

Numerical Linear Algebra

for Computational Science and Information Engineering

Basic Iterative Methods for Eigenvalue Problems

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

Outline I

1	Methods for computing a single eigenvalue Section 5.1 in Darve & Wootters (2021)	4
2	Basic QR iteration Section 5.2 in Darve & Wootters (2021)	15
3	Other methods and implementations Section 5.2 in Darve & Wootters (2021)	27

Computing eigenvalues exactly is impossible

- ▶ **Computing eigenvalues and eigenvectors is a very difficult task.**
There is **no direct method** for computing eigenvalues of matrices of size five or higher in general.
That is, there is **no algorithm** that **can compute eigenvalues exactly** assuming exact arithmetic.
- ▶ Moreover, it can be proved that **a method that computes eigenvalues exactly cannot exist** for general matrices of size five or higher.
The reason for this is the Abel-Ruffini theorem, which states that **no direct method exists to find exact zeros of a polynomial** of degree five or higher.
That is the case because **computing the roots of any polynomial is equivalent to finding the eigenvalues of a matrix.**
Thus, since there is no method for finding zeros of a polynomial, then there cannot exist an exact method for finding eigenvalues of a general matrix.

Computing eigenvalues exactly is impossible, cont'd

You saw one side of the equivalence between solving for eigenvalues of a general matrix and solving for the zeros of a polynomial in your Linear Algebra class.

To see the other direction, consider a generic polynomial given by

$$p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0.$$

Then, there is a matrix

$$A = \begin{pmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & 0 & & & \\ & \vdots & & & & \\ & & & & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$$

such that, if we pick $u = [1 \ z \ z^2 \ \dots \ z^{n-1}]^T$ where z is a root of $p(x)$, then we have $Au = zu$ so that (z, u) is an eigenpair of A .

Consequently, all roots of $p(x)$ are eigenvalues of A .

Convention

- Let us denote $A = X\Lambda X^{-1}$ an eigendecomposition of A .

In this lecture, all the algorithms will normalize vectors, i.e., replace x by $x/\|x\|_2$ during the iterative process.

Therefore, when discussing convergence, we will assume the columns of X have norm 1.

This is done without loss of generality, since $A = X\Lambda X^{-1}$ remains valid irrespective of the magnitude of the columns of X .

Moreover, in many places, results will be stated "up to a sign" or "up to a unit complex factor", because even with normed columns, the matrix X of an eigendecomposition is not unique.

Methods for computing a single eigenvalue

Section 5.1 in Darve & Wootters (2021)

Taking powers of A

- ▶ Suppose that A is a square diagonalizable matrix.

Then A has an eigenvalue decomposition $A = X\Lambda Y^H$ where the columns x_i of X are right eigenvectors of A , and the columns y_i of $Y := X^{-H}$ are left eigenvectors of A :

$$A = \begin{matrix} \text{green square} \\ x_i \downarrow \\ X \quad \Lambda \quad X^{-1} \end{matrix} = \begin{matrix} \text{blue vertical bar} \\ \text{blue rectangle} \end{matrix} \quad \begin{matrix} \text{white rectangle with red diagonal} \\ \text{blue rectangle} \end{matrix} \quad \begin{matrix} \text{blue rectangle} \\ y_i^H \leftarrow \end{matrix}$$

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

One thing about the eigendecomposition is that powers of A are such that

$$A^k = X\Lambda^k Y^H = \sum_i \lambda_i^k x_i y_i^H.$$

Notice that, even if A is real, it can have complex eigenvalues and vectors.

Note also that left and right eigenvectors of A coincide if A is normal.

Taking powers of A , cont'd

- Let us assume the eigenvalues of A are ordered such that

$$|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|$$

where, in particular, the largest eigenvalue has magnitude strictly greater than the second one.

Then, even for moderate values of the power k , we expect λ_1^k to dominate in A^k , i.e., $|\lambda_1^k| \gg |\lambda_2^k| \geq \cdots \geq |\lambda_n^k|$ so that

$$A^k = \lambda_1^k x_1 y_1^H + \cdots + \lambda_n^k x_n y_n^H \approx \lambda_1^k x_1 y_1^H.$$

- Let's multiply A^k by a random vector z , such that $y_1^H z$ is not too small, then

$$A^k z \approx \lambda_1^k x_1 y_1^H z = \lambda_1^k (y_1^H z) x_1$$

so that $A^k z / \|A^k z\|_2$ gives a **good approximation of x_1** .

