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Krylov subspace methods for few eigenpairs

» So far we've seen:
o Power iterations, inverse iterations and Rayleigh quotient
iterations to compute a single eigenpair
o QR iterations, the divide-and-conquer method and the method of
bissection to compute all the eigenpairs of a small-to-medium size and
dense matrix
o LOBPCG to compute a few extremal generalized eigenpairs of a large,
possibly sparse matrix pencil (A, B).
» Krylov subspace methods are another set of iterative methods to
compute a few eigenpairs of a large matrix A
o We assume that the mapping = — Az can be operated efficiently,
possibly because A is sparse
o We denote two methods in particular:
- The Arnoldi process is meant for non-symmetric matrices, and
- The Lanczos process, which was introduced later for symmetric
matrices.
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Arnoldi process
Section 6.1 in Darve & Wootters (2021)
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Arnoldi process as a Krylov subspace method
» Given a vector v € R", the k-th Krylov subspace of A € R™*" is

Ki(A,v) = span{uv, Av, ..., A¥ v},

» The Arnoldi process which we present in this section is a procedure to
generate an orthogonal Qx == [q1, . .., qk], i.e., QT Qk = I such that

span{qi, ..., qr} = K(4,v).

The orthonormal basis in the columns of @)}, is such that Hy, := QfAQk is
an upper Hessenberg matrix.
> We present two different ways to derive Arnoldi procedures:
@ Deduction of Arnoldi iteration from the AQ = QH relation where
Q € R™" is orthogonal and H € R™*"™ is Hessenberg.
@ Orthogonalization of Ag; against ¢, ..., qk.
> Later, we see that approximate eigenpairs of A can be sought within the
Kylov subspace (A, v).
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Reduction to Hessenberg form

» Householder transformations can be used to transform a matrix into
Hessenberg form. That is, there exists an orthogonal matrix Q € R™"*"™ s.t.

QTAQ =H
is upper Hessenberg.
» As with any similarity transformation, the eigenvalues of H are the same
as those of A, which can be exploited to find eigenvalues of A.
» Instead of considering the full Hessenberg matrix H, we approximate
eigenpairs of A with eigenpairs of a leading block Hy of H with k < n.
QT Alsparsed Q H

Sttep I: a®"® _ We can compute this
- s, = k x k Block Quickly
g ® Because A is sparse.

Step L We can compute the eiaenvalues of this »k x k
= A( ) Block @uickly Because k is small. Then we will use
these to estimate the eigenvalues of A
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

> As it turns out, the eigenpairs of the leading block Hy, of H are good
approximations of some eigenpairs of A.
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Arnoldi procedures
» Given a vector X. 1, the Arnoldi procedure is defined by

Arnoldi : (X.1,k) ER" x N Q = [q1,...,q) € R™F

st. QTQ = Iy, and span{qi, ..., q} = span{qi, Aqq, ..., A¥"1q} where
q1 = X.1/[| X2

» We are interested by the QR decomposition X=QR such that X. ;:=Ag;_1
for j =2,...,k. X is defined column-by-column with respect to (), so that
the Gram-Schmidt procedure is particularly well adapted.

> Let TT) be a projector onto Span{qi,...,q;}*, then Arnoldi(X. 1, k) is
given by the following GS procedure:

Algorithm 1 Arnoldi : (X.1,k) — Q

g1 = X:,l/”X:,l”Z

cforj=2,...,kdo

X.;=Aqgi1 > In an actual implementation, we do not need X
q;j = H(jil)X:,j

a5 = q;/llgll2
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Matrices of interest and notation

» From the orthogonality of @, the QR decomposition of X is such that
QTX = R. Given that X.; = Agj_1 for j =2,...,k, we have
R@'j = Q?;X:J = q,L-Tqu‘,l for (Z,j) S [1, k‘] X [2,](3]

» In the Arnoldi procedure, we are interested in some of the components of
R. In particular, we wish to compute the matrix defined by H := QT AQ.
The components of H are given by h;; = q Ag;.

