ TSQR favored for high-performance implementations.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 20 / 44

Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Gram-Schmidt procedures
▶ Householder reflections and Givens rotations produce a square matrix

Q ∈ Rm×m, even when A ∈ Rm×n with m > n, i.e., case III.
On the other hand, Gram-Schmidt procedures will produce a
rectangular, tall-and-skinny matrix Q ∈ Rm×n, i.e., like in case II.

▶ Another peculiarity of Gram-Schmidt procedures is that they work
column-by-column, i.e., to compute qi in Q = [q1, . . . , qn], you only need
access to ai from A = [a1, . . . , an] and q1, . . . , qk−1.
This feature of the Gram-Schmidt procedures is particularly useful in
Krylov methods where A is not available all at once, and the new column
ai to orthogonalize is only available after an performing a full iteration of
computations.

▶ The first k columns q1, . . . , qk formed by Gram-Schmidt procedure in Q
are an orthonormal basis of the subspace spanned by a1, . . . , ak.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21 / 44

Gram-Schmidt procedures, cont’d1
▶ Visualizing the column ak = QR:,k, and the fact that R:,k has k non-zero

entries followed by m− k zeros on the subdiagonal, we can write
ak = Q:,1:kR1:k,k:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

That is, ak is formed by linear combination of q1, . . . , qk:

ak = r1kq1 + · · ·+ rkkqk.

▶ Thus, instead of searching for the matrix Q that makes QTA upper
triangular, we are rather going to search for the upper triangular matrix R
such that every ak is given by linear combination of q1, . . . , qk.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 / 44

Gram-Schmidt procedures, cont’d2

▶ First, since we have a1 = r11q1, and q1 has unit norm, we set r11 = ∥a1∥2
and q1 = a1/r11.

▶ Then, we continue iteratively, i.e., a2 = r12q1 + r22q2 so that q2 is a unit
vector in span{q1, a2} = span{a1, a2}, orthogonal to q1:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

Then r12 and r22 are found to close the system.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 23 / 44

Classical Gram-Schmidt (CGS) procedure
▶ More formally, for each 1 ≤ k ≤ n, we write

ak =

k∑
i=1

rikqi = rkkqk +

k−1∑
i=1

rikqi

Assuming we already know qj and rij for all j < k and i ≤ j, we can then
use this formula to find expressions for the rik’s and qk.
First, multiplying by qTi and invoking the orthonormality of the basis given
by q1, . . . , qk, we get

qTi ak =
k∑

j=1

rjkq
T
i qj = rik =⇒ rik = qTi ak for i < k.

Next, to find rkk, we have qkrkk = ak −
∑k−1

i=1 rikqi where qk has unit
norm so that

rkk =

∥∥∥∥∥ak −
k−1∑
i=1

rikqi

∥∥∥∥∥
2

.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 24 / 44

Classical Gram-Schmidt (CGS) procedure, cont’d1

Note that rkk could also be chosen to be negative. However, it is standard
to let R have positive components on the diagonal.
Finally, we have

qk =
1

rkk

(
ak −

k−1∑
i=1

rikqi

)
.

This procedure is referred to as the classical Gram-Schmidt algorithm.
We see indeed that, in order to compute qk, you need access to ak and
q1, . . . , qk−1.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 / 44

Classical Gram-Schmidt (CGS) procedure, cont’d2

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 26 / 44

Classical Gram-Schmidt (CGS) procedure, cont’d3
▶ So the CGS algorithm is implemented as follows:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. R1:k−1,k := QT

:,1:k−1ak // BLAS 2
4. qk := ak −Q:,1:k−1R1:k−1,k // BLAS 2
5. rkk := ∥qk∥2; qk := qk/rkk

so that CGS relies on two BLAS 2 calls per iteration.
Similarly, we can write

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

4. rkk := ∥qk∥2; qk := qk/rkk

where Πk−1 := Im −Q:,1:k−1Q
T
:,1:k−1 is an orthogonal projector onto the

subspace range(Q:,1:k−1)
⊥ so, indeed, qk is made orthogonal to the

previously formed vectors q1, . . . , qk−1.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 27 / 44

Instability of CGS
▶ CGS is known to not being very stable.

▶ For example, consider the matrix A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

.

If we assume ε2 is smaller than the unit roundoff u, then the Q matrix

generated by CGS is Q =


1 0 0

ε −1/
√
2 −1/

√
2

0 1/
√
2 0

0 0 1/
√
2

.

Then we see that q2 and q3 are far from being orthogonal as we have
qT2 q3 = 1/2.

▶ Numerical stability is measured with respect to the loss of orthogonality,
LOO, defined by LOO(Q) := ∥Im −QTQ∥2.