Power iteration

- The power iteration is based on this idea of taking powers of A to approximate the largest eigenpair. The algorithm is as follows:

1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$

2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$

3. For $k = 0, 1, 2 \dots$

4. $z^{(k)} := Aq^{(k)}$

5. $\lambda^{(k+1)} = z^{(k)H} q^{(k)}$

6. $q^{(k+1)} := z^{(k)} / \|z^{(k)}\|_2$

where $(\lambda^{(k)}, q^{(k)})$ is an iterate approximating the largest eigenpair of A .

At the k -th step, the approximate eigenvector is

$$q^{(k)} = A^k q^{(0)} / \|A^k q^{(0)}\|_2,$$

and the corresponding approximate eigenvalue is $\lambda^{(k)} = q^{(k)H} A q^{(k)}$.

Note that, even though $q^{(k)}$ is formed with A^k , the matrix power A^k is not explicitly computed.

Instead, we just perform repeated matrix-vector products.

Convergence of power iteration

- ▶ Let us assume again that the eigenpairs $(\lambda_1, x_1), \dots, (\lambda_n, x_n)$ of A are ordered such that $|\lambda_1| > |\lambda_2| \geq \dots \geq |\lambda_n|$.
- ▶ The starting vector $q^{(0)}$ can be expressed in the basis formed by the eigenvectors of A , i.e.,

$$q^{(0)} = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

For the method to work, we need to assume $\alpha_1 \neq 0$, that is, $q^{(0)}$ is not orthogonal to x_1 .

- ▶ Then, we have

$$A^k q^{(0)} = \sum_{i=1}^n \alpha_i A^k x_i = \sum_{i=1}^n \alpha_i \lambda_i^k x_i$$

which can be factorized as follows:

$$\begin{aligned} A^k q^{(0)} &= \alpha_1 \lambda_1^k x_1 + \alpha_2 \lambda_2^k x_2 + \dots + \alpha_n \lambda_n^k x_n \\ &= \alpha_1 \lambda_1^k \left(x_1 + \frac{\alpha_2}{\alpha_1} \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + \frac{\alpha_n}{\alpha_1} \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right) \end{aligned}$$

Convergence of power iteration, cont'd

From that expression, we have

$$\|A^k q^{(0)}\|_2 = |\alpha_1 \lambda_1^k| (1 + \mathcal{O}(|\lambda_2/\lambda_1|)) \text{ and}$$

$$\|(\alpha_1 \lambda_1^k)^{-1} A^k q^{(0)} - x_1\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

which, along with the fact that $\|A^k q^{(0)}\|_2 \approx |\alpha_1 \lambda_1^k|$ implies that our estimate $q^{(k)} = A^k q^{(0)} / \|A^k q^{(0)}\|$ approaches x_1 with an error $\mathcal{O}(|\lambda_2/\lambda_1|^k)$.

In summary, we have

$$\|q^{(k)} - x_1\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \quad \text{and} \quad |\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right).$$

- ▶ Although it is a good starting point, this version of power iteration is limited as it cannot find approximates of any eigenvalue except the largest one. It also cannot leverage given approximations of λ_i .

Inverse iteration

- ▶ Assume we are equipped with an approximation μ of the eigenvalue λ_i of A .
- ▶ An **inverse iteration** uses μ to form an arbitrarily good approximation of λ_i .
- ▶ If μ is a good approximation of λ_i , then

The shifted matrix $A - \mu I_n$ has a small eigenvalue $\lambda_i - \mu$.

The shift-and-invert matrix $(A - \mu I_n)^{-1}$ has a large eigenvalue $1/(\lambda_i - \mu)$.

So, a power iteration applied to $(A - \mu I_n)^{-1}$ should allow us to calculate x_i very quickly, since $1/(\lambda_i - \mu)$ is now the largest eigenvalue, with the corresponding eigenvector x_i .

