

Numerical Linear Algebra

for Computational Science and Information Engineering

Basic Iterative Methods for Linear Systems

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

Outline I

1	Splitting methods	2
	Section 7.1 in Darve & Wootters (2021)	
2	Jacobi method	5
	Section 7.2 in Darve & Wootters (2021)	
3	Gauss-Seidel method	7
	Section 7.3 in Darve & Wootters (2021)	
4	Successive over-relaxation	10
	Section 7.4 in Darve & Wootters (2021)	

Towards iterative methods to solve linear systems

- ▶ So far, we saw how **direct methods** can be used to solve linear systems:
 - ① **Factorize** the matrix (e.g., LU or Cholesky factorization) with cost $\mathcal{O}(n^3)$
 - ② **Solve** the system using the computed factors with cost $\mathcal{O}(n^2)$
- ▶ Direct methods are **very stable** and **accurate**.
However, they can have a **very high computational cost**.
In general, direct methods are **not suitable for very large n** .
- ▶ As a potentially more efficient way to solve linear systems, we will explore **iterative methods**.

Iterative methods are **inexact** in the sense that they rely on the generation of a sequence of approximate solutions which **converges towards the solution**, but the sequence is stopped at finite accuracy.

In general, iterative methods **do not require explicit access to the matrix** and they **rely on the matrix-vector kernel** $x \mapsto Ax$.

Iterative methods are particularly **recommended** for cases **where the matrix-vector product can be efficiently deployed**, e.g., as it is the case for sparse matrices.

Splitting methods

Section 7.1 in Darve & Wootters (2021)

General splitting methods

- ▶ Splitting methods are simple iterative methods to solve linear systems.
- ▶ Consider the $A = M - N$ splitting of a matrix A , where M is non-singular.
- ▶ The linear system $Ax = b$ can be recast as follows:

$$Mx - Nx = b$$

$$x - M^{-1}Nx = M^{-1}b$$

$$x = Gx + M^{-1}b$$

so that x is a **fixed point** of $f : x \mapsto M^{-1}Nx + M^{-1}b$, i.e., $x = f(x)$, and where $G := M^{-1}N$ is the **iteration matrix**.

- ▶ To solve a fixed point problem, one can start with any point x , and compute $f(x)$. Then compute $f(f(x))$, then $f(f(f(x)))$ and so on, until the sequence converges. In particular, we consider the following

Splitting method update rule

Given a matrix $A = M - N$ where M is non-singular, the update rule for a general splitting method with a given $x^{(0)}$ is

$$x^{(k+1)} := Gx^{(k)} + M^{-1}b \quad \text{where } G := M^{-1}N.$$

General splitting methods, cont'd₁

- The error $e^{(k+1)} := x^{(k+1)} - x$ is such that

$$\begin{aligned} e^{(k+1)} &= Gx^{(k)} + M^{-1}b - Gx - M^{-1}b \\ &= Gx^{(k)} - Gx \\ &= Ge^{(k)} \end{aligned}$$

so that $e^{(k)} = G^k e^{(0)}$.

- The convergence theory depends on the iteration matrix $G = M^{-1}N$:

Theorem (Convergence of splitting methods)

Given b and $A = M - N$ with non-singular A and M , the iteration

$$x^{(k+1)} = Gx^{(k)} + M^{-1}b \text{ where } G := M^{-1}N$$

converges for any starting $x^{(0)}$ if and only if

$$\rho(G) < 1$$

where $\rho(G)$ is the spectral radius, i.e., the largest modulus of eigenvalue of the iteration matrix G .

General splitting methods, cont'd₂

- ▶ Even though analyzing the spectrum of the iteration matrix G is generally difficult, it is understood that, the smaller the modulus $\rho(G)$, the faster the convergence.

- ▶ How should we pick M and N ?

The selection of M and N may be guided by two desirable properties:

- Linear systems of the form $Mz = d$ are easy to solve.
This suggest good choices for M are diagonal or triangular.

- The spectral radius $\rho(G)$ is less than 1.

- ▶ We will see several examples of splitting methods, namely

- Jacobi method
- Gauss-Seidel method
- Over-relaxation method

Jacobi method

Section 7.2 in Darve & Wootters (2021)

Jacobi method

► Let $A = D - L - U$ where

- D is diagonal
- L is strictly lower-triangular, i.e., with zeros on the diagonal
- U is strictly upper-triangular

Then, the splitting is clearly unique given A as we choose $M = D$ and $N = L + U$:

$$\begin{array}{c} \text{[Blue square]} \\ A \end{array} = \begin{array}{c} \text{[White square with blue diagonal]} \\ M \end{array} - \begin{array}{c} \text{[Yellow square with white diagonal]} \\ N = L + U \end{array}$$

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

► The Jacobi splitting leads to the following iteration

Jacobi iterations

Suppose $A = D - U - L$ as above. The update formula for Jacobi iteration is given by

$$Dx^{(k+1)} = (L + U)x^{(k)} + b.$$

Jacobi method, cont'd

- The convergence of Jacobi iterations is as follows:

Theorem (Convergence of Jacobi iterations)

If A is strictly diagonally dominant, i.e.,

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

for $i = 1, 2 \dots, n$, then Jacobi iterations converge for any initial guess $x^{(0)}$.

Note that this condition is not necessary to ensure convergence.

The necessary condition to ensure convergence remains that the iteration matrix $G_{\text{Jacobi}} = D^{-1}(L + U)$ has a spectral radius smaller than one.

- The Jacobi method is especially simple to implement.

It is also well-suited for parallel implementation as we have

$$x_i^{(k+1)} = \left(b_i + (L + U)[i, :]x^{(k)} \right) / d_{ii}$$

$$x_i^{(k+1)} = \left(b_i - (A - D)[i, :]x^{(k)} \right) / d_{ii}.$$

Gauss-Seidel method

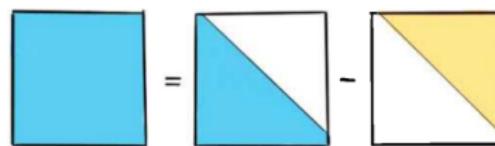
Section 7.3 in Darve & Wootters (2021)

Gauss-Seidel method

► Let $A = D - L - U$ where

- D is diagonal
- L is strictly lower-triangular, i.e., with zeros on the diagonal
- U is strictly upper-triangular

Then, the splitting is clearly unique given A as we choose $M = D - L$ and $N = U$:

$$A = M - N$$


A M N

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

► The Gauss-Seidel splitting leads to the following iteration

Gauss-Seidel iterations

Suppose $A = D - U - L$ as above. The update formula for Gauss-Seidel iteration is given by

$$(D - L)x^{(k+1)} = Ux^{(k)} + b.$$

Gauss-Seidel method, cont'd₁

- ▶ Intuitively, "putting more information in M " should help with convergence of the method, and this is indeed the case, i.e., $\rho(G_{\text{GS}}) = \rho(G_{\text{Jacobi}})^2$.
- ▶ On the other hand, solving triangular systems with $M = D - L$ is more involved than solving diagonal systems with $M = D$.
- ▶ We can compare Gauss-Seidel to Jacobi iterations as follows:

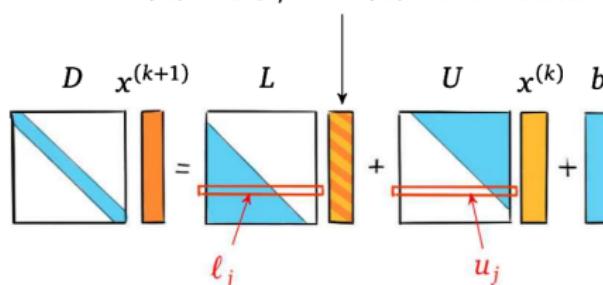
$$(D - L)x^{(k+1)} = Ux^{(k)} + b$$

$$Dx^{(k+1)} = Lx^{(k+1)} + Ux^{(k)} + b \quad (\text{Gauss-Seidel})$$

$$Dx^{(k+1)} = Lx^{(k)} + Ux^{(k)} + b \quad (\text{Jacobi})$$

and see they are very similar except for one term:

$x^{(k)}$ for Jacobi; $x^{(k+1)}$ for Gauss-Seidel.



Gauss-Seidel method, cont'd₂

- The convergence of Gauss-Seidel iterations is as follows:

Theorem (Convergence of Gauss-Seidel iterations)

If A

- is strictly diagonally dominant, or
- is symmetric positive definite (SPD)

then Gauss-Seidel iterations converge irrespective of the initial guess $x^{(0)}$.

Note that these conditions are not necessary to ensure convergence.

The necessary condition to ensure convergence remains that the iteration matrix $G_{GS} = (D - L)^{-1}U$ has a spectral radius smaller than one.

Successive over-relaxation

Section 7.4 in Darve & Wootters (2021)

Successive over-relaxation

- ▶ Successive over-relaxation (SOR) consists of introducing a parameter to a splitting method in order to get a handle of the speed of convergence.
- ▶ In particular, we use a parameter ω to boost convergence.

The idea is to start with the Gauss-Seidel update step as follows:

$$Dx_{\text{GS}}^{(k+1)} = Lx_{\text{GS}}^{(k+1)} + Ux^{(k)} + b$$

$$x_{\text{GS}}^{(k+1)} = D^{-1} \left(Lx_{\text{GS}}^{(k+1)} + Ux^{(k)} + b \right)$$

$$x_{\text{GS}}^{(k+1)} = x^{(k)} + \left[D^{-1} \left(Lx_{\text{GS}}^{(k+1)} + Ux^{(k)} + b \right) - x^{(k)} \right]$$

so that $x_{\text{GS}}^{(k+1)} = x^{(k)} + \Delta x_{\text{GS}}^{(k)}$ where

$$\Delta x_{\text{GS}}^{(k)} = D^{-1} \left(Lx_{\text{GS}}^{(k+1)} + Ux^{(k)} + b \right) - x^{(k)}$$

is the update to $x^{(k)}$ in a Gauss-Seidel iteration.

In SOR, the idea is to scale this correction by a parameter $0 < \omega < 2$:

$$x_{\text{SOR}}^{(k+1)} = x^{(k)} + \omega \Delta x_{\text{GS}}^{(k)}$$

Successive over-relaxation, cont'd

- ▶ When $\omega \approx 0$, we are very cautious and only make small corrections to $x^{(k)}$.
When $\omega = 1$, we recover a Gauss-Seidel iteration.
When $\omega \approx 2$, we are very confident in the Gauss-Seidel correction and apply it twice instead of once.
- ▶ The update formula of the SOR sequence is given as follows:

$$\begin{aligned}x_{\text{SOR}}^{(k+1)} &= x_{\text{SOR}}^{(k)} + \omega \left[D^{-1} \left(Lx_{\text{SOR}}^{(k+1)} + Ux_{\text{SOR}}^{(k)} + b \right) - x_{\text{SOR}}^{(k)} \right] \\&= (1 - \omega)x_{\text{SOR}}^{(k)} + \omega \left[D^{-1} \left(Lx_{\text{SOR}}^{(k+1)} + Ux_{\text{SOR}}^{(k)} + b \right) \right]\end{aligned}$$

which yields the following iterations:

SOR iterations

Let $\omega \in (0, 2)$, and suppose $A = D - L - U$ as above. The update formula for SOR iterations is

$$(D - \omega L)x_{\text{SOR}}^{(k+1)} = ((1 - \omega)D + \omega U)x_{\text{SOR}}^{(k)} + \omega b.$$

Successive over-relaxation, cont'd

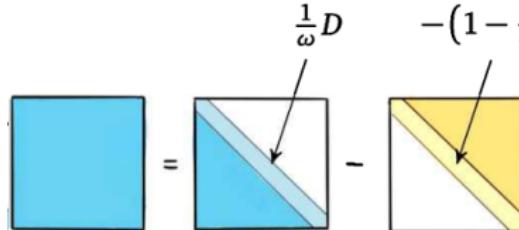
- Since the update formula can be written as

$$\left(\frac{1}{\omega}D - L\right)x_{\text{SOR}}^{(k+1)} = \left(\left(\frac{1}{\omega} - 1\right)D + U\right)x_{\text{SOR}}^{(k)} + b$$

and that we have

$$\left(\frac{1}{\omega}D - L\right) - \left(\left(\frac{1}{\omega} - 1\right)D + U\right) = D - L - U = A$$

we can say that SOR is a splitting method with $M = \frac{1}{\omega}D - L$ and $N = \left(\frac{1}{\omega} - 1\right)D + U$ such that $A = M - N$:

$$A = M - N$$


Successive over-relaxation, cont'd

- ▶ Although SOR is a heuristic, it can lead to significant improvements in the convergence rate when ω is chosen appropriately.

Theorem (Convergence of SOR iterations)

If A is symmetric positive definite (SPD), then SOR iterations converge irrespective of the initial guess $x^{(0)}$, for any $\omega \in (0, 2)$.

Note that this condition is not necessary to ensure convergence.

The necessary condition to ensure convergence remains that the iteration matrix

$$\begin{aligned} G &= \left(\frac{1}{\omega} D - L \right)^{-1} \left(\left(\frac{1}{\omega} - 1 \right) D + U \right) \\ &= (D - \omega L)^{-1} ((1 - \omega) D + \omega U) \end{aligned}$$

has a spectral radius smaller than one.