» So as to explicitly state the dimension of ) during intermediate states
J < k of the Arnoldi algorithm, we write Q; := [q¢1, ..., ¢;]. Similarly, we
denote the corresponding matrix by H; := QJ-TAQJ-.

» Some properties of the Arnoldi procedure rely on the matrix defined by
— T
Ej T Qj+1AQj-
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CGS-based Arnoldi procedure

» For the CGS-based Arnoldi procedure, we let IIU) := I, — Q]Q]T.
» We obtain the following algorithm:

Algorithm 2 CGS-based Arnoldi: (X.1,k) — Qp

Loqr =X 1/[[ X1l

2. forj=2,....kdo

3 X =Ag¢ > In an actual implementation, we do not need X
Hyj1j1:=0Q] X
g =X, —Qj-1Hij 151
45 := q;/llg;ll2

AR

> Let ||gj||2 be computed after line 5, then, after line 6, we have
lajll2q; = (In — Qj—1Q;_1)Agj—1
lgjll2a} 4 = a} (In — Qj—1Q] 1) Agj1
lgjllz = q] Agj—1
lgjllz = hjj-1-
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CGS-based Arnoldi procedure

» For the CGS-based Arnoldi procedure, we let TIU) := I, — Q;Q7.
» We obtain the following algorithm:

Algorithm 3 CGS-based Arnoldi: (X. 1, k) — Qx

Loqr = X1 /[ Xl

2: for j=2,... .k do

3: X. ;= Agi—1 > In an actual implementation, we do not need X
Hij1,j-1:= Q1 X,
q; =X ;—Qj-1Hyj-11
hjj-1:=|gll2 > Hjji1k,—1:=0
qj = q;/Hj ;-1

No g
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Hessenberg matrices and property of the Arnoldi algorithm
» From lines 4-7 of the algorithm, we have
hjj1q; = (In — Qj1Qj_1)Agj_1,
hjj—16 ¢ = @} (In — Qj—1Q] 1) Agj_1.
Let ¢ > j, then we have qZ-Tqu_l =0sothat hjj =0fori>j+1,ie,
Hj is upper Hessenberg.
» We have Ag; = 2211 hi;q;.
Proof: From lines 4-7 of the algorithm, we have
hjj-1q = Agj—1 — Qj-1Q] 1 Agj
hjt1,ig+1 = Ags — Q;Q] Ag;
hjt1,59541 = Agj — QjHuj
so that we can write hy;
Ag=[ar ... q] | ¢ | +hjirg+. O
hij
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The Arnoldi relation
» Writing down the components of QQ;H; and AQ); leads us to

[Zlehilqi NI u%] Q;Hj,

[Aql - qu] = AQ;.
> Then, using the fact that Ag; = 7% hijq; and that Hj is upper
Hessenberg, we have hj ;=0 fori=1,...,j —1 so that
[Aq ... Agj| = [ I hag .. Y hi]’ql'i| +
[0 ... 0 hj+1,jqj+1]

which can be written as | AQ; = Q;H; + hj+17jqj+1e;‘r where ¢; is the

j-th column of the j-dimensional identity matrix. Note the difference with
the relation AQ = QH obtained only when j = n.
» Similarly, we have

_ j+1 +1
[Agi ... Agj] = [E?:l hitgi ... >0 zg%}
which can be written as | AQ; = Q; 11 H; |
8/42




CGS-based Arnoldi procedure

» Approximate solutions in Ky (A, rg) for linear systems and eigenvalue
problems have residuals which depend on the product AQ;.

» Exploit the Arnoldi relation AQy = Q+1H}, for faster computation.