The algorithm of inverse iteration is as follows:

1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$
2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$
3. For $k = 0, 1, 2 \dots$
4. Solve for $z^{(k)}$ s.t. $(A - \mu I_n)z^{(k)} = q^{(k)}$ // $z^{(k)} := (A - \mu I_n)^{-1}q^{(k)}$
5. $q^{(k+1)} := z^{(k)} / \|z^{(k)}\|_2$
6. $\lambda^{(k+1)} = q^{(k+1)H} A q^{(k+1)}$

Convergence of inverse iteration

- ▶ Similarly to power iteration, we can characterize the convergence of inverse iterations by

$$|\lambda^{(k)} - \lambda_i| = \mathcal{O} \left(\left| \frac{\lambda_i - \mu}{\lambda_j - \mu} \right|^k \right)$$

where λ_i and λ_j are the closest and second closest eigenvalues of A to μ , respectively.

If $|\lambda_i - \mu| \ll |\lambda_j - \mu|$, then the convergence is fast.

Rayleigh quotient iteration

- ▶ As inverse iterations progress, the iterate $\lambda^{(k)}$ becomes a better approximation of the eigenvalue λ_i than μ .
One could use this fact to redefine the shift μ and get faster convergence.
- ▶ Let us assume the matrix A is real and symmetric so that its eigenvalues and eigenvectors are real, and the eigenvectors are orthogonal.
- ▶ The idea to **update the shift μ during the iteration** is deployed in an algorithm called **Rayleigh quotient iteration**.

Let us consider the **Rayleigh quotient** given by $r(x) = \frac{x^T A x}{x^T x}$ for $x \neq 0$.

The Rayleigh quotient is used to approximate an eigenvalue.

Indeed, note that if x is an eigenvector of A , i.e., $Ax = \lambda x$, then $r(x) = \lambda$ is the corresponding eigenvalue.

Rayleigh quotient iteration, cont'd

- The algorithm for Rayleigh quotient iterations is as follows:

1. Sample a random vector $q^{(0)} \in \mathbb{C}^n$
2. $q^{(0)} := q^{(0)} / \|q^{(0)}\|_2$
3. $\lambda^{(0)} := \mu$
4. For $k = 0, 1, 2 \dots$
5. Solve for $z^{(k)}$ such that $(A - \lambda^{(k)} I_n)z^{(k)} = q^{(k)}$
6. $q^{(k+1)} := z^{(k)} / \|z^{(k)}\|_2$
7. $\lambda^{(k+1)} = q^{(k+1)H} A q^{(k+1)}$

- Rayleigh quotient iterations converge faster than inverse iterations.

Convergence of Rayleigh quotient iterations

- ▶ Note first that the gradient of the Rayleigh quotient r for a symmetric A is given by $\nabla r(x) = \frac{2}{x^T x} (Ax - r(x)x)$ so that $r(x_i) = \lambda_i$ implies $\nabla r(x_i) = 0$. More often than not, the zeros of ∇r are saddle points, as the Rayleigh quotient is only minimized (resp. maximized) at the smallest eigenpair (resp. largest eigen-pair).

In particular, we remember the Courant-Fischer theorem from lecture 1 which states

$$\lambda_{\min} = \min_{x \neq 0} \frac{x^T Ax}{x^T x} \quad \text{and} \quad \lambda_{\max} = \max_{x \neq 0} \frac{x^T Ax}{x^T x}.$$

- ▶ Then, suppose that y is close to an eigenvector x_i , by Taylor expansion around x_i , we have

$$r(y) \approx r(x_i) + \nabla r(x_i)^T (y - x_i) + (y - x_i)^T H(x_i) (y - x_i)$$

$r(x_i) = \lambda_i$

This is zero since
 $\nabla r(x_i) = 0$

Here, H is the Hessian matrix
We have:

