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Computing eigenvalues exactly is impossible

» Computing eigenvalues and eigenvectors is a very difficult task.
There is no direct method for computing eigenvalues of matrices of size
five or higher in general.

That is, there is no algorithm that can compute eigenvalues exactly
assuming exact arithmetic.

» Moreover, it can be proved that a method that computes eigenvalues
exactly cannot exist for general matrices of size five or higher.

The reason for this is the Abel-Ruffini theorem, which states that no
direct method exists to find exact zeros of a polynomial of degree five
or higher.

That is the case because computing the roots of any polynomial is
equivalent to finding the eigenvalues of a matrix.

Thus, since there is no method for finiding zeros of a polynomial, then
there cannot exist an exact method for finding eigenvalues of a general
matrix.
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Computing eigenvalues exactly is impossible, cont'd

You saw one side of the equivalence between solving for eigenvalues of a
general matrix and solving for the zeros of a polynomial in your Linear
Algebra class.

To see the other direction, consider a generic polynomial given by
p(z) = 2" + ap_12" 4 - 4 ay2 + ap.

Then, there is a matrix

0 1
0 1
0
A=
0 1
—dp —a; —dy -+ —App —dp

such that, if we pick u = [1222 ... 2" Y7 where z is a root of p(z), then
we have Au = zu so that (z,u) is an eigenpair of A.

Consequently, all roots of p(x) are eigenvalues of A.
2/29



Convention

» Let us denote A = XAX ! an eigendecomposition of A.

In this lecture, all the algorithms will normalize vectors, i.e., replace = by
x/||z||2 during the iterative process.

Therefore, when discussing convergence, we will assume the columns of X
have norm 1.

This is done without loss of generality, since A = XAX ! remains valid
irrespective of the magnitude of the columns of X.

Moreover, in many places, results will be stated "up to a sign" or "up to a
unit complex factor", because even with normed columns, the matrix X of
an eigendecomposition is not unique.
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Methods for computing a single eigenvalue
Section 5.1 in Darve & Wootters (2021)
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Taking powers of A

» Suppose that A is a square diagonalizable matrix.

Then A has an eigenvalue decomposition A = XAYH where the columns
x; of X are right eigenvectors of A4, and the columns y; of Y := X~ H are

left eigenvectors of A:
X

<—yi

A X A x1

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

One thing about the eigendecomposition is that powers of A are such that

AF = XAPYH =3 " Nyl

Notice that, even if A is real, it can have complex eigenvalues and vectors.
Note also that left and right eigenvectors of A coincide if A is normal.
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Taking powers of A, cont'd

» Let us assume the eigenvalues of A are ordered such that
(A1 > Az = - = A

where, in particular, the largest eigenvalue has magnitude strictly greater
than the second one.

Then, even for moderate values of the power k, we expect A\¥ to dominate
in AF e, [AF| > [A5| > .- > |\E| so that

AR = Moyt o Moy e Ay f

> Let's multiply A¥ by a random vector z, such that yf 2 is not too small,
then

AFz = Nez oyl 2 = N (yH 2)ay
so that A¥z/||A*z||5 gives a good approximation of z;.
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Power iteration

» The power iteration is based on this idea of taking powers of A to
approximate the largest eigenpair. The algorithm is as follows:

NEFD) — (k) H (k)
gt = Z(k)/Hz(k)H2

1. Sample a random vector ¢(¥ € C"
2. 40 = 4 /O

3 Fork=0,1,2...

4. 2K .= Aqk)

5.

6.

where ()\(k), q(k)) is an iterate approximating the largest eigenpair of A.
At the k-th step, the approximate eigenvector is

q(k) — A’“q(o)/HA’“q(O)HQ,

and the corresponding approximate eigenvalue is A(%) = ¢(F)H g4(k).

Note that, even though ¢'*) is formed with A*, the matrix power A* is not
explicitly computed.

Instead, we just perform repeated matrix-vector products.
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Convergence of power iteration

> Let us assume again that the eigenpairs (A1, 1), ..., (A, zy,) of A are
ordered such that [A1| > |A2| > -+ > |A,].