» The Arnoldi algorithm is reformulated as follows so as to compute H. at
the k-th iteration:

Algorithm 4 CGS-based Arnoldi

1: q1 = X:,1/||X:,1||2

2. forj=1,...,kdo

3 X 41 = Agj > In an actual implementation, we do not need X
Hyjj=Qf X jn
qj4+1 = X:,j+1 - QjHLj,j

Hji1j = [lgj+1ll2 > Hjiopy1, =0
qj+1 7= qj41/Hjs1,

No g

» The approach of the book of Darve and Wootters (2021) we presented is
equivalent to CGS-based Arnoldi.
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MGS-based Arnoldi procedure
» MGS-based Arnoldi = TI®) := (I,, — ¢iq]) ... (I — q1q}).
» We obtain the following algorithm:

Algorithm 5 MGS-based Arnoldi: (X. 1, k) — Qk
g =X/ X 12

2: forj=2,...,kdo

3: qJ' = qu,1

4 fori=1,...,7—1do
5: a4 = q; — 4} ¢;
6:  qj = q;/llgll2

» For all (¢,7) € [1,j — 1] x [2, k], prior to executing line 5, we have
qj = (In = Gi-14i—1) - - - (In — 191 ) Agj1
so that, assuming perfect orthogonality of @;, we have
¢ 45 = (In—qi1g;_1) - (In — @1 )Agj1 = ¢} Agj—1 = hij 1.
10/ 42



MGS-based Arnoldi procedure

» Also, when computing ||¢;||2 prior to line 7, we have ||g;||2 = hj j—1.
» We obtain the following algorithm:

Algorithm 6 MGS-based Arnoldi: (X. 1, k) — Q
g1 := X1/ X |2

2: for j=2,...,k do

3: q; ‘= AQj_l

4: fori=1,...,7—1do

5: Hij-1:=qlq

6: ¢ =q; —Hij14q

7 Hjjo1= gl > Hiy1gjo1:=0
8 ¢ =q;/hj;

» All the properties we showed for the CGS-based Arnoldi procedure remain
valid for MGS-based Arnoldi.
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MGS-based Arnoldi procedure

» Similarly as before, we want the upper Hessenberg matrix H; to be
computed at the end of the k-th iteration.

» Consequently, the Arnoldi algorithm is reformulated as follows:

Algorithm 7 MGS-based Arnoldi
1 qr:= X1/ X |2
2. forj=1,...,kdo
qj+1 = Ag,
fori=1,...,j do
Hij = qf qjn1
Gj+1 = qj+1 — Hijq;
Hjp1,j = [lgj+1ll2 > H,iopi1; =0
@j+1 7= @j1/hjt1,5

w

o N a R

» MGS-based Arnoldi is the most commonly used implementation of Arnoldi
process.

» Other variants include CGS2 and Householder-based Arnoldi.
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Arnoldi Rayleigh-Ritz for dominant
eigenpairs
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Arnoldi procedure with Rayleigh-Ritz vectors

» Eigenvectors with eigenvalues whose norms are the largest among
the spectrum of A tend to be well approximated by Rayleigh-Ritz

projections, as explained by Parlett (1998) and Saad (2011).
» Rayleigh-Ritz projections are commonly defined with respect to Krylov
subspaces whose bases () are obtained by a Arnoldi procedure:

o Then, a Rayleigh-Ritz vector y € range(Q)) approximates an
eigenvector of A with the Ritz value X such that Ay — Ay L range(Qy).
That is, we search for ()\,9) € C x CF\ {0} s.t. 27 (Ay — \y) =0
V z € range(Qy) withy = Qy. This simplifies to

QF (AQry — AQxy) =0

Hij = \j=0 =

where use was made of the Arnoldi relation and Q;{Qk = I;.
o nev < k dominant eigenpairs {(\¢, 9,)}}<} of Hj are used to appro-
-ximate dominant eigenpairs of A with {(\¢, y¢)}7< where y:= Q9.
B. N. Parlett, The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics (1998).

Y. Saad, Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied
Mathematics (2011).
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Arnoldi procedure with Rayleigh-Ritz vectors, cont'd;

» A desirable property of the Rayleigh-Ritz approximation g, is that the Ritz
value 6, equates the corresponding Rayleigh quotient:

yi' Aye = (Qriie)" AQrie = 91" QF AQife = 01 Hidle = Ml e = e
where gy is assumed to have unit length.
» The eigen-residual 7y := Ay, — Aoy of the Rayleigh-Ritz vector 3, is s.t.

T = AQrTr — MQre
= QrHmbe + his1 kQrs1er 9o — MeQre
= NQrGe + Prst kG164 90 — NeQre

T ~
= Mgy 1 kQrt1€5 Ye

~ L T ~
T = Breqr+1| where | Br o= hpq1ker Je |

o Essentially, the eigen-residuals 7, ..., 7 of the Rayleigh-Ritz
vectors 1, ...,y defined with respect to the Krylov subspace
Kr(A, q1) are all parallel, along the Arnoldi vector g ;.
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Arnoldi procedure with Rayleigh-Ritz vectors, cont'd,

» From the fact that 7y = 3 ¢qr+1, the norm of the eigen-residual is such
that ||7]|3 = [Br.e[2qL 1 ak+1 = |Br.el? where |By ol = |hys1 sl lef Gel-

o Consequently, a stopping criterion of the form ||7||2 < €|\/| can be
checked efficiently at every iteration without having to compute the
matrix-vector product Ay, or even to assemble the vector vy := Qrip.

» As explained earlier,

o the orthogonalization which is at the root of the Arnoldi procedure
has time complexity O(k*n),

o the reduced eigensolve of H,, has time complexity O(k?),

o the storage of the Arnoldi basis in Q) has space complexity O(kn)
so that, if convergence is not achieved for some number k of
iterations, it is necessary to start the Arnoldi procedure over with a
new initial vector ¢;.

» A naive restart of the Arnoldi procedure can be highly detrimental to

the convergence of approximate eigenvectors. Some care needs to be
taken so as to reduce convergence slowdown.
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Shift-and-invert Arnoldi Rayleigh-Ritz for
interior eigenpairs
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Shift-and-invert spectral transformation
> Rayleigh-Ritz pairs (A, y) converge first towards eigenpairs (6, z) of A with
the largest value of |6].
o In practice, we may want to approximate an eigenpair with eigenvalue 6
close to some o, i.e., with small value of | — ¢|. E.g., 0 = 0.
o Rayleigh-Ritz approximations (), y) of such eigenpairs (6, z) in Krylov
subspaces converge very slowly when |o| is small compared to the

spectral radius of A.
» The shift-and-invert spectral transformation was introduced by Ericsson
and Ruhe (1980) as a means to circumvent this issue:

o Consider the eigenvalue problem given by
(A—ol,) w = dw
where it is assumed that o is not an eigenvalue of A. Then, we have
w=19A-ol,)w
w = YVAw — Jow.

Ericsson, T., & Ruhe, A. (1980). The spectral transformation Lanczos method for the numerical solution of large
sparse generalized symmetric eigenvalue problems. Mathematics of Computation, 35(152), 1251-1268.
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Shift-and-invert spectral transformation, cont'd

Since o is not an eigenvalue of the non-singular matrix A, the
shift-and-invert operator (A — oI,,) ! is not singular and ¥ # 0 so that

Aw = <U+119>w.

Essentially, (¢ 4+ 1/19,w) is an eigenpair of A.

o Now, if an Arnoldi procedure is applied to (A — oI,) "1, the
corresponding Rayleigh-Ritz pairs will first converge to the eigenpairs
(¥, w) of the shift-and-invert operator with largest |J|.

o However, when || is maximized, the magnitude of o — (o + 1/9) is
minimized. Therefore, the Rayleigh-Ritz pairs of a shift-and-invert
Arnoldi procedure will first converge to the eigenpairs of A with
eigenvalues closest to o.

» Shift-and-invert operators are implemented in ARPACK to compute
interior eigenpairs.
» Shift-and-invert Arnoldi procedures rely on repetitive applications of the

(A —ol,)~! operator.
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Arnoldi harmonic Ritz for interior eigenpairs
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Harmonic Ritz approximation of interior eigenpairs
» While shift-and-invert Arnoldi procedures allow fast convergence of
Rayleigh-Ritz pairs towards interior eigenpairs, it comes at the cost of
repeated applications of (A — o1,,)~!. However:
1. Factorizing the shifted operator A — oI, is not always possible.

2. One may actually need to generate a basis for a Krylov subspace of A,
and have little use for a basis of Krylov subspace of the shift-and-invert

operator (A — ol,)~ %
» E.g., if interior eigenvectors of A are needed to restart GMRES when
solving Az = b.

» As a means to bypass the need to apply shift-and-invert operators,
Morgan (1991) introduces a new projection method in which the
shift-and-invert operator is applied implicitly:

o Consider the case in which we are equipped with a basis for the search
space range(P) stored in the columns of P.

o Let @ := (A —ol,)P, and consider the Rayleigh-Ritz pairs of the
shift-and-invert operator (A — o I,,) ™! with respect to range(Q).

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.
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Harmonic Ritz approximation of interior eigenpairs, cont'd;
That is, consider the pair (9, Qy) such that

QA - al)"'Qy = Q" Qy,
which develops into the reduced generalized eigenvalue problem
PT(A—oI,) Py =9PT(A—-0ol,)"(A—-0ol,)Pj
which does not require any application of the shift-and-invert operator.
o Resulting from a Rayleigh-Ritz projection of the shift-and-invert
operator (A — o,)~!, the pair (¢ + 1/9,Q3) should be a good
approximation with respect to range(Q) of the eigenpair closest to o.
o As good of an approximation Q7 might be, Pj = (A — o1,)~Qj is the
first power iterate of the shift-and-invert operator initiated with Q7, so
that Py should be an even slightly better approximation of the
eigenvector with eigenvalue closest to o.
o Stewart (2001) showed that solutions (6, Qy) for which Q¢ has unit
norm are such that||Ay;|| < |6;|, so that it is guaranteed that ||7;||2 is
small if 0; is near zero.

Morgan, R.B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154, 289-309.
G. W. Stewart, Matrix Algorithms Il: Eigensystems, SIAM, Philadelphia, (2001).
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Harmonic Ritz approximation of interior eigenpairs, cont'ds

o Consequently, Morgan (1991) proposes a Petrov-Galerkin projection and
seeks for pairs (o + A, y) to approximate eigenpairs of A near o with
respect to range(P), leading to the following procedure:

Find A and y € range(P) s.t. (A—ol,)y — Ay L (A —ol,)range(P),

which first converges to eigenpairs of A near o, thus motivating the
selection of reduced generalized eigenpairs (), g) with smallest values of
|A| such that

PT(A—oI)%(A—-ol,)Pj = A\PT(A - 0oI,)" Pj.

o The projection proposed by Morgan (1991) is first studied for symmetric
matrices, then further analyzed and first referred to as harmonic Ritz by
Paige et al. (1995) before being considered in the context of
non-symmetric eigenvalue problems by Sleijpen and Van der Vorst (1996).

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.

Paige, C. C., Parlett, B. N., & Van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov
subspaces. Numerical linear algebra with applications, 2(2), 115-133.

Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi—Davidson Iteration Method for Linear Eigenvalue Problems.
Matrix, 17(2), 401-425.
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Harmonic Ritz approximation of interior eigenpairs, cont'ds

o To simplify what follows, let us define
G1:=PT(A-0oI,)%(A—-0I,)P and Gy := PT(A—oI,)P

so that, assuming o is not an eigenvalue of A, the reduced eigenpair
(A, ) is such that G5 7 G195 = M.

o It is well established that the Rayleigh quotient p of y with respect to A
is a better approximation of the eigenvalue of A near o than o+ \. The
Rayleigh quotient can be efficiently computed as

yiAy _§TPTAPG . 1 PT(A —oL)Pj _ . GH Gaiy
yHy yPT Py yPT Py yPT Py

10:

so that, if PTP = I}, and 3¢ = 1, then we have | p = o + 47 Ga7 |.
o It is also common to monitor convergence through stopping criteria
defined with respect to the residual

7= Ay —py
nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 21 /42



Harmonic Ritz approximation of interior eigenpairs, cont'd

whose norm can also be efficiently computed as we have
M7 = (Ay — py)" (Ay — py)

= (A=0aL)y+ (0 = p)y)" (A= oLy + (0 = p)y)

=y (A-oL)"(A=ol)y+ (o - p)y"(A—aL)y

+(o—py"(A—olL)y+ (0 —p)lo—pyy

= "G+ (0= p)§"GY g+ (0 = p)i" Gag + (0 — p)(o = p)y™y

where, once again, we assume PTP = I;, and "¢ = 1 so that

M =g G+ (0 — p)§"GY i + (0 — p)i" Gag + (0 — p)(o — p)
= M"1GY g+ (o - ) 1G5+ (o= p)(p—0)+ (o= p)(c —p)
= (c+X—picl

=(c+A— p)yHGay

~—

which leads to | #7 = (60 + X — p)(p — o) |.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 /42




Harmonic Ritz approximation of interior eigenpairs, cont'ds

o The norm of the harmonic residual 7 := Ay — (0 + A)y can also be used
to monitor convergence. Still assuming PTP = I, and ¢ =1, we
then have

i = (Ay — (o + Ny) " (Ay = (0 + N)y)
= (A=oly)y — M) (A= o)y — \y)

=g PT(A—ol)(A—ol,)Pj— \g" PT(A—ol,) Py
— M PT(A - oI,)Pj+ M\

= g1 Gy — MGG — N Gag + XX

= \HGEH G — NP GH G — N Gag + AN

=X\ — 97 Gap)

where 47 Gyi) = p — o so that

i = (0 +X—p)A|.
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Harmonic Ritz approximation of interior eigenpairs, cont'dg

» Alternatively, the harmonic Ritz pairs may be formed from non-shifted
procedures. That is, let

G := (AP)2 AP and G, := PTAP,
then, the reduced eigenvalue problem of the shifted approximation
y € range(P) such that (A—ol,)y — Ay L (A — ol,)range(P)

is obtained as follows:

(A= oL,)P) APj = (0 + N)((A - ol,,)P) Py
(APYHAP —GPTAP)j = (0 + N (PTARP —51},)j
(G1—5Ga)§ = (0 + N (G5 — L))
(G1 —3G2)y =(0+ N)(Gy — JIk)Hy
(Go — ol) " H(G1 =G = (0 + N)j

in which case we have p = 77 Gaj.
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Arnoldi procedure with harmonic Ritz vectors

» More can be said for the case in which the search space is Krylov and
generated by an Arnoldi procedure, see Morgan and Zheng (1998).

» Consider the shifted procedure Arnoldi(A — ol,, q1, k) — (Qx+1, H},)
which returns an orthonormal basis Qx :=[q1 ... qx] of Kx(A —ol,,q1)
such that (A — o1,,)Qk = Qr+1H,, where Qi1 := [Qk qx+1] as well as
ﬂk = Q%—I—I(A — UIn)Qk and Hk = Q%(A — O'In)Qk

» Then, harmonic Ritz vectors y € range(Qy) are such that

(A—ol,)y— Ay L (A—ol,)range(Qy)

yields the following reduced generalized eigenvalue problem in which we
search for non-trivial pairs (), ) € C x CF such that y = Q4% and

QYA - o) (A - 0L,)Qui = NQF (A — 0 1,) Q1
HE QT Qi1 Hyy = NH g
H{'H = H['g

Morgan, R. B., & Zeng, M. (1998). Harmonic projection methods for large non-symmetric eigenvalue problems.
Numerical linear algebra with applications, 5(1), 33-55.
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Arnoldi procedure with harmonic Ritz vectors, cont'd;
» Reformulating the Arnoldi relation into
(A—01,)Qr = QrHy + his1 xqkr161

allows to rewrite the reduced eigenvalue problem of the harmonic Ritz
projection as follows:

(Hy Hy + [ i Pene )i = AHE'g
(Hi + |hiri il fer )i = Mg
where [ := H;Hek € C* and ey, := I.[:, k].

» Then, the harmonic eigen-residual 7 := Ay — (o + \)y of a given harmonic
Ritz approximate eigenpair (o + \,y) with y := Q7 is such that

7 =AQnY — (0 +A)QnY
= (A= 0L,)Qx) — AQi§ = (QuHy + his1 kGitre)J — AQki
= QM — g1k FER)T + Pios1 ph+164 § — AQr)
= iy k(€h D)1 — [Pisril* (e 9)Quf
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Arnoldi procedure with

which can be written

= hir1(ef ) Qrra

= his 1€k §)Qrs1

= hyr1,6(ek 9)Qria
= BrQr+15

so that

harmonic Ritz vectors, cont'd,

} — P12 (e 9) Qr1 [5]

—hpr1if
0

-Ok><1
1

[ —hy1 i f
1

} + P 1 (eh ) Qe [

|

|

=

= BrQr+15 | where

—hpr1kf

and 1

._ T
Br = hgt1,ker ¥

» The norm of 7 is then given
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1712 = 1Bkl ([Pkgr .k
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Arnoldi procedure with harmonic Ritz vectors, cont'ds
» When precise eigenvalues are wanted, it is preferred to use the Rayleigh
quotient rather than o + A. Assuming 3 has unit norm, so does y := Qy7,
and the Rayleigh quotient of y is given by
p=0+ 9" Hyf =0+ A= |y k> (97 F)(ef 9).
» Moreover, the norm of the eigen-residual 7 := Ay — py is still such that
1713 = (0 + A = p)(p — o)

and that of the harmonic residual 7 := Ay — (o + A)y is still such that

173 = (o + X = p)A.
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Arnoldi procedure with harmonic Ritz vectors, cont'dy

» As mentioned before, we are interested by the case in which harmonic Ritz
approximations are considered in the context of the non-shifted procedure
Arnoldi(A,qi, k) — (Qr+1,H},) which returns an orthonormal basis
Qr :=[q1-..qx) of K(A,q1) such that AQy = Qi1 H,, where
Qr+1 = [Qr 1], Hy, = QF 1 AQk and Hy, = Qf AQy.

o Then, the harmonic Ritz vector y € range(Qy) is still such that
(A—ol,)y— Ay L (A—oly,)range(Qy)
but now yields the following reduced generalized eigenvalue problem:

(A= 0L)Qr) " (A - 01,)Qui = M(A — 01,)Qr) " Qi
(A= 0L)Qr) " AQri — o (A — 0 1) Qi) " Qufl = M(A — 0 1,) Q1) " Q1

so that
(A= 0L,)Qi)" AQky = (o + A)((A — 01,)Qk) " Qi
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Arnoldi procedure with harmonic Ritz vectors, cont'ds

which develops as follows:

((AQr)TAQ) — TQF AQR)) = (
(HL Hy + |his1 penef —TH)) = (o +
(HF —5I;)Hy + |hk+1,k\26kef) =(oc+ A
(Hp — oLi)" Hy, + |hig1 i Pexe )§ = (0 + A

to finally yield

(Hy + |1 k)2 fed)i = (o 4+ Ny | where | f :=

(Hk — O'Ik)iHek ,

so that the expression for f differs from the shifted procedure. Still, the
harmonic Ritz pairs should converge first to the eigenpairs of A closest
to o so that, now, we should not retain the least dominant reduced
eigenpairs, but rather those with eigenvalues closest to o.
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Arnoldi procedure with harmonic Ritz vectors, cont'dg
o Now, still assuming ¢4 = 1, the Rayleigh quotient is given by
p=y" Ay = 3" QL AQLY = 3" Hij = 0 + A — i1 1P (57 ) (e 9)-

o Irrespective of the basis generated, as long as it’s orthonormal, we
already saw the residual given by 7 := Ay — py is such that

Hi=(0+X=p)p—o).
o And the harmonic eigen-residual 7 := Ay — (o + A)y is such that
7 =AQry — (0 + N)QxY
= QuHp) + hi1x@rr1€r § — (0 + N Qxd
= (0 + QY — |16 Qufer § + hrstmirer § — (0 + ) Qg
= — [Pkl (ek D) QnSf + hitt k Q1€

which, similarly as before, can be recast into

7?.

~ . —hi
r= /Bka—}—lS Where ﬂk = h’k"‘l,k‘egy and s = |: k;{’l,kf:| ’

where the difference with shifted Arnoldi is the expression for f.
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Lanczos process
Section 6.2 in Darve & Wootters (2021)
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Lanczos process for symmetric matrices

» The Lanczos process is a specialized form of the Arnoldi process for
symmetric matrices.

» When A is symmetric (i.e., A = AT), the Hessenberg matrix
Hy = QfAQk is symmetric too. Consequently, it is tridiagonal:

oq /81 O 0
B az B2 -+ 0O
T,=10 B2 az -~~~ 0
0 0 0 - o

where o; = ¢/ Ag; are the diagonal elements and 8; = ¢ Agit1 = ¢}, Ag;
are the off-diagonal elements.

» This tridiagonal structure means that in the Arnoldi recurrence relation,
most terms vanish:

Agj = Bj—1qj-1 + ajq; + Bigj+
» Thisthree-term recurrence relation is the foundation of the Lanczos process.
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Derivation of the Lanczos process
» From the three-term recurrence relation, we can derive the Lanczos
algorithm:
Bigj+1 = Aqj — ajq; — Bi-1q5-1
> Rearranging to compute gj1:

1
¢jy1 = E(A(Ij — g — Bi—1qj-1)
J

» The coefficients are determined as:

aj=q; Ag; and B = || Agj — ajq; — Bi-1qj-1]2

» Thisleadsto a much simpler algorithm compared to the full Arnoldi process:
- we only need to maintain three vectors in memory at any time: g;_1, g;,
and qj+1-
- the work done remains constant as the iteration count increases.
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Lanczos algorithm

» The Lanczos algorithm can be formulated as follows:

Algorithm 8 Lanczos

1: Choose a starting vector ¢; with ||g1]2 =1
2: Setﬂozoand q =0

3: for j=1,2,....k do

4. v=Aqg

5 a5 = quv

6. v=v—0a;¢ —Bi-1¢j-1
7 Bi=vll:

8 g1 =v/B

> After k steps, we have:

- An orthonormal basis Qr = [q1, g2, - - -, qi| for the Krylov subspace
Kr(A, q1)

- A tridiagonal matrix T}, = QgAQk with diagonal elements «; and
off-diagonal elements 3;
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The Lanczos relation
» Similar to the Arnoldi relation, we have the Lanczos relation:
AQr = Qi Ty + Brqrsrer

where T}, is the tridiagonal matrix.
» We can also write:

AQr = Qr11,

where T',, is the (k + 1) x k tridiagonal matrix:

o B 0 - 0
B az B2 -+ 0O
= 77
0 0 0 - ap
| 0 o o --- ﬂk_
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Lanczos Rayleigh-Ritz for dominant eigenpairs
» Eigenvectors with eigenvalues whose norms are the largest among
the spectrum of A are well approximated by Rayleigh-Ritz projections.

> A Rayleigh-Ritz vector y € range(Qy) approximates an eigenvector of A
with the Ritz value \ such that Ay — Ay L range(Qy). That is, we
search for (A, ) € R x R*\ {0} s.t. 27 (Ay — A\y) =0V z € range(Qx)
withy = Q4. This simplifies to

QF (AQry — \Qry) = 0
T —rj=0 =

where use is made of the Lanczos relation and Q1 Q. = Ij.
» The eigen-residual 7 := Ay — Ay can be computed as:

7= AQri — \Qx¥ = Br(el §)qrrr

> This means ||7||2 = Bx|el §|, providing a simple way to assess convergence
without explicitly computing Ay.
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Lanczos Rayleigh-Ritz in finite precision
» Loss of orthogonality: In finite precision arithmetic, the Lanczos vectors
quickly lose orthogonality, which can lead to:
- Multiple copies of the same eigenvalue appearing (ghost eigenvalues)
- Inaccurate eigