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Methods based on optimization
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Extremal generalized eigenvalue problem

» Generalized eigenvalue problem:

Find non-trivial (z, A) such that Az = ABxz

- A is symmetric (or Hermitian)

- B is symmetric positive definite (SPD)

- Applications: structural dynamics, quantum mechanics, data analysis, ...
» Challenges:

- Computing a few extremal eigenvalues of large sparse matrices

- Achieving fast convergence while limiting memory usage

- Handling ill-conditioned problems effectively
» Characterization of the extremal generalized eigenpair:

We are looking for an extremal (min or max) generalized eigenpair (A, x).

Since B is SPD, it admits a Cholesky decomposition B = LL” .

Let the generalized Rayleigh quotient of (A, B) be given by

T
xt Az T
p(z) = THq for z°Bx >0
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Characterization of the extremal generalized eigenpair
Making the substitution y := L™z, the generalized Rayleigh quotient
becomes the standard Rayleigh quotient of L~ AL~

aTAx (L7Ty)TALTy)  y"LPAL Ty
PTATBr ~ (LTyTBILTy) 4Ty

Since L' AL~ is symmetric, the Courant-Fischer theorem implies that
the extremum of p is the extremal eigenvalue \ of L= AL~T.

Then, since we have LflAL*Ty —\y
L'ALTTL e =ML
Az =\LL"x
Ax = \Bzx

the extremum value A of p(x) is the extremal eigenvalue of the generalized
eigenvalue problem Ax = ABx, with eigenvector z.
» Finding an extremal generalized eigen-pair of (A, B) is equivalent to an
T . . . . zT Az
optimization problem of the generalized Rayleigh quotient =7
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Steepest descent iteration
zT Az

> lterative methods based on the optimization of the quotient p(x) = “r5”
generate sequences z1, x2, ... of approximate eigenvectors based on a
given recurrence formula with an initial iterate xg.

» In particular, the steepest descent (SD) iteration is of the form

Tiv1 = x; — a;Vp(z;)

where «; is a step size chosen to minimize p(x;+1) in the direction of the
gradient Vp(z;) given by:
2 2

(Az; — p(x;)Bz;) =

TB:EZ xiTBaji

Vp(z;) = T X T
where r; := Az; — p(z;)Bx; is the generalized eigen-residual.
Thus, the iterate x;; is searched in z; + span{r;}.

» To accelerate convergence, a preconditioner T' can be applied to r;, in
which case the new iterate x;1 is searched in x; + span{7Tr;}.

» As 1-dimensional affine subspace approximations, SD iterations exhibit
slow convergence, especially for ill-conditioned problems.
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Conjugate gradient iteration

» Conjugate gradient (CG) iterates zg, z1,... were introduced by Hestenes
and Stiefel (1952) to approximate A~1b where A is SPD (see Lect. 13).
From the lens of optimization, those iterates attempt to minimize a
quadratic function of the form z7 Az — 227b.

> Later, Fletcher and Reeves (1964) adapted CG iterations to optimize more
general forms of functions, leading to the so-called nonlinear CG.

- For vector-valued functions f : R™ — R, the nonlinear CG iterate
Tiy1 € Ty + span{pi}

is set to optimize f along the search direction p;, where the search
directions pg, p1, ... are updated such that

pi € =V f(z;) + span{p;—1}

fori=1,2,..., with p_1 :=0.
- Different search direction update formulae lead to different variants.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of research of
the National Bureau of Standards, 49(6), 409-436.
R. Fletcher & C.M. Reeves (1964). Function minimization by conjugate gradients, Computer Journal, 7, 149-154.
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Preconditioned conjugate gradient iteration

» When applied to general Rayleigh quotients of symmetric matrix pencils
(A, B) with SPD B, the exact implementation of nonlinear CG iterates is
such that

Ziy1 = argmin (or max) p(z)
x€x;+span{p;}

where the search direction
pi € zi +span{p;—1} with p_1:=0, z;:=Tr; and r; := Azx; — \;Bx;

can be specified after different formulae, leading to different variants of the
algorithm, see Feng and Owen (1996).