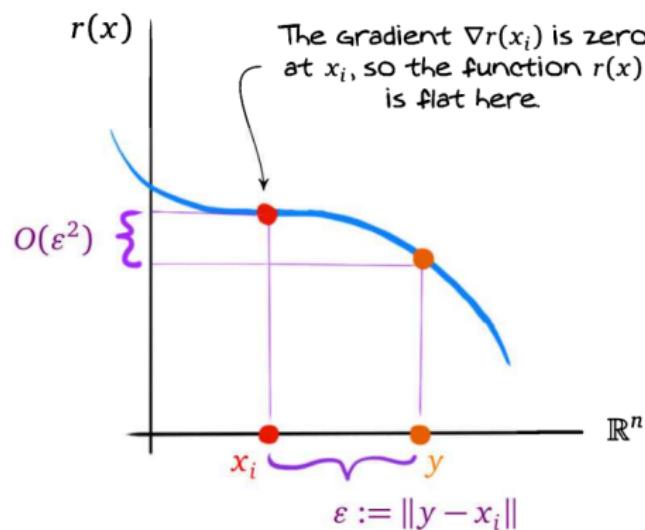
$$(y - x_i)^T H(x_i) (y - x_i) \leq \|H(x_i)\| \|y - x_i\|^2 = O(\|y - x_i\|^2)$$

Convergence of Rayleigh quotient iterations, cont'd

Consequently, the first order term disappears, leaving us with

$$r(y) = \lambda_i + \mathcal{O}(\|y - x_i\|_2^2)$$

and the behavior of the Rayleigh quotient near an eigenvector x_i is as follows:



Basic QR iteration

Section 5.2 in Darve & Wootters (2021)

Basic QR iteration

- ▶ The PageRank algorithm is a variant of power iteration aimed at finding the largest eigenvector of a modified adjacency matrix of a web graph. However, in general, iterative methods for computing a single eigenpair have limited applicability.
- ▶ Unlike those previously covered iterative methods for eigenvalue solving, QR iterations aim at **finding all the eigenvalues** of a matrix.
- ▶ The QR iteration was elected **one of the 10 best algorithms of the 20th century** by Dongarra and Sullivan (2000).
- ▶ The QR iteration is the **state of the art eigensolver for small dense eigenvalue problems**. It is implemented in LAPACK, and it serves as a **building block of larger**, possibly sparse **iterative eigensolvers**.
- ▶ An important assumption of this Section is that A is **diagonalizable with separate eigenvalues**, i.e., such that $|\lambda_1| > |\lambda_2| > \dots > |\lambda_n|$.
Because A is real with separate eigenvalues, we have that eigen- and Schur decompositions of A are real.

Dongarra, J., & Sullivan, F. (2000). Guest editor's introduction: The top 10 algorithms. Computing in Science & Engineering 2, 22–23.

Orthogonal iteration for $r = 2$

- ▶ Orthogonal iterations allow us to recover more than one eigenvalue at once.
- ▶ For starters, consider that only $r = 2$ eigenvalues are needed.
Then, the pseudocode of orthogonal iterations is as follows:

1. Sample two random vectors $q_1, q_2 \in \mathbb{R}^n$
2. While not converged :
3. $q_1 := Aq_1; q_2 := Aq_2$
4. Project q_2 onto the space orthogonal to q_1 // $q_2 := \left(I_n - \frac{q_1 q_1^T}{q_1^T q_1} \right) q_2$
5. $q_1 := q_1 / \|q_1\|_2, q_2 := q_2 / \|q_2\|_2$
6. Return $q_1^T A q_1$ and $q_2^T A q_2$

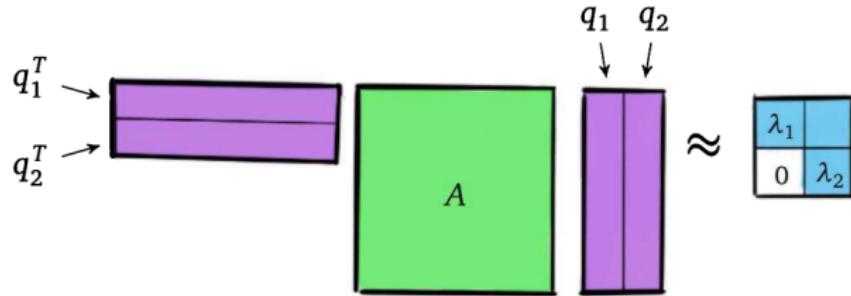
Disregarding the vector q_2 , the vector q_1 undergoes a standard power iteration so that, at the k -th step, we have

$$q_1^{(k)} = \frac{A^k q_1^{(0)}}{\|A^k q_1^{(0)}\|_2}$$

which converges towards x_1 .

Orthogonal iteration for $r = 2$, cont'd₁

- If we assume that $q_1 \approx x_1$ has already converged, then the update step for q_2 is of the form
$$q_2^{(k)} \approx (I_n - x_1 x_1^T) A q_2^{(k-1)}$$
 where $I_n - x_1 x_1^T$ is the orthogonal projector onto $\text{span}\{x_1\}^\perp$. Thus, q_2 is undergoing a power iteration with the matrix $(I_n - x_1 x_1^T) A$. It can be shown that the largest eigenvalue of this matrix is λ_2 with an eigenvector along $(I_n - x_1 x_1^T)x_2$ towards which q_2 converges.
- Note that, if x_1 and x_2 are not orthogonal, then $(I_n - x_1 x_1^T)x_2$ is not aligned with x_2 . However, we do have $\text{span}\{q_1, q_2\} = \text{span}\{x_1, x_2\}$. Then, we claim that $Q^T A Q$ where $Q = [q_1 \ q_2]$ converges to an upper-triangular matrix with λ_1 and λ_2 on the diagonal :



Orthogonal iteration for $r = 2$, cont'd₂

- First, the upper-triangularity is explained as follows:

$$q_2^T A q_1 \approx q_2^T A x_1 = \lambda_1 q_2^T x_1 \approx \lambda_1 q_2^T q_1 = 0$$

so that the lower-left entry converges to zero.

- To see that λ_1 and λ_2 lie on the diagonal, it suffices to show that they are eigenvalues of $Q^T A Q$, as $Q^T A Q$ is triangular.

For this, since $\text{span}\{q_1, q_2\} = \text{span}\{x_1, x_2\}$ after convergence, then there is $v_i \in \mathbb{R}^2$ such that $Qv_i \approx x_i$ and we have

$$Q^T A Q v_i \approx Q^T A x_i = \lambda_i Q^T x_i \approx \lambda_i Q^T Q v_i = \lambda_i v_i$$

so that v_i is an eigenvector of $Q^T A Q$ with eigenvalue λ_i for $i = 1, 2$.

- Since Q is orthogonal and $Q^T A Q$ is upper triangular with the same eigenvalues as A , it seems that $Q(Q^T A Q)Q^T$ is a Schur decomposition of A .

Orthogonal iteration for general r

- When an arbitrary number r of eigenvalues is sought, the approximate eigenvectors are orthogonalized by performing a QR factorization, leading to the following pseudocode:

1. Sample a random matrix $Q_0 \in \mathbb{R}^{n \times r}$
2. $k := 0$
3. While not converged :
4. $Y_{k+1} := AQ_k$
5. Compute QR factorization $Q_{k+1}R_{k+1} = Y_{k+1}$
6. $k := k + 1$
7. Return $\text{diag}(Q_k^T AQ_k)$

Similarly as with $r = 2$, this method converges to an upper-triangular matrix $Q_k^T AQ_k$ with eigenvalues $\lambda_1, \dots, \lambda_r$.

Once the algorithm has converged, the approximate eigenvalues can be read from the diagonal of the Schur form $Q_k^T AQ_k$.

Convergence of orthogonal iteration for general r

- If A is symmetric, then the eigenvectors x_1, \dots, x_r are orthogonal, and the i -th column of Q_k , which we denote by $q_i^{(k)}$, converges to $\pm x_i$.
For general matrices, things are different.
- Let us denote the matrices $Q^x \in \mathbb{R}^{n \times r}$ and $R^x \in \mathbb{R}^{r \times r}$ such that

$$[x_1 \dots x_r] = Q^x R^x.$$

We see that the iterate Q_k converges to Q^x :

Since $q_1^{(k)}$ undergoes a normal power iteration, it converges to $x_1 = q_1^x$.

For $q_2^{(k)}$, the QR decomposition ensures $\text{span}\{x_1, x_2\} = \text{span}\{q_1^x, q_2^x\}$ and we have

$$\text{span}\{q_1^{(k)}, q_2^{(k)}\} \approx \text{span}\{x_1, x_2\} = \text{span}\{q_1^x, q_2^x\}$$

Thus $q_2^{(k)}$ converges to something in the space $\text{span}\{q_1^x, q_2^x\}$, and it also has to be orthogonal to $q_1^{(k)} \approx q_1^x$. Therefore $q_2^{(k)}$ has to converge to $\pm q_2^x$. Similarly, $q_i^{(k)}$ converges to $\pm q_i^x$. Overall, we have that Q_k converges to Q^x .

