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Methods based on optimization
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Extremal generalized eigenvalue problem
▶ Generalized eigenvalue problem:

Find non-trivial (x, λ) such that Ax = λBx

- A is symmetric (or Hermitian)
- B is symmetric positive definite (SPD)
- Applications: structural dynamics, quantum mechanics, data analysis, ...

▶ Challenges:
- Computing a few extremal eigenvalues of large sparse matrices
- Achieving fast convergence while limiting memory usage
- Handling ill-conditioned problems effectively

▶ Characterization of the extremal generalized eigenpair:
We are looking for an extremal (min or max) generalized eigenpair (λ, x).
Since B is SPD, it admits a Cholesky decomposition B = LLT .
Let the generalized Rayleigh quotient of (A,B) be given by

ρ(x) =
xTAx

xTBx
for xTBx > 0
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Characterization of the extremal generalized eigenpair
Making the substitution y := LTx, the generalized Rayleigh quotient
becomes the standard Rayleigh quotient of L−1AL−T :

ρ =
xTAx

xTBx
=

(L−T y)TA(L−T y)

(L−T y)TB(L−T y)
=

yTL−1AL−T y

yT y

Since L−1AL−T is symmetric, the Courant-Fischer theorem implies that
the extremum of ρ is the extremal eigenvalue λ of L−1AL−T .
Then, since we have L−1AL−T y =λy

L−1AL−TLTx =λLTx

Ax =λLLTx

Ax =λBx

the extremum value λ of ρ(x) is the extremal eigenvalue of the generalized
eigenvalue problem Ax = λBx, with eigenvector x.

▶ Finding an extremal generalized eigen-pair of (A,B) is equivalent to an
optimization problem of the generalized Rayleigh quotient xTAx

xTBx
.
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Steepest descent iteration
▶ Iterative methods based on the optimization of the quotient ρ(x) = xTAx

xTBx
generate sequences x1, x2, . . . of approximate eigenvectors based on a
given recurrence formula with an initial iterate x0.

▶ In particular, the steepest descent (SD) iteration is of the form

xi+1 = xi − αi∇ρ(xi)

where αi is a step size chosen to minimize ρ(xi+1) in the direction of the
gradient ∇ρ(xi) given by:

∇ρ(xi) =
2

xTi Bxi
(Axi − ρ(xi)Bxi) =

2

xTi Bxi
ri ∝ ri

where ri := Axi − ρ(xi)Bxi is the generalized eigen-residual.
Thus, the iterate xi+1 is searched in xi + span{ri}.

▶ To accelerate convergence, a preconditioner T can be applied to ri, in
which case the new iterate xi+1 is searched in xi + span{Tri}.

▶ As 1-dimensional affine subspace approximations, SD iterations exhibit
slow convergence, especially for ill-conditioned problems.
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Conjugate gradient iteration
▶ Conjugate gradient (CG) iterates x0, x1, . . . were introduced by Hestenes

and Stiefel (1952) to approximate A−1b where A is SPD (see Lect. 13).
From the lens of optimization, those iterates attempt to minimize a
quadratic function of the form xTAx− 2xT b.

▶ Later, Fletcher and Reeves (1964) adapted CG iterations to optimize more
general forms of functions, leading to the so-called nonlinear CG.
- For vector-valued functions f : Rn → R, the nonlinear CG iterate

xi+1 ∈ xi + span{pi}

is set to optimize f along the search direction pi, where the search
directions p0, p1, . . . are updated such that

pi ∈ −∇f(xi) + span{pi−1}

for i = 1, 2, . . . , with p−1 := 0.
- Different search direction update formulae lead to different variants.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of research of
the National Bureau of Standards, 49(6), 409-436.
R. Fletcher & C.M. Reeves (1964). Function minimization by conjugate gradients, Computer Journal, 7, 149–154.
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Preconditioned conjugate gradient iteration
▶ When applied to general Rayleigh quotients of symmetric matrix pencils

(A,B) with SPD B, the exact implementation of nonlinear CG iterates is
such that

xi+1 := argmin (or max)
x∈xi+span{pi}

ρ(x)

where the search direction

pi ∈ zi + span{pi−1} with p−1 := 0 , zi := Tri and ri := Axi − λiBxi

can be specified after different formulae, leading to different variants of the
algorithm, see Feng and Owen (1996).

▶ To accelerate convergence, one can introduce a preconditioner z 7→ Tr,
leading to preconditioned CG (PCG) iterations.