» To accelerate convergence, one can introduce a preconditioner z +— T'r,
leading to preconditioned CG (PCG) iterations.

Feng, Y. T., & Owen, D. R. J. (1996). Conjugate gradient methods for solving the smallest eigenpair of large
symmetric eigenvalue problems. International Journal for Numerical Methods in Engineering, 39(13), 2209-2229.
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Locally optimal preconditioned conjugate gradient iteration

» To motivate the locally optimal preconditioned conjugate gradient
(LOPCQG) iteration, we note that while PCG iterates x1,x2,... can be
expressed as approximations over a three-dimensional subspace, i.e.,

Tit1 € span{x;, Zi, Pi—1},

they are generally not optimal over that space.
» On the other hand, the LOPCG iterates introduced by Knyazev (1991,
2001) are actually optimal over that space. That is,

xiy1 = arg min (or max) p(z).
xespan{z;,z;,pi—1}

» Now, to deploy LOPCG, we need to be able to find the approximation x;11
that optimizes the Rayleigh quotient p(x) over a search space range(Vi41)
with a given full-rank basis matrix V1, e.g., Vi1 := [x, i, Di—1]-

Knyazev, A. V. (1991). A preconditioned conjugate gradient method for eigenvalue problems and its implementation in
a subspace. In Numerical Treatment of Eigenvalue Problems Vol. 5/Numerische Behandlung von Eigenwertaufgaben
Band 5: Workshop in Oberwolfach, February 25—March 3, 1990/ Tagung in Oberwolfach, 25. Februar—3. Marz 1990
(pp. 143-154). Birkh&user Basel.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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Rayleigh-Ritz projection of generalized eigenvalue problems

> Rayleigh-Ritz approximations are an instance of orthogonal projection (see
Lecture 01) for (generalized) eigenvalue problems.
They are essential to the deployment of LOPCG.

Rayleigh-Ritz procedure with respect to range(V')

For some matrices A € F"*" and B € F"*" along with a basis matrix
V e F™*™ (typically with m < n), the Rayleigh-Ritz procedure is given by:

RR: (A, B,V, ]{7) — ([i"l, 200 ,fck],diag()\l, 500 g )\k))
sit. rp:= AVizy— N BVZy Lrange(V) for £ =1,...,k
for any 1 < k < m where each (A\s, z;) € C x C™\ {0} is a distinct eigenpair
of the projected problem given by:
VHAVE, = A VHBV 3.
Then, (A¢, VZy) is called a Rayleigh-Ritz pair of the matrix pencil (4, B).

Remark: Rayleigh-Ritz procedures may be applied to non-symmetric

matrices and their use is not limited to the context of LOBPCG.
7/25



LOPCG iteration

» The main LOPCG iterate ;11 = V;11%;41 is recast as follows

'ﬁi+l|xi
Tit1 = [ﬂfz Zq pzel] Li41)z = TiZiq1)z; T Zilit1|z; T Pi—1Zi41)p;_y
Lit1|pi—1 pi

for i =1,2,..., which leads to the following algorithm:
LOPCG(A4, B, o, T):
To = AJ?() — BLL‘())\O
fori=0,1,... do
zi=1Tr;

if i =0 then Vi 1 := [2;, 2] else Vi1 := [24, 2, pi—1]

(i'i+17 )‘i+1) <« RR(A, B, V;arh 1)

Tit1 = Vig1Zip

Tiv1 = ATip1 — Bripi i

if i =0 then p; := 2;2;4)., else p; := 212, + Pi1Tit1|p,_,

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 8/25



LOBPCG iterations
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Locally optimal block preconditioned conjugate gradient
» We now search for X € R™* and A = diag(\y,...,\) for k < n st.

AX = BXA

where XT"BX = I, and \i,..., \; are extremal generalized eigenvalues of
the matrix pencil (A, B).
X can then be defined as the minimizer of trace(X? AX) subjected to the
constraint X7 BX = I,.

» Knyazev (2001) introduced LOBPCG as a block version of LOPCG,
which simultaneously produces iterates for the approximation of multiple
dominant eigen-pairs.

» Given an initial iterate Xy, LOBPCG generates a sequence of iterates
X1, X5, ... which, in their earliest form, are obtained by Rayleigh-Ritz
projection in locally optimal subspaces range([X;, Z;, P;_1]), where
Z; := T'R; in which the columns of R; are eigen-residuals, and P,_; is
block of search directions.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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LOBPCG iterations

> As a means to accelerate convergence, one can a number m of vector
iterates, i.e., X; € R™ ™ while monitoring the convergence of only k < m
dominant eigenpairs:

LOBPCG(4, B, Xo, T, k):

(X(),Ao) < RR(A,B,X(),m) ; Xo = X()XO i R = AXO — BX()AQ
fori=0,1,... do
Zi = TRZ'
if - =0 then ‘/i-‘rl = [X“ Zz] else ‘/i-‘rl = [X“ Zi; Pi—l]
(Xis1,Ait1) — RR(A, B, Viy1,m)
Xiy1:=Vip1 Xig1; Rig1 = AXip1 — BXi 1A
if i =0 then P, := Z,X,;, 1z, else P, := Z;X; 117, + Pio1 Xi111p,,

where use is made of the following notation:
o T T T T
Xip1 = [Xi+1|Xi’Xi+1|Zi’Xi+1|P¢71]
to refer to the different blocks of the reduced block of Raleigh-Ritz vectors.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
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Implicit product updates

» From the fact that P, = ZOX”ZO we can compute the products AP; and
BP; from AZy and BZj as follows:

AP1 = AZOXI\ZO and BP1 = BZOXI\ZO-

» From the fact that X; = XOXI\XO + ZOX1|ZO, the products AX; and
BX; can be formed from AXy, AP;, BXq and BP; as follows:

AX1 = AXoX|x, + APy and BX| := BX(X)|x, + BP\.

» For i > 0, from the fact that P, = ZiXi+1|Zi + Pi_lXHupFl, the AP,
and BP; can be calculated as follows from AZ;, AP;_1, BZ; and BP;_1:

AP == AZ;X; 1117, + AP Xip,
BP; := BZ;X; 17, + BPi1 X,

> For i >0, from the fact that X1 = P, + X; X, 1)x,, AXi41 and BX; 11
can be calculated as follows from AP;, AX;, BP; and BX;1:

AX/L'+1 = AP, + AXiXi+1|Xi and BX;y1 :=BPF; + BXiXi+1|Xi'
—



Sources of instability in LOBPCG iterations

The instability of LOBPCG was showcased and related to the ill-conditioning
of VHBVHI This was explained as follows in the works of Hetmaniuk and
Lehoucq (2006), Knyazev et al. (2007) and Duersch (2015):

» RR(A, B, V;t1,m) needs to solve for (X,A) in the reduced equation

VI AV X = VI BV XA

This is done by computing the Cholesky decomposition LLT = V-leViH

7
before solving for (Y, A) in the standard symmetric eigenvalue problem

WAV LY =YVA

and letting X := L~V

When V1 11 BViy1 is ill-conditioned, the Cholesky factorization may fail or
lead to S|gn|f|cant round-off error upon factor deployment.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.
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Sources of instability in LOBPCG iterations, cont'd
» Additionally, the following observations were made:

o The projected matrix V+1B‘/z+1 can become ill-conditioned irrespective
of the conditioning of B.

o When the number k of approximated eigenvectors is large, V+1BVZ+1
can become ill-conditioned before any eigenvector is accurately
approximated.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.
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More stable variants of LOBPCG iterations

» "Ortho LOBPCG": Hetmaniuk and Lehoucq (2006) perform a full
B-orthonormalization of the basis matrix V11 := [Z;, X;, Pi—1].
We will see that the B-orthonormalization of V;, 1 can be decomposed into
two parts: an expensive procedure, and an "economic" one.