» The starting vector ¢(?) can be expressed in the basis formed by the
eigenvectors of A, i.e.,

¢ = a1z + - + .

For the method to work, we need to assume a7 # 0, that is, q© is not
orthogonal to z;.
» Then, we have

Akq(o) = Zn: a; Ak = z”: ai)\fa:i
=1 =1

which can be factorized as follows:

Akq(o) = oq)\]fa:l + OQ)\];J}Q 4+t ozn)\ﬁxn

k ag (A2 g an [ An y
041)\1 JJ1‘|—CTI )\*1 l‘2+"‘+071 )\71 Tn
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Convergence of power iteration, cont'd

From that expression, we have

1452 = |aaAT|(1 + O(1A2/Au])) and

Mk>

A1
which, along with the fact that ||4%¢(?)||; & |a; \¥| implies that our
estimate (%) = A%¢(0) /|| A¥q(O)|| approaches x; with an error O(|A2/\1|F).

In summary, we have
k k
> and AF) — )| =0 < > .

» Although it is a good starting point, this version of power iteration is
limited as it cannot find approximates of any eigenvalue except the largest
one. It also cannot leverage given approximations of ;.

[(aA}) 71 AFq® — 2], =0 <

A2
A1

o
A1

MW—mm=O<
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Inverse iteration

» Assume we are equipped with an approximation u of the eigenvalue \; of A.
> An inverse iteration uses p toform an abritrarily good approximation of \;.
» If 11 is a good approximation of )\;, then
The shifted matrix A — pl,, has a small eigenvalue \; — i
The shift-and-invert matrix (A — pI,,) ! has a large eigenvalue 1/()\; — u).
So, a power iteration applied to (A — uI,,)~! should allow us to calculate
x; very quickly, since 1/(A\; — u) is now the largest eigenvalue, with the
corresponding eigenvector ;.
The algorithm of inverse iteration is as follows:

Sample a random vector ¢(©) € C

¢ = q9/[lq 2

For k=0,1,2...
Solve for z (k) sit. (A— plp,)z®) = q®) /20— (A — 1) tg®
g+ = 20 /)20
A+ — (k+1)HAq(k+1)
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Convergence of inverse iteration

» Similarly to power iteration, we can characterize the convergence of inverse
interations by
k)

where \; and \; are the closest and second closest eigenvalues of A to p,
respectively.

Ai — [
Aj—

A® =Xl =0 <

If |\; — p| < |\j — p, then the convergence is fast.
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Rayleigh quotient iteration
> As inverse iterations progess, the iterate A(¥) becomes a better
approximation of the eigenvalue A; than .
One could use this fact to redefine the shift ;1 and get faster convergence.

» Let us assume the matrix A is real and symmetric so that its eigenvalues
and eigenvectors are real, and the eigenvectors are orthogonal.

» The idea to update the shift p during the iteration is deployed in an
algortihm called Rayleigh quotient iteration.

Let us consider the Rayleigh quotient given by r(z) = % for x # 0.
The Rayleigh quotient is used to approximate an eigenvalue.

Indeed, note that if z is an eigenvector of A, i.e., Az = Az, then r(z) = A
is the corresponding eigenvalue.
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Rayleigh quotient iteration, cont'd

» The algorithm for Rayleigh quotient iterations is as follows:

. Sample a random vector ¢(©) € C"
g = q0/)1g O

A0 = W

. Fork=0,1,2...

Solve for 2(¥) such that (A— )\(k)In)z(’f) = ¢k
q(k+1) — z(k)/||z(k)|!2
AU+ — (4D H g (k1)

N o oW

» Rayleigh quotient iterations converge faster than inverse iterations.
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Convergence of Rayleigh quotient iterations

» Note first that the gradient of the Rayleigh quotient 7 for a symmetric A is
given by Vr(x) = %(Am —r(x)x) so that r(x;) = \; implies Vr(z;) = 0.
More often than not, the zeros of Vr are saddle points, as the Rayleigh
quotient is only minimized (resp. maximized) at the smallest eigenpair
(resp. largest eigen-pair).