Feng, Y. T., & Owen, D. R. J. (1996). Conjugate gradient methods for solving the smallest eigenpair of large
symmetric eigenvalue problems. International Journal for Numerical Methods in Engineering, 39(13), 2209-2229.
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Locally optimal preconditioned conjugate gradient iteration
▶ To motivate the locally optimal preconditioned conjugate gradient

(LOPCG) iteration, we note that while PCG iterates x1, x2, . . . can be
expressed as approximations over a three-dimensional subspace, i.e.,

xi+1 ∈ span{xi, zi, pi−1},

they are generally not optimal over that space.
▶ On the other hand, the LOPCG iterates introduced by Knyazev (1991,

2001) are actually optimal over that space. That is,

xi+1 = arg min (or max)
x∈span{xi,zi,pi−1}

ρ(x).

▶ Now, to deploy LOPCG, we need to be able to find the approximation xi+1

that optimizes the Rayleigh quotient ρ(x) over a search space range(Vi+1)
with a given full-rank basis matrix Vi+1, e.g., Vi+1 := [xi, zi, pi−1].

Knyazev, A. V. (1991). A preconditioned conjugate gradient method for eigenvalue problems and its implementation in
a subspace. In Numerical Treatment of Eigenvalue Problems Vol. 5/Numerische Behandlung von Eigenwertaufgaben
Band 5: Workshop in Oberwolfach, February 25–March 3, 1990/Tagung in Oberwolfach, 25. Februar–3. März 1990
(pp. 143-154). Birkhäuser Basel.
Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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Rayleigh-Ritz projection of generalized eigenvalue problems
▶ Rayleigh-Ritz approximations are an instance of orthogonal projection (see

Lecture 01) for (generalized) eigenvalue problems.
They are essential to the deployment of LOPCG.

Rayleigh-Ritz procedure with respect to range(V )

For some matrices A ∈ Fn×n and B ∈ Fn×n along with a basis matrix
V ∈ Fn×m (typically with m≪ n), the Rayleigh-Ritz procedure is given by:

RR : (A,B, V, k) 7→ ([x̂1, . . . , x̂k], diag(λ1, . . . , λk))

s.t. rℓ := AV x̂ℓ − λℓBV x̂ℓ ⊥ range(V ) for ℓ = 1, . . . , k

for any 1 ≤ k ≤ m where each (λℓ, x̂ℓ) ∈ C×Cm \ {0} is a distinct eigenpair
of the projected problem given by:

V HAV x̂ℓ = λℓV
HBV x̂ℓ.

Then, (λℓ, V x̂ℓ) is called a Rayleigh-Ritz pair of the matrix pencil (A,B).

Remark: Rayleigh-Ritz procedures may be applied to non-symmetric
matrices and their use is not limited to the context of LOBPCG.
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LOPCG iteration
▶ The main LOPCG iterate xi+1 = Vi+1x̂i+1 is recast as follows

xi+1 =
[
xi zi pi−1

] x̂i+1|xi

x̂i+1|zi
x̂i+1|pi−1

 = xix̂i+1|xi
+ zix̂i+1|zi + pi−1x̂i+1|pi−1︸ ︷︷ ︸

pi

for i = 1, 2, . . . , which leads to the following algorithm:

LOPCG(A, B, x0, T ):
r0 := Ax0 −Bx0λ0

for i = 0, 1, . . . do
zi := Tri
if i = 0 then Vi+1 := [xi, zi] else Vi+1 := [xi, zi, pi−1]

(x̂i+1, λi+1)← [ RR(A,B, Vi+1, 1)

xi+1 := Vi+1x̂i+1

ri+1 := Axi+1 −Bxi+1λi+1

if i = 0 then pi := zix̂i+1|zi else pi := zix̂i+1|zi + pi−1x̂i+1|pi−1

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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LOBPCG iterations
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Locally optimal block preconditioned conjugate gradient
▶ We now search for X ∈ Rn×k and Λ = diag(λ1, . . . , λk) for k ≤ n s.t.

AX = BXΛ

where XTBX = Ik and λ1, . . . , λk are extremal generalized eigenvalues of
the matrix pencil (A,B).
X can then be defined as the minimizer of trace(XTAX) subjected to the
constraint XTBX = Ik.

▶ Knyazev (2001) introduced LOBPCG as a block version of LOPCG,
which simultaneously produces iterates for the approximation of multiple
dominant eigen-pairs.

▶ Given an initial iterate X0, LOBPCG generates a sequence of iterates
X1, X2, . . . which, in their earliest form, are obtained by Rayleigh-Ritz
projection in locally optimal subspaces range([Xi, Zi, Pi−1]), where
Zi := TRi in which the columns of Ri are eigen-residuals, and Pi−1 is
block of search directions.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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LOBPCG iterations
▶ As a means to accelerate convergence, one can a number m of vector

iterates, i.e., Xi ∈ Rn×m, while monitoring the convergence of only k < m
dominant eigenpairs:

LOBPCG(A, B, X0, T , k):

(X̂0,Λ0)←[ RR(A,B,X0,m) ; X0 := X0X̂0 ; R0 := AX0 −BX0Λ0

for i = 0, 1, . . . do
Zi := TRi

if i = 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Pi−1]

(X̂i+1,Λi+1)←[ RR(A,B, Vi+1,m)

Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1

if i = 0 then Pi := ZiX̂i+1|Zi
else Pi := ZiX̂i+1|Zi

+ Pi−1X̂i+1|Pi−1

where use is made of the following notation:

X̂i+1 = [X̂T
i+1|Xi

, X̂T
i+1|Zi

, X̂T
i+1|Pi−1

]T

to refer to the different blocks of the reduced block of Raleigh-Ritz vectors.
Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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Implicit product updates
▶ From the fact that P1 = Z0X̂1|Z0

we can compute the products AP1 and
BP1 from AZ0 and BZ0 as follows:

AP1 := AZ0X̂1|Z0
and BP1 := BZ0X̂1|Z0

.

▶ From the fact that X1 = X0X̂1|X0
+ Z0X̂1|Z0

, the products AX1 and
BX1 can be formed from AX0, AP1, BX0 and BP1 as follows:

AX1 := AX0X̂1|X0
+AP1 and BX1 := BX0X̂1|X0

+BP1.

▶ For i > 0, from the fact that Pi = ZiX̂i+1|Zi
+ Pi−1X̂i+1|Pi−1

, the APi

and BPi can be calculated as follows from AZi, APi−1, BZi and BPi−1:

APi := AZiX̂i+1|Zi
+APi−1X̂i+1|Pi−1

BPi := BZiX̂i+1|Zi
+BPi−1X̂i+1|Pi−1

.

▶ For i > 0, from the fact that Xi+1 = Pi +XiX̂i+1|Xi
, AXi+1 and BXi+1

can be calculated as follows from APi, AXi, BPi and BXi+1:

AXi+1 := APi +AXiX̂i+1|Xi
and BXi+1 := BPi +BXiX̂i+1|Xi

.
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Sources of instability in LOBPCG iterations
The instability of LOBPCG was showcased and related to the ill-conditioning
of V T

i+1BVi+1. This was explained as follows in the works of Hetmaniuk and
Lehoucq (2006), Knyazev et al. (2007) and Duersch (2015):
▶ RR(A,B, Vi+1,m) needs to solve for (X̂,Λ) in the reduced equation

V T
i+1AVi+1X̂ = V T

i+1BVi+1X̂Λ.

This is done by computing the Cholesky decomposition LLT = V T
i+1BVi+1

before solving for (Ŷ ,Λ) in the standard symmetric eigenvalue problem

L−1V T
i+1AVi+1L

−T Ŷ = Ŷ Λ

and letting X̂ := L−T Ŷ .
When V T

i+1BVi+1 is ill-conditioned, the Cholesky factorization may fail or
lead to significant round-off error upon factor deployment.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.
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Sources of instability in LOBPCG iterations, cont’d
▶ Additionally, the following observations were made:

The projected matrix V T
i+1BVi+1 can become ill-conditioned irrespective

of the conditioning of B.
When the number k of approximated eigenvectors is large, V T

i+1BVi+1

can become ill-conditioned before any eigenvector is accurately
approximated.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.
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More stable variants of LOBPCG iterations
▶ "Ortho_LOBPCG": Hetmaniuk and Lehoucq (2006) perform a full

B-orthonormalization of the basis matrix Vi+1 := [Zi, Xi, Pi−1].
We will see that the B-orthonormalization of Vi+1 can be decomposed into
two parts: an expensive procedure, and an "economic" one.