» BLOPEX: Knyazev et al. (2007) propose to B-orthonormalize the Z; and
P; blocks independently. In exact arithmetic, this yields:

XI'BX; = I, (by RR construction), Z! BZ; = I, and PLBP;,_; = I,,,

but, in general, ZI' BX; # I, ZI BPi_1 # I, and PL | BX; # I,,.
» "Skip ortho LOPBCG": Duersch et al. (2018) propose to skip the
expensR/e part_of the B-orthonormalization of V; 11 when it is not needed.
» Mixed precision LOBPCG: Kressner et al. (2023) introduce

mixed-precision orthonormalization for standard problems, i.e., B := I,.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Kressner, D., Ma, Y., & Shao, M. (2023). A mixed precision LOBPCG algorithm. Numerical Algorithms, 94(4),
1653-1671.
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BLOPEX iterations
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BLOPEX iterations

» Any given basis matrix W can be B-orthonormalized by computing
W <+ Wchol(WTBW)~" where chol(WT BW) denotes the Cholesky
factor of WTBW.

B-orthonormalizing the Z; and P; iterates of LOBPCG independently
before each Rayleigh-Ritz procedure yields the BLOPEX algorithm:

BLOPEX(A, B, X,, T, k):

B-orthogonalize Xo: L < choI(XOTBXO) c Xo = XoL™T
fori=0,1,... do
Ri = AXZ — BXlAZ, Zi = TRZ
B-orthogonalize Z;: L <+ chol(ZI' BZ;) ; Z; .= Z;L™ "
if <=0 then Vig1 = [Xi, Z»L]
else
B-orthogonalize P;_1: L < choI(PiT,lBPi_l) cP_1:=P_1L7T
Vig1 := [Xi, Zi, Pic1]
(Xit1,Ait1) <4 RR(A, B, Viy1,m)
if : =0 then P; := Z’LXi+1|Zi else P; := Z’LXi+1|Zi + PileH—l\Pifl
Xit1 = XiXH»l\Xi + P;

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE
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LOBPCG iterations with full B-orthonormalization

» LOBPCG is made more robust by making V;.1 B-orthonormal, i.e., by
making sure that VI BV} = I, and VileViH =13, fori=1,2,...

» To do so, Hetmaniuk and Lehoucq (2006) rely on a generic procedure that
B-orthonormalizes a basis matrix Z € R™*P against another basis matrix
W e R"*4:

VIBV =1,

Orthop : (Z,W) = V € R™? st. { VTBW = 0,,
range(Z) C range(V)
» Then, the fully orthogonalized variant of LOBPCG consists of performing
Vi1 <+ Orthop([Z;, X, Pi-1], [Zi, X4, Pi-1])
before each Rayleigh-Ritz projection with respect to range(V;41).

» Assuming X; is B-orthonormal by construction, we can equivalently
perform the following sequence of B-orthogonalizations:

Z; <« Orthop(Z;, [ X, Pi—1])
P; <+ Orthop(P;, Xit1)

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
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Economic B-orthonormalization of search directions

» The cost of deploying the B-orthonormalization procedures is significant,
so that it is particularly relevant if those can be simplified.
As it turns out, the LOBPCG iterate given by

~ XiXiJﬁl\X' +Z7;Xi+1‘z. fori=20
Xit1 =Vip1 Xo1 = N : N : . )
XiXi+1\Xi + ZiXi+l\Zi + Pi—lXi+1|Pi71 fori = 1, 2, N

along with search direction given by

Vig1 Ortho([Omscm, X1 12,17, Xi fori=0

Orthon (Ps, Xis1) — +1 Ortho([0m x Al;rl\zl] ok +1) ; or i
Vi1 Ortho([Omxm, Xity 2, Xivayp_, ] Xit1) fori=1,2,.
(1)

where Ortho(Z, W) := Ortho;(Z, W).

Using the latter economic B-orthonormalizion of the search directions
instead of the former helps mitigate this cost.

> Eq. (1) can be shown to hold in exact arithmetic by induction (homework
problem).