In particular, we remember the Courant-Fischer theorem from lecture 1
which states

Amin = min 2’ A and \0x = max xTA:E.

w40 Tz w0 xlx

» Then, suppose that y is close to an eigenvector x;, by Taylor expansion
around z;, we have

r(y)~r(x)+Vr(x) (y —x)+ (y —x) H(x)(y — x;)

A
it m / )
This is zero since Here, H is the Hessian matrix
Vr(x;)=0
r(x;) = A We have
(r=x)"H(x:) (y=x)) < IHG)I y—xlI> = 0 (Ily — x:1?)

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Convergence of Rayleigh quotient iterations, cont'd
Consequently, the first order term disapears, leaving us with
r(y) =X + O(lly — zil3)

and the behavior of the Rayleigh quotient near an eigenvector z; is as
follows:

r(x) The aradient Vr(x;) is zero
at x;, so the function r(x)

is flat here
o) 3|

- — = R"
Xi Y
e:=ly —xll

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Basic QR iteration

Section 5.2 in Darve & Wootters (2021)
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Basic QR iteration

» The PageRank algorithm is a variant of power iteration aimed at finding
the largest eigenvector of a modified adjacency matrix of a web graph.
However, in general, iterative methods for computing a single eigenpair
have limited applicability.

» Unlike those previously covered iterative methods for eigenvalue solving,
QR iterations aim at finding all the eigenvalues of a matrix.

» The QR iteration was elected one of the 10 best algorithms of the
20th century by Dongarra and Sullivan (2000).

» The QR iteration is the state of the art eigensolver for small dense
eigenvalue problems. It is implemented in LAPACK, and it serves as a
building block of larger, possibly sparse iterative eigensolvers.

» An important assumption of this Section is that A is diagonalizable with
separate eigenvalues, i.e., such that [A{| > [Ao| > -+ > [\,

Because A is real with separate eigenvalues, we have that eigen- and Schur

decompositions of A are real.

Dongarra, J., & Sullivan, F. (2000). Guest editor's introduction: The top 10 algorithms. Computing in Science &
Engineering 2, 22-23.
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Orthogonal iteration for r = 2
» Orthogonal iterations allow us to recover more than one eigenvalue at once.
» For starter, consider that only r = 2 eigenvalues are needed.

Then, the pseudocode of orthogonal iterations is as follows:

1. Sample two random vector ¢1, ¢z € R
2. While not converged :

3. q1:=Aq; @@= Ag

4. Project g, onto the space orthogonal to q1 // ¢» = <I,L — qlqr) g2
5

6

¢
a1 = q1/llarll2; g2 := a2/llazll2
. Return ¢f' Agy and ¢f Ago

Disregarding the vector g9, the vector ¢; undergoes a standard power
iteration so that, at the k-th step, we have

) Akgl?)
w _ Al
| Akg 15

which converges towards 1.
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Orthogonal iteration for r = 2, cont'd;
» If we assume that ¢; ~ x1 has already converged, then the update step for

g is of the form qék) ~ (I — xlx{)Aqékfl)

where I,, — a:la:{ is the orthogonal projector onto span{z}~.
Thus, g2 is undergoing a power iteration with the matrix (I,, — a:lxlT)A.
It can be shown that the largest eigenvalue of this matrix is Ao with an
eigenvector along (I, — m127 )zo towards which go converges.

» Note that, if #1 and 3 are not orthogonal, then (I,, — 127 )2y is not
aligned with x2. However, we do have span{q;, ¢2} = span{x1,x2}.
Then, we claim that QT AQ where Q = [q1 q2] converges to an

upper-triangular matrix with A; and A2 on the diagonal :
91 92

L

T
ql\

!

Q

T —~
q,

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Orthogonal iteration for r = 2, cont'd,

- First, the upper-triangularity is explained as follows:
B A~ g Ary = Mgy T = Mg qr =0

so that the lower-left entry converges to zero.

- To see that A1 and \s lie on the diagonal, it suffices to show that they
are eigenvalues of QT AQ, as QT AQ is triangular.

For this, since span{qi, g2} = span{z1,x2} after convergence, then
there is v; € R? such that Qu; ~ z; and we have

QT AQui = Q" Az = \iQ"mi = \Q" Qui = \iv

so that v; is an eigenvector of QT AQ with eigenvalue \; for i = 1,2.

- Since Q is orthogonal and QT AQ is upper triangular with the same
eigenvalues as A, it seems that Q(QT AQ)QT is a Schur decomposition
of A.
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Orthogonal iteration for general r

» When an arbitrary number r of eigenvalues is sought, the approximate
eigenvectors are orthogonalized by performing a QR factorization, leading
to the following pseudocode:

1. Sample a random matrix Q¢ € R™*"

2. k:=0

3. While not converged :

4. Yip = AQyg

5 Compute QR factorization Qg1 Rkr1 = Yit1
6 k=k+1

7. Return diag(Q¥ AQx,)

Similarly as with r = 2, this method converges to an upper-triangular
matrix Q;{AQk with eigenvalues A1, ..., A,

Once the algorithm has converged, the approximate eigenvalues can be
read from the diagonal of the Schur form QT AQy,.
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Convergence of orthogonal iteration for general r

» If A is symmetric, then the eigenvectors z1, ..., x, are orthogonal, and the
(k)

i-th column of @}, which we denote by ¢;"’, converges to +u;.

For general matrices, things are different.
» Let us denote the matrices Q% € R™*" and R* € R"*" such that

[x1 ... 2] = Q°R".

We see that the iterate (Q; converges to Q™:

Since qg ) undergoes a normal power iteration, it converges to x; = ¢f.

For qék), the QR decomposition ensures span{zi,z2} = span{q¢{, ¢} and

we have
(k) (k)y _ r
span{q; ', qy '} ~ span{z1, 2} = span{qy, ¢3 }

Thus qék) converges to something in the space span{q{, ¢3}, and it also

has to be orthogonal to qgk) ~ qf. Therefore qék) has to converge to +qj.

(k)
; converges to £¢7. Overall, we have that @)}, converges to Q7
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Convergence to the Schur decomposition

» Now that we know that Q) converges to Q*, we can analyze the matrix
QT AQy, which converges to Q*T AQ® up to some columnwise sign
changes.

» Since AX = XA where X = [z1,...,2,] and A = diag(A1,..., ), the
definitions of Q* and R® imply that
AX = XA
QacTAQzR:v(Rx)—l — QJ:TQIRJJA(R:U)—I
QJ?TAQZ — RxA(R$)—1
Since R is upper triangular and A is diagonal, we have that R*A(R®)~!
is upper triangular.

More particularly, we also have that Q*7 AQ® is upper triangular with the
eigenvalues A1, ..., A, on the diagonal.

Then, the matrix Qg’AQk converges to QT AQ®, which is upper
triangular and has the top r eigenvalues of A on the diagonal.
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Convergence of orthogonal iteration

» The convergence analysis being sequential, i.e., we assumed q%k) ~ qf,
then showed that qék) converges to ¢, and so on; may lead to think that
the convergence of orthogonal iteration is slow. l.e., we first have to wait

that qgk) converges, then qék), and so on.

(k)

%

But, in fact, what actually happens is that all of the ¢
simultaneously.

converge

» It can be shown that the convergence of the iterate Qj to Q* depends,
similarly as before, on the separation between A, and A, 1. In particular,

we have
k)

That is, the smaller |A,1/\;|, the faster the convergence of Q) to Q.

)\r+1
Ar

1QKQ% — Q™ |2 =0 (‘
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QR iteration

> QR iterations are a re-framing of orthogonal iterations with = n.

QR iterations yield the full Schur decomposition ' = QT AQ of A where T
is an n-by-n upper triangular matrix with the eigenvalues of A on the
diagonal, and @ is a n-by-n orthogonal matrix of a QR decomposition of
the eigenvectors X of A.

» The iterate of QR iteration is denoted by Q. with a corresponding matrix
Ty := QL AQy.

» The formulation of QR iterations is more commonly expressed as a
recurrence from Tj, = QT AQj, to Ti1 = QF 1 AQp+1.