Convergence to the Schur decomposition

- ▶ Now that we know that Q_k converges to Q^x , we can analyze the matrix $Q_k^T A Q_k$, which converges to $Q^{xT} A Q^x$ up to some columnwise sign changes.
- ▶ Since $AX = X\Lambda$ where $X = [x_1, \dots, x_r]$ and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_r)$, the definitions of Q^x and R^x imply that

$$AX = X\Lambda$$

$$AQ^x R^x = Q^x R^x \Lambda$$

$$Q^{xT} A Q^x R^x (R^x)^{-1} = Q^{xT} Q^x R^x \Lambda (R^x)^{-1}$$

$$Q^{xT} A Q^x = R^x \Lambda (R^x)^{-1}.$$

Since R^x is upper triangular and Λ is diagonal, we have that $R^x \Lambda (R^x)^{-1}$ is upper triangular.

More particularly, we also have that $Q^{xT} A Q^x$ is upper triangular with the eigenvalues $\lambda_1, \dots, \lambda_r$ on the diagonal.

Then, the matrix $Q_k^T A Q_k$ converges to $Q^{xT} A Q^x$, which is upper triangular and has the top r eigenvalues of A on the diagonal.

Convergence of orthogonal iteration

- ▶ The convergence analysis being sequential, i.e., we assumed $q_1^{(k)} \approx q_1^x$, then showed that $q_2^{(k)}$ converges to q_2^x , and so on; may lead to think that the convergence of orthogonal iteration is slow. I.e., we first have to wait that $q_1^{(k)}$ converges, then $q_2^{(k)}$, and so on.

But, in fact, what actually happens is that all of the $q_i^{(k)}$ converge simultaneously.

- ▶ It can be shown that the convergence of the iterate Q_k to Q^x depends, similarly as before, on the separation between λ_r and λ_{r+1} . In particular, we have

$$\|Q_k Q_k^T - Q^x Q^{xT}\|_2 = \mathcal{O}\left(\left|\frac{\lambda_{r+1}}{\lambda_r}\right|^k\right).$$

That is, the smaller $|\lambda_{r+1}/\lambda_r|$, the faster the convergence of Q_k to Q^x .

QR iteration

- ▶ QR iterations are a re-framing of orthogonal iterations with $r = n$.
QR iterations yield the full Schur decomposition $T = Q^T A Q$ of A where T is an n -by- n upper triangular matrix with the eigenvalues of A on the diagonal, and Q is a n -by- n orthogonal matrix of a QR decomposition of the eigenvectors X of A .
- ▶ The iterate of QR iteration is denoted by Q_k with a corresponding matrix $T_k := Q_k^T A Q_k$.
- ▶ The formulation of QR iterations is more commonly expressed as a recurrence from $T_k = Q_k^T A Q_k$ to $T_{k+1} = Q_{k+1}^T A Q_{k+1}$.

From the definition of orthogonal iterations, we have

$$Q_{k+1} R_{k+1} = A Q_k \text{ so that } T_k = Q_k^T A Q_k = Q_k^T Q_{k+1} R_{k+1}$$

and, since $r = n$, we have $Q_k Q_k^T = I_n$ and

$$R_{k+1} Q_k^T = Q_{k+1}^T A \text{ so that } T_{k+1} = Q_{k+1}^T A Q_{k+1} = R_{k+1} Q_k^T Q_{k+1}$$

QR iteration, cont'd₁

Then, as we let $U_{k+1} := Q_k^T Q_{k+1}$, we have

$$T_k = U_{k+1} R_{k+1}$$

$$T_{k+1} = R_{k+1} U_{k+1}$$

where R_{k+1} is upper triangular, and U_{k+1} is orthogonal.

Note that $U_{k+1} R_{k+1}$ is a QR decomposition of $T_k = Q_k^T A Q_k$.