▶ BLOPEX: Knyazev et al. (2007) propose to B-orthonormalize the Zi and
Pi blocks independently. In exact arithmetic, this yields:

XT
i BXi = Im (by RR construction), ZT

i BZi = Im and P T
i−1BPi−1 = Im

but, in general, ZT
i BXi ̸= Im, ZT

i BPi−1 ̸= Im and P T
i−1BXi ̸= Im.

▶ "Skip_ortho_LOPBCG": Duersch et al. (2018) propose to skip the
expensive part of the B-orthonormalization of Vi+1 when it is not needed.

▶ Mixed precision LOBPCG: Kressner et al. (2023) introduce
mixed-precision orthonormalization for standard problems, i.e., B := In.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
Kressner, D., Ma, Y., & Shao, M. (2023). A mixed precision LOBPCG algorithm. Numerical Algorithms, 94(4),
1653-1671.
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BLOPEX iterations
▶ Any given basis matrix W can be B-orthonormalized by computing

W ← [ W chol(W TBW )−T where chol(W TBW ) denotes the Cholesky
factor of W TBW .
B-orthonormalizing the Zi and Pi iterates of LOBPCG independently
before each Rayleigh-Ritz procedure yields the BLOPEX algorithm:

BLOPEX(A, B, X0, T , k):
B-orthogonalize X0: L←[ chol(XT

0 BX0) ; X0 := X0L
−T

for i = 0, 1, . . . do
Ri := AXi −BXiΛi; Zi := TRi

B-orthogonalize Zi: L←[ chol(ZT
i BZi) ; Zi := ZiL

−T

if i = 0 then Vi+1 := [Xi, Zi]
else

B-orthogonalize Pi−1: L←[ chol(PT
i−1BPi−1) ; Pi−1 := Pi−1L

−T

Vi+1 := [Xi, Zi, Pi−1]

(X̂i+1,Λi+1)← [ RR(A,B, Vi+1,m)

if i = 0 then Pi := ZiX̂i+1|Zi
else Pi := ZiX̂i+1|Zi

+ Pi−1X̂i+1|Pi−1

Xi+1 := XiX̂i+1|Xi
+ Pi

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 15 / 25



LOBPCG iterations with full
B-orthonormalization
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LOBPCG iterations with full B-orthonormalization
▶ LOBPCG is made more robust by making Vi+1 B-orthonormal, i.e., by

making sure that V T
1 BV1 = I2m and V T

i+1BVi+1 = I3m for i = 1, 2, . . .
▶ To do so, Hetmaniuk and Lehoucq (2006) rely on a generic procedure that

B-orthonormalizes a basis matrix Z ∈ Rn×p against another basis matrix
W ∈ Rn×q:

OrthoB : (Z,W ) 7→ V ∈ Rn×p s.t.


V TBV = Ip

V TBW = 0p×q

range(Z) ⊆ range(V )

.

▶ Then, the fully orthogonalized variant of LOBPCG consists of performing
Vi+1 ←[ OrthoB([Zi, Xi, Pi−1], [Zi, Xi, Pi−1])

before each Rayleigh-Ritz projection with respect to range(Vi+1).
▶ Assuming Xi is B-orthonormal by construction, we can equivalently

perform the following sequence of B-orthogonalizations:

Zi ←[ OrthoB(Zi, [Xi, Pi−1])

Pi ←[ OrthoB(Pi, Xi+1)
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
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Economic B-orthonormalization of search directions
▶ The cost of deploying the B-orthonormalization procedures is significant,

so that it is particularly relevant if those can be simplified.
As it turns out, the LOBPCG iterate given by

Xi+1 = Vi+1X̂i+1 =

{
XiX̂i+1|Xi

+ ZiX̂i+1|Zi
for i = 0

XiX̂i+1|Xi
+ ZiX̂i+1|Zi

+ Pi−1X̂i+1|Pi−1
for i = 1, 2, . . .

along with search direction given by

OrthoB(Pi, Xi+1) =

{
Vi+1 Ortho([0m×m, X̂T

i+1|Zi
]T , X̂i+1) for i = 0

Vi+1 Ortho([0m×m, X̂T
i+1|Zi

, X̂T
i+1|Pi−1

]T , X̂i+1) for i = 1, 2, . . .

(1)

where Ortho(Z,W ) := OrthoI(Z,W ).
Using the latter economic B-orthonormalizion of the search directions
instead of the former helps mitigate this cost.

▶ Eq. (1) can be shown to hold in exact arithmetic by induction (homework
problem).