▶ With CGS, the LOO depends on A, i.e., LOO ∈ O(u · κn−1(A)),
irrespective of κ(A), although this bound is not sharp.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 28 / 44

Re-orthogonalization, CGS2
▶ An alternative is to orthogonalize twice by CGS, leading to CGS2:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

4. qk := Πk−1qk

5. rkk := ∥qk∥2; qk := qk/rkk

where Πk−1 := Im −Q:,1:k−1Q
T
:,1:k−1.

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. R1:k−1,k := QT

:,1:k−1ak

4. qk := ak −Q:,1:k−1R1:k−1,k

5. S1:k−1 := QT
:,1:k−1qk

6. qk := qk −Q:,1:k−1S1:k−1

7. rkk := ∥qk∥2; qk := qk/rkk

▶ The loss of orthogonality becomes LOO(Q) ∈ O(u) under the assumption
that κ(A) ∈ O(u−1).

▶ However, CGS2 requires 4mn2 FLOPs instead of 2mn2 for CGS.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 29 / 44

Modified Gram-Schmidt, MGS
▶ Another alternative to CGS, referred to as modified Gram-Schmidt (MGS),

is obtained by letting Πk−1 := (Im − q:,k−1q
T
:,k−1) . . . (Im − q:,1q

T
:,1) in

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

5. rkk := ∥qk∥2; qk := qk/rkk

Assuming perfect arithmetic, this is equivalent to CGS, but it relies on
BLAS 1 instead BLAS 2 operations:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := ak

4. For each ℓ = 1, . . . , k − 1 :
3. rℓk := qTℓ qk // BLAS 1
4. qk := qk − rℓkqℓ // BLAS 1
5. rkk := ∥qk∥2; qk := qk/rkk

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 30 / 44

Modified Gram-Schmidt, MGS, cont’d
▶ The loss of orthogonality of MGS is LOO(Q) ∈ O(u · κ(A)), irrespective

of κ(A), so that it is more stable than CGS.

▶ Considering once again the matrix A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

 where ε2 < u,

MGS yields a Q matrix A =


1 0 0

ε −1/
√
2 −1/

√
6

0 1/
√
2 −1/

√
6

0 0
√
2/
√
3

.

Contrarily to CGS, we see that q2 and q3 are exactly orthogonal, i.e.,
qT2 q3 = 0, and q1 is nearly orthogonal to q2 and q3, with |qT1 q2| = ε/

√
2

and |qT1 q3| = ε/
√
6.

▶ In practice, MGS and CGS2 are used instead of CGS.
▶ MGS is often preferred by default, but CGS2 is more stable and reaches

higher arithmetic intensity.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 31 / 44

Least-squares problems
Section 4.4 in Darve & Wootters (2021)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Geometry of least-squares
▶ One of the applications of the QR decomposition is the solving of

least-squares problems argminx ∥Ax− b∥2:

with a tall-and-skinny matrix A ∈ Rm×n and a vector b ∈ Rn.
▶ To minimize the 2-norm from a point b to a subspace {Ax, x ∈ Rn}, we

can just do an orthogonal projection:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 32 / 44

Method of normal equations
▶ As per property of orthogonal projections, the x that minimizes ∥Ax− b∥2

has an error e := Ax− b which is orthogonal to the range of A. This can
be written as

AT (Ax− b) = 0. (1)

Assuming A is full-rank, this equation can be used to solve for x by a
method called normal equations.
Eq. (1) may also be derived from calculus, namely, the optimal x which
minimizes the cost function

f(x) = ∥Ax− b∥22 = (Ax− b)T (Ax− b) = xTATAx− 2xTAT b+ bT b

is obtained for ∇f(x) = 0 where

∇f(x) = 2ATAx− 2AT b,

which equivalently yields Eq. (1).
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 33 / 44

Method of normal equations, cont’d
▶ Assuming A is full-rank, ATA is SPD so that we may compute its

Cholesky factorization and solve for x in ATAx = AT b.

Normal equations
Finding the solution x to the least-suqares problem argmin ∥Ax− b∥2 by
solving the system ATAx = AT b is called the method of normal equations.

▶ Since the condition number of ATA is the square of that of A, the method
of normal equations can run into issues when A is poorly conditioned.