This yields the following pseudocode to compute the eigenvalues of A :

1. $T_0 := A$
2. $k := 0$
3. While not converged :
4. Compute QR factorization $U_{k+1} R_{k+1} = T_k$
5. $T_{k+1} := R_{k+1} U_{k+1}$
6. $k := k + 1$
7. Return $\text{diag}(T_k)$

Notice that A is only needed at the start of the algorithm, after what we only repeatedly compute QR decompositions and switch the factors.

QR iteration, cont'd₂

- ▶ In this algorithm, the matrix $U_{k+1} = Q_k^T Q_{k+1}$ represents an orthogonal correction.

Since upon convergence $U_k \rightarrow I_n$, the determinant of U_k is 1 for large k , and we can interpret U_k as a small rotation on the orthogonal vectors in Q_k . In particular, we have:

$$U_1 \dots U_{k+1} = Q_0^T Q_1 Q_1^T Q_2 \dots Q_k^T Q_{k+1} = Q_0 Q_{k+1} = Q_{k+1}$$

because we chose $Q_0 = I_n$.

As the algorithm converges, Q_k and Q_{k+1} become very close.

- ▶ In the symmetric case, $T_k = Q_k^T A Q_k$ is symmetric, but since it also converges to an upper symmetric matrix, it actually converges to a diagonal form, in which case the Schur decomposition is actually an eigendecomposition.

QR iteration, cont'd₃

- ▶ The QR iteration presented so far has drawbacks:
 - A QR factorization at cost $\mathcal{O}(n^3)$ is computed at each iteration.
 - The convergence depends heavily on the distribution of the eigenvalues, and it may never converge if two eigenvalues have the same magnitude.
- ▶ Improvements of the QR iteration method can be introduced to improve the robustness and efficiency:
 - The transformation of A into an upper Hessenberg form allows to decrease the cost of the QR factorizations.
 - A shifted version of the QR iteration can improve convergence, even when the eigenvalues are not well-separated, making the method robust to cases of eigenvalues with equal magnitudes.

Other methods and implementations

Section 5.2 in Darve & Wootters (2021)

Divide-and-conquer method

- ▶ A symmetric matrix can efficiently be transformed into a tridiagonal form using an orthogonal transformation

$$Q^T A Q = T.$$

Then, the eigendecomposition of A can be obtained from that of T .

- ▶ The divide-and-conquer method splits the tridiagonal matrix into two tridiagonal blocks plus a rank-1 perturbation:

$$T = \begin{bmatrix} T_1 & \\ & T_2 \end{bmatrix} + \rho u u^T.$$

- ▶ The method proceeds as follows:
 - ① Calculate the eigendecompositions of T_1 and T_2 .
 - ② The rank-1 perturbation allows to compute the eigenvalues of T given the eigendecompositions of T_1 and T_2 .

Method of bisection

- ▶ The method of bisection also considers a tridiagonal form $Q^T A Q = T$.
- ▶ The eigenvalues of T are the roots of $p_n(\lambda) = \det(T - \lambda I_n)$.

Finding these roots is generally a complex problem, but it can be simplified if we consider only the leading r -by- r block T_r of T and the corresponding characteristic polynomial

$$p_r(\lambda) = \det(T_r - \lambda I_r).$$

- ▶ As T is tridiagonal, it is possible to find a simple relation between p_r , p_{r-1} and p_{r-2} .

Using this sequence of polynomials, the method of bisection is able to efficiently calculate the roots of p_n .

Existing implementations

- ▶ QR iteration:
 - Available for general matrices.
 - Implementation sometimes requires tridiagonalization.
 - Fastest to compute the eigendecomposition of small matrices ($n \leq 25$).
 - Algorithm behind the Matlab, NumPy and Julia functions.
 - Available in LAPACK as `ssyev` for dense symmetric matrices.
 - Available in LAPACK as `sstev` for symmetric tridiagonal matrices.
- ▶ Divide-and-conquer method:
 - Available for symmetric matrices.
 - Implementation requires tridiagonalization.
 - Fastest to compute the eigendecomposition of medium size tridiagonal matrices, i.e., for $n > 25$.
 - Available in LAPACK as `sstevd` for symmetric tridiagonal matrices, `sstevd` defaults to QR iteration for smaller matrices.
- ▶ Method of bisection:
 - Available in LAPACK as `ssyevx` for dense symmetric matrices.