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
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Choice of B-orthonormalization procedure
▶ SVD-based B-orthonornomalization (SVQB, Stathopoulos & Wu (2002))

=⇒ cache-efficient, highly stable, with low synchronization cost.
OrthoB(U, V ):
do

U := U − V (V TBU)

do
U := SVQB(B,U)

while ∥UTBU−Ip∥
∥BU∥∥U∥ < τortho

while ∥V TBU∥
∥BV ∥∥U∥ < τortho

return U

SVQB(U , B):

D := (diag(UTBU))−1/2

Solve for eigen-pairs Z,Θ of DUTBUD
such that DUTBUDZ = ZΘ

θmax := maxi |Θii|
for i = 1, . . . , p do

if Θii < τ θmax then Θii := τ θmax

return UDZΘ−1/2

where τortho and τ are set to modest multiples of the machine precision.
▶ Householder QR =⇒ highly stable, but difficult to implement for B ̸= In.
▶ Gram-Schmidt procedures =⇒ less efficient than SVQB.
▶ Cholesky QR procedures.
Stathopoulos, A., & Wu, K. (2002). A block orthogonalization procedure with constant synchronization requirements.
SIAM Journal on Scientific Computing, 23(6), 2165-2182.
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LOBPCG iterations with skipped
B-orthonormalization
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LOBPCG iterations with skipped B-orthonormalization
▶ B-orthonormalizing Zi against [Xi, Pi−1] is not always necessary for a

stable implementation of LOBPCG.
This fact is leveraged by Duersch et al. (2018) who propose to skip the
most costly part of the B-orthonormalization when possible:
1. Start with Ortho_LOBPCG iterations without the B-orthonormalization

of Zi against [Xi, Pi−1]:
- The low-cost part of the B-orthonormalization in Ortho_LOBPCG

iterations, i.e.,

Pi ←[Vi+1Ortho([0m×m, X̂T
i+1|Zi

, X̂T
i+1|Pi−1

]T , X̂i+1)

is equivalently carried out at each iteration.
- Due to the fact that Zi is not B-orthonormal with respect to
[Xi, Pi−1], the economic B-orthonormalization of Pi against Xi+1

becomes

Pi ←[Vi+1OrthoV T
i+1BVi+1

([0m×m, X̂T
i+1|Zi

, X̂T
i+1|Pi−1

]T , X̂i+1).

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
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LOBPCG iterations with skipped B-orthonormalization, cont’d1
2. As long as Vi+1 is not B-orthonormal, deploying the Rayleigh-Ritz

procedure requires to factorize the projected matrix V T
i+1BVi+1 (see

slide 12) whose ill-conditioning is addressed as follows:

1. D := diag(V T
i+1BVi+1)

−1/2

2. Compute Cholesky decomposition LLT = DV T
i+1BVi+1D

3. Solve for reduced eigenpairs (Λ, X̂) such that

L−1DV T
i+1BVi+1DL−T X̂ = X̂Λ

4. Form Rayleigh-Ritz vectors as X := Vi+1DL−T X̂

The conditioning of the Cholesky factor L is monitored to decide when
to trigger the B-orthonormalization of Zi against [Xi, Pi−1].
Since 3 triangular solves need be applied to form the Rayleigh-Ritz
vectors, Duersch et al. (2018) check if cond(L)−3 is greater than a
modest multiple of machine precision to decide when to trigger the
B-orthonormalization of Zi against [Xi, Pi−1].

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
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LOBPCG iterations with skipped B-orthonormalization, cont’d2
▶ We refer to these iterations as Skip_ortho_LOBPCG defined as follows:

Skip_ortho_LOBPCG(A, B, X0, T , k, τskip):

(X̂0,Λ0)← [ RR(A,B,X0,m)

X0 := X0X̂0; R0 := AX0 −BX0Λ0; Z0 := TR0

for i = 0, 1, . . . do
if skipOrtho

if i = 0 then Zi ← [ OrthoB(Zi, Xi) else Zi ← [ OrthoB(Zi, [Xi, Pi−1])

if i = 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Pi−1]

(X̂i+1,Λi+1)←[ RR(A,B, Vi+1,m) ▷L is a by-product s.t. LLT = DV T
i+1BVi+1D

if skipOrtho
if cond(L)−3 < τskip then skipOrtho := False ; restart i-th iteration

Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1; Zi+1 := TRi+1

if i = 0 then
Ŷi+1 ← [ OrthoV T

i+1BVi+1
([0m×m, X̂T

i+1|Zi
]T , X̂i+1)

else
Ŷi+1 ← [ OrthoV T

i+1BVi+1
([0m×m, X̂T

i+1|Zi
, X̂T

i+1|Pi−1
]T , X̂i+1)

Pi := Vi+1Ŷi+1

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
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Monitoring and handling convergence
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Handling convergence
▶ Different eigenvectors may converge at different stages of the iteration.