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
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Choice of B-orthonormalization procedure

» SVD-based B-orthonornomalization (SVQB, Stathopoulos & Wu (2002))

= cache-efficient, highly stable, with low synchronization cost.
Orthop(U,V):

SVQB(U, B):
do
D := (diag(UT BU))~ /2
T T
dU =U-V(VBU) Solve for eigen-pairs Z,© of DUTBUD
o

such that DUTBUDZ = Z©
Omm = max; ‘9“|

U := SVQB(B,U)

T
. BU-I
while 1V_BU—1|l

EUmOl < Tortho fori=1,...,pdo
while % < Tortho if ©i; < T0mas then 0 =T 040
return U return UDZO~1/2

where 7,.:h0 and T are set to modest multiples of the machine precision.
» Householder QR = highly stable, but difficult to implement for B # I,,.
» Gram-Schmidt procedures = less efficient than SVQB.
» Cholesky QR procedures.

Stathopoulos, A., & Wu, K. (2002). A block orthogonalization procedure with constant synchronization requirements.
SIAM Journal on Scientific Computing, 23(6), 2165-2182.
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LOBPCG iterations with skipped B-orthonormalization

» B-orthonormalizing Z; against [X;, P,_1] is not always necessary for a
stable implementation of LOBPCG.
This fact is leveraged by Duersch et al. (2018) who propose to skip the
most costly part of the B-orthonormalization when possible:
1. Start with Ortho LOBPCG iterations without the B-orthonormalization
of Z; against [X;, P;,_1]:

- The low-cost part of the B-orthonormalization in Ortho  LOBPCG
iterations, i.e.,

P; Vi+lorth0([0m><m7 Xij_}_uzia XZF”PFJT, Xi+1)

is equivalently carried out at each iteration.
- Due to the fact that Z; is not B-orthonormal with respect to

[Xi, Pi—1], the economic B-orthonormalization of P; against X1
becomes

T T T v
P; Vz+1orth°vﬁlBVi+1 ([0 xm, Xi+1|Zi7 Xi+1|Pi,1] , Xit1).
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM

Journal on Scientific Computing, 40(5), C655-C676.
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LOBPCG iterations with skipped B-orthonormalization, contd;

2. As long as V1 is not B-orthonormal, deploying the Rayleigh-Ritz
procedure requires to factorize the projected matrix VfHBViH (see
slide 12) whose ill-conditioning is addressed as follows:

1. D :=diag(VL,BViy)~1/?

2. Compute Cholesky decomposition LLT = DVij_;lBViHD

3. Solve for reduced eigenpairs (A,X) such that
L'DVE, BV, (1 DL™TX = XA

4. Form Rayleigh-Ritz vectors as X := V;HDL_TX

The conditioning of the Cholesky factor L is monitored to decide when
to trigger the B-orthonormalization of Z; against [X;, Pi_1].

Since 3 triangular solves need be applied to form the Rayleigh-Ritz
vectors, Duersch et al. (2018) check if cond(L)~3 is greater than a
modest multiple of machine precision to decide when to trigger the
B-orthonormalization of Z; against [X;, P;_1].

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
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LOBPCG iterations with skipped B-orthonormalization, contd,

» We refer to these iterations as Skip _ortho  LOBPCG defined as follows:
Skip_ortho LOBPCG(A, B, Xo, T, k, Tekip):

(X0, Ao) <=+ RR(A, B, Xo,m)
Xo = XOXO; Ro = AX() — BX()A(); Zo = TRO
fori=0,1,... do
if skipOrtho
if ¢ = 0 then Z; <— Orthog(Z;, X;) else Z; <= Orthog(Z;, [X;, Pi—1])
if ¢ =0 then Vi, := [X;, Z;] else Vi1 := [X;, Z;, Pi_1]
(Xis1,Ais1) <4 RR(A, B, Viy1,m) & L is a by-product s.t. LLY = DV;Y, BV; 1D
if skipOrtho
if cond(L)™® < Ts:p then skipOrtho := False ; restart i-th iteration
Xiy1:= Vi Xis1; Riv1 := AXiy1 — BXiy1Mig1; Zivr = TRiy
if i =0 then R A
Yigr < OrthoViLBViH([Omxmvxﬁrl\zi]T:Xi-H)
eIseA . . R
Yiy1 < OfthongBvM([OmevXiTJruzivX5r1\Pi,1]T7Xi+1)
Pi:=Vig1Vin

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
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Handling convergence

» Different eigenvectors may converge at different stages of the iteration.
Maintaining converged eigenvectors to perform subsequent iterations

@ requires unnecessary computational work,
@ can lead to instabilities.
— A robust and efficient implementation of LOBPCG needs to detect, and
properly handle converged eigenvectors.