From the definition of orthogonal iterations, we have

Qri1Rir1 = AQy so that Ty = QT AQk = QF Qry1Riss

and, since r = n, we have QxQ¥ = I,, and

Rk+1Q£ = Q£+1A so that Ty 1 = Q;}FHAQkH = Rk+1Q£Qk+1
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QR iteration, cont'd;
Then, as we let U1 := Q;{Qkﬂ, we have
Ty =Upt1 R4
Ti+1 = Rg41Uk+

where Ry is upper triangular, and Uy 1 is orthogonal.

Note that Uy1Ry11 is a QR decomposition of T}, = Q{AQ;C.
This yields the following pseudocode to compute the eigenvalues of A :

1. Tp:=A

2. k=0

3. While not converged :

4. Compute QR factorization Uy11Ri+1 = Tk
5 Tky1 = Rg1Ukna

6 k=k+1

7. Return diag(T})

Notice that A is only needed at the start of the algorithm, after what we
only repeatedly compute QR decompositions and switch the factors.
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QR iteration, cont'ds

» In this algorithm, the matrix U1 = Qg@k_i'_:[ represents an orthogonal
correction.

Since upon convergence Uy — I,,, the determinant of Uy is 1 for large k,
and we can interpret Uy as a small rotation on the orthogonal vectors in
Q. In particular, we have:

Up...Up1 = Q5 Q1Q7TQ2 ... QF Qi1 = QoQrt1 = Qi1

because we chose Qg = I,,.
As the algorithm converges, Q. and Q11 become very close.

» In the symmetric case, T} = Q;{AQk is symmetric, but since it also
converges to an upper symmetric matrix, it actually converges to a
diagonal form, in which case the Schur decomposition is actually an
eigendecomposition.
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QR iteration, cont'ds
» The QR iteration presented so far has drawbacks:
- A QR factorization at cost O(n?) is computed at each iteration.
- The convergence depends heavily on the distribution of the eigenvalues,
and it may never converge if two eigenvalues have the same magnitude.
» Improvements of the QR iteration method can be introduced to improve
the robustness and efficiency:
- The transformation of A into an upper Hessenberg form allows to
decrease the cost of the QR factorizations.
- A shifted version of the QR iteration can improve convergence, even
when the eigenvalues are not well-separated, making the method robust
to cases of eigenvalues with equal magnitudes.
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Other methods and implementations
Section 5.2 in Darve & Wootters (2021)
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Divide-and-conquer method

» A symmetric matrix can efficiently be transformed into a tridiagonal form
using an orthogonal transformation

QTAQ =T.

Then, the eigendecomposition of A can be obtained from that of T.

» The divide-and-conquer method splits the tridiagonal matrix into two
tridiagonal blocks plus a rank-1 perturbation:

T= [TI ] + puuT.

Ty
» The method proceeds as follows:
@ Calculate the eigendecompositions of 77 and T5.

@ The rank-1 perturbation allows to compute the eigenvalues of T' given
the eigendecompositions of T} and T5.
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Method of bissection

» The method of bissection also considers a tridiagonal form QT AQ = T.
» The eigenvalues of T are the roots of p,(A) = det(T" — AI,,).

Finding these roots is generally a complex problem, but it can be simplified
if we consider only the leading r-by-r block T} of T and the corresponding
characteristic polynomial

pr(A) = det(T,, — AL,).

» As T is tridiagonal, it is possible to find a simple relation between p,., p,_1
and p,_o.

Using this sequence of polynomials, the method of bissection is able to
efficiently calculate the roots of p,,.
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Existing implementations

» QR iteration:
- Auvailable for general matrices.
- Implementation sometimes requires tridiagonalization.
- Fastest to compute the eigendecomposition of small matrices (n < 25).
- Algorithm behind the Matlab, NumPy and Julia functions.
- Available in LAPACK as ssyev for dense symmetric matrices.
- Available in LAPACK as sstev for symmetric tridiagonal matrices.

» Divide-and-conquer method:
- Available for symmetric matrices.
- Implementation requires tridiagonalization.
- Fastest to compute the eigendecomposition of medium size tridiagonal

matrices, i.e., for n > 25.

- Available in LAPACK as sstevd for symmetric tridiagonal matrices,

sstevd defaults to QR iteration for smaller matrices.
» Method of bissection:

- Available in LAPACK as ssyevx for dense symmetric matrices.
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