▶ For cases where A is poorly conditioned, the QR factorization can be used
to yield a more accurate computation of the solution x to the least-squares
problem.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 34 / 44

QR factorization for least-squares problems
▶ The origin of the method of normal equations stems from saying that the

error Ax− b is orthogonal to the range of A.
But if we know a QR factorization A = QR where Q ∈ Rm×n, then the
range of A is the same as the range of Q.
The orthogonality condition can then be re-stated as

QT (Ax− b) = 0. (2)

Since Q is orthogonal, it is necessarily well-conditioned, and the
conditioning problem of the method of normal equations can be avoided.
Since A = QR, due to the orthogonality of Q, we have QTA = R so that
Eq. (2) becomes

Rx = QT b

where R is non-singular as long as A is non-singular, so that there exists a
unique solution x.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 35 / 44

Case of rank-deficient A
▶ If A is rank-deficient, the null space of A is non-trivial. Then, for some x

that minimizes ∥Ax− b∥2, there are infinitely many δx ∈ null(A) such
that A(x+ δx) = Ax. Hence, the solution to the least-squares problem is
not unique.

▶ In case of non-uniqueness of solution, one can search for the unique x0
which minimizes both ∥Ax− b∥2 and ∥x∥2:

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

We can see the x0 we are after is orthogonal to the null space of A, while
any other solution x1 is of the form x0 + δx.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 36 / 44

SVD method for solving least-squares with rank-deficient A
▶ Let A ∈ Rm×n be of rank r < n < m have an SVD given by A = UΣV T

with U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n where Σ has zeros from row
r + 1 to m.
Then we can ignore the columns of U and V that correspond to zeros in Σ
to create the thin SVD A = Ũ Σ̃Ṽ T :

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

▶ Now, Ax = 0 if and only if Ṽ Tx = 0, which means that the null space of
A is the same as that of Ṽ T , i.e., null(A) = null(Ṽ T).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 37 / 44

SVD method for solving least-squares with rank-deficient A
▶ We know that any solution x to the least-squares problem satisfies

ATAx = AT b

(Ũ Σ̃Ṽ T)T Ũ Σ̃Ṽ Tx = (Ũ Σ̃Ṽ T)T b

Ṽ Σ̃T Σ̃Ṽ Tx = Ṽ Σ̃T ŨT b

Σ̃Ṽ Tx = ŨT b

where r < n so that Σ̃Ṽ T is not full-column-rank and this equation admits
infinitely many solutions.

▶ However, we can find one solution as follows.
First, let’s solve the system Σ̃ω = ŨT b for ω ∈ Rr. This gives

ωi =
ũTi b

σ̃ii

where Ũ = [ũ1, . . . , ũr] and Σ̃ = diag(σ̃11, . . . , σ̃rr).
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 38 / 44

SVD method for solving least-squares with rank-deficient A
Then, since ω = Σ̃−1ŨT b, we have

Σ̃Ṽ T (Ṽ ω) = Σ̃Ṽ T Ṽ Σ̃−1ŨT b = ŨT b

so that x0 := Ṽ ω is solution of Σ̃Ṽ Tx0 = ŨT b and thus, as explained
before, it is also solution of the least-squares problem.
Note that x0 := Ṽ ω is the solution with smallest norm.
To see this, we need to show x0 ⊥ null(A). First, let

null(Ṽ T) = {y ∈ Rn, Ṽ T y = 0}

and consider that for each y ∈ null(Ṽ T), we have

xT0 y = (Ṽ ω)T y = ωṼ T y = 0

so that x0 ⊥ null(Ṽ T).
But since null(Ṽ T) = null(A), we have that x0 ⊥ null(A).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 39 / 44

LSQR

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE

Iterative solve of normal equations
▶ We saw that the least-squares solution x∗ of minx∈Rn ∥Ax− b∥2 for

A ∈ Rm×n and b ∈ Rm with m > n is such that ATAx∗ = AT b, i.e., x∗ is
solution of the normal equation.

▶ For very large matrices, the cost of computing a QR factorization by
Householder QR, or even by CholeskyQR, can be prohibitive. When the
matrix is sparse, computing a QR factorization is generally an overkill.

▶ In future lectures, we will look into iterative methods to solve linear
systems of the form Bx = b with a square matrix B ∈ Rn×n.
In particular, if A is full-rank, one can use the conjugate gradient algorithm
to solve ATAx∗ = b.
However, in practice, for cases where A is ill-conditioned, this approach
can suffer from significantly delayed convergence.

▶ LSQR is an algorithm proposed by Paige and Sanders (1982) which, in
case of exact arithmetic, reproduces the iterates of the conjugate gradient
algorithm applied to the normal equation but, in practice, is more reliable.

Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software (TOMS), 8(1), 43-71.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 40 / 44

Bidiagonalization
▶ Bidiagonalization is a procedure proposed by Golub and Kahan (1965)

which reduces any general matrix A ∈ Rm×n into lower bidiagonal form.
Let x0 ∈ Rn be an initial approximation of x∗ with residual r0 := b−Ax0.
Starting the bidiagonalization procedure with r0 goes as follows:

β1u1 = r0, α1v1 = ATu1

βi+1ui+1 =Avi − αiui

αi+1vi+1 =ATui+1 − βi+1vi

}
for i = 1, 2 . . .

where the scalars αi ≥ 0 and βi ≥ 0 are chosen so that ∥ui∥2 = ∥vi∥2 = 1.
Let Uk := [u1, . . . , uk], Vk := [v1, . . . , vk],

Bk :=


α1

β2 α2

. . .
. . .
βk αk

 and Bk :=


α1

β2 α2

. . .
. . .
βk αk

βk+1

 .

Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society
for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2), 205-224.
Paige, C. C. (1974). Bidiagonalization of matrices and solution of linear equations. SIAM Journal on Numerical
Analysis, 11(1), 197-209.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 41 / 44

Bidiagonalization, cont’d
Then, we have

Uk+1(β1e1) = r0 (e1 := Ik+1[:, 1])

AVk =Uk+1Bk = UkBk + βk+1uk+1e
T
k (ek := Ik[:, k])

ATUk+1 =VkB
T
k + αk+1vk+1e

T
k+1. (ek+1 := Ik+1[:, k + 1])

In exact arithmetic, we have UT
k Uk = Ik and V T

k Vk = Ik.
Clearly, UT

k+1AVk = Bk, UT
k AVk = Bk, αk = uTkAvk and βk = uTkAvk−1.

Moreover, the columns of Uk and Vk are orthonormal bases of Krylov
subspaces of AAT and ATA, respectively, i.e.,

range(Uk) =Kk(AA
T , u1) = span

{
u1, AA

Tu1, . . . , (AA
T)k−1u1

}
,

range(Vk) =Kk(A
TA, v1) = span

{
v1, A

TAv1, . . . , (A
TA)k−1v1

}
.

Bidiagonalization is an orthogonal equivalence transformation which plays
a key role in the iterative solve of singular value decompositions.

Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society
for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2), 205-224.
Paige, C. C. (1974). Bidiagonalization of matrices and solution of linear equations. SIAM Journal on Numerical
Analysis, 11(1), 197-209.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 42 / 44

LSQR
▶ LSQR defines a sequence of iterates x1, x2, . . . , xk which approximate the

solution x∗ of minx∈Rn ∥b−Ax∥2 by

xk ∈x0 +Kk(A
TA, v1).

That is, we search for xk = x0 + Vkyk such that

xk = argmin
x∈x0+range(Vk)

∥b−Ax∥2 =⇒ yk =argmin
y∈Rk

∥b−A(x0 + Vky)∥2

=argmin
y∈Rk

∥r0 − Uk+1Bky∥2

=argmin
y∈Rk

∥Uk+1(β1e1)− Uk+1Bky∥2

=argmin
y∈Rk

∥β1e1 −Bky∥2.

In exact arithmetic, the LSQR iterates exhibit monotonic decrease of
residual norm, i.e., ∥rk+1∥2 ≤ ∥rk∥2.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 43 / 44

LSQR, cont’d
▶ A basic implementation of the LSQR algorithm goes as follows:

1. r0 := b−Ax0

2. u1 := r0, β1 := ∥u1∥2, u1 := u1/β1

3. v1 := ATu1, α1 := ∥v1∥2, v1 := v1/α1

4. for i = 1, 2, . . .

5. ui+1 := Avi − αiui, βi+1 := ∥ui+1∥2, ui+1 := ui+1/βi+1

6. vi+1 := ATui+1 − βi+1vi, αi+1 := ∥vi+1∥2, vi+1 := vi+1/αi+1

7. yi := argmin
y∈Ri

∥β1e1 −Biy∥2

When convergence is achieved, the iterate xi := x0 + Viyi is formed.
Convergence monitoring is reliant on the evaluation of ∥ri∥2 and ∥AT ri∥2.
Note that we have

∥ri∥2 = ∥b−A(x0 + Viyi)∥2 = ∥ti∥2 where ti := β1e1 −Biyi

∥AT ri∥2 = ∥ATUi+1ti∥2 = ∥(ViB
T
i + αi+1vi+1e

T
i+1)ti∥2 = ∥BT

i+1ti∥2

so that convergence can be monitored without forming neither xi nor ri.
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 44 / 44

	QR factorization Section 4 in Darve & Wootters (2021)
	Householder reflections Section 4.1 in Darve & Wootters (2021)
	Givens rotations Section 4.2 in Darve & Wootters (2021)
	CholeskyQR
	Tall-and-skinny QR
	Gram-Schmidt procedures Section 4.3 in Darve & Wootters (2021)
	Least-squares problems Section 4.4 in Darve & Wootters (2021)
	LSQR