Maintaining converged eigenvectors to perform subsequent iterations
1 requires unnecessary computational work,
2 can lead to instabilities.

=⇒ A robust and efficient implementation of LOBPCG needs to detect, and
properly handle converged eigenvectors.

▶ Two approaches possible, see Knyazev (2004) and Knyazev et al. (2007):
Hard locking: converged eigenvectors are set aside, kept unchanged, and
B-orthogonalized against by the non-converged, still iterated eigenvectors.
▶ As the number of hard locked vectors increases, the attainable accuracy of the

iterated eigenvectors may decrease, possibly making convergence unachievable.
Soft locking: the residuals and search directions of converged eigenvectors
are set aside, and kept unchanged, but the corresponding locked eigenvectors
still participate to subsequent Rayleigh-Ritz procedures.
▶ The locked eigenpairs keep getting more accurate over subsequent iterations, and

the B-orthogonality is maintained implicitly through the Rayleigh-Ritz procedures.

Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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Handling convergence, cont’d
▶ Soft locking is more computationally demanding than hard locking, but it

enables more robust convergence behaviors when more accurate solutions
are needed.

▶ In practice, convergence may be detected in unordered fashions, i.e., the
inner eigenpairs converge before the smallest eigenpairs.

▶ We denote two distinct approaches to deal with this situation:
out-of-order locking: if locking is implemented out of order, one needs to
re-order the stored iterates so as to seamlessly rely on standard BLAS libraries,
which operate most efficiently on contiguous data.
in-order locking: more commonly in practice, locking is implemented in
order, disregarding the fact that some inner eigenpairs may converge before
the sought least dominant eigenpairs.
- Maintaining such unlocked but converged eigenvectors in the iterations can lead

to unstable behaviors of LOBPCG.
Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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Landscape of existing software
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Existing implementations of LOBPCG
Different implementations of LOBPCG have been developed over the years. In
particular, we know of implementations and bindings in the following libraries:

▶ BLOPEX: C implementation with MPI support after Knyazev et al. (2007).
On GitHub at lobpcg/blopex.

BLOPEX also available in/through Matlab, SLEPc and Hypre.

▶ MAGMA: C++ implementation based on BLOPEX for B := In and
T := In with GPU support. On GitHub at

CEED/MAGMA/sparse/src/zlobpcg.cpp

▶ SciPy: Python implementation based on BLOPEX. On GitHub at

scipy/sparse/linalg/eigen/lobpcg/lobpcg.py

▶ IterativeSolvers.jl: Julia implementation based on BLOPEX with
multithreaded BLAS support. On GitHub at

JuliaLinearAlgebra/IterativeSolvers.jl/src/lobpcg.jl
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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https://github.com/lobpcg/blopex
https://www.mathworks.com/matlabcentral/fileexchange/48-locally-optimal-block-preconditioned-conjugate-gradient
https://slepc.upv.es/documentation/current/src/eps/impls/cg/lobpcg/lobpcg.c
https://hypre.readthedocs.io/en/latest/solvers-lobpcg.html
https://github.com/CEED/MAGMA/blob/master/sparse/src/zlobpcg.cpp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html
https://iterativesolvers.julialinearalgebra.org/stable/eigenproblems/lobpcg/


Existing implementations of LOBPCG, cont’d
▶ BLOPEX (Knyazev et al., 2007) has become the most widely used

implementations of LOBPCG.
BLOPEX became the standard with adoption through Hypre, SLEPc, ...

▶ At the moment, there seems to be no widely used implementations of
Ortho_LOBPCG (Hetmaniuk and Lehoucq, 2006)
Skip_ortho_LOBPCG (Duersch et al., 2018)
Mixed precision LOBPCG (Kressner et al., 2023)

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
Kressner, D., Ma, Y., & Shao, M. (2023). A mixed precision LOBPCG algorithm. Numerical Algorithms, 94(4),
1653-1671.
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https://github.com/lobpcg/blopex
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://slepc.upv.es/
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