» Two approaches possible, see Knyazev (2004) and Knyazev et al. (2007):

e Hard locking: converged eigenvectors are set aside, kept unchanged, and
B-orthogonalized against by the non-converged, still iterated eigenvectors.

» As the number of hard locked vectors increases, the attainable accuracy of the
iterated eigenvectors may decrease, possibly making convergence unachievable.

o Soft locking: the residuals and search directions of converged eigenvectors
are set aside, and kept unchanged, but the corresponding locked eigenvectors
still participate to subsequent Rayleigh-Ritz procedures.

» The locked eigenpairs keep getting more accurate over subsequent iterations, and

the B-orthogonality is maintained implicitly through the Rayleigh-Ritz procedures.

Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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Handling convergence, cont'd

» Soft locking is more computationally demanding than hard locking, but it
enables more robust convergence behaviors when more accurate solutions
are needed.

» In practice, convergence may be detected in unordered fashions, i.e., the
inner eigenpairs converge before the smallest eigenpairs.
» We denote two distinct approaches to deal with this situation:

o out-of-order locking: if locking is implemented out of order, one needs to
re-order the stored iterates so as to seamlessly rely on standard BLAS libraries,
which operate most efficiently on contiguous data.

e in-order locking: more commonly in practice, locking is implemented in
order, disregarding the fact that some inner eigenpairs may converge before
the sought least dominant eigenpairs.

- Maintaining such unlocked but converged eigenvectors in the iterations can lead
to unstable behaviors of LOBPCG.

Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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Existing implementations of LOBPCG
Different implementations of LOBPCG have been developed over the years. In
particular, we know of implementations and bindings in the following libraries:

» BLOPEX: C implementation with MPI support after Knyazev et al. (2007).
On GitHub at lobpcg/blopex.

o BLOPEX also available in/through Matlab, SLEPc and Hypre.

» MAGMA: C++ implementation based on BLOPEX for B := I,, and
T := I, with GPU support. On GitHub at

CEED/MAGMA/sparse/src/zlobpcg. cpp
» SciPy: Python implementation based on BLOPEX. On GitHub at
scipy/sparse/linalg/eigen/lobpcg/lobpcg.py

» |terativeSolvers.jl: Julia implementation based on BLOPEX with
multithreaded BLAS support. On GitHub at
JulialinearAlgebra/IterativeSolvers.jl/src/lobpcg.jl

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
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https://github.com/lobpcg/blopex
https://www.mathworks.com/matlabcentral/fileexchange/48-locally-optimal-block-preconditioned-conjugate-gradient
https://slepc.upv.es/documentation/current/src/eps/impls/cg/lobpcg/lobpcg.c
https://hypre.readthedocs.io/en/latest/solvers-lobpcg.html
https://github.com/CEED/MAGMA/blob/master/sparse/src/zlobpcg.cpp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html
https://iterativesolvers.julialinearalgebra.org/stable/eigenproblems/lobpcg/

Existing implementations of LOBPCG, cont'd

» BLOPEX (Knyazev et al., 2007) has become the most widely used
implementations of LOBPCG.

BLOPEX became the standard with adoption through Hypre, SLEPc, ...
» At the moment, there seems to be no widely used implementations of

o Ortho_LOBPCG (Hetmaniuk and Lehoucq, 2006)

o Skip_ortho_LOBPCG (Duersch et al., 2018)

o Mixed precision LOBPCG (Kressner et al., 2023)

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Kressner, D., Ma, Y., & Shao, M. (2023). A mixed precision LOBPCG algorithm. Numerical Algorithms, 94(4),
1653-1671.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 25 /25


https://github.com/lobpcg/blopex
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://slepc.upv.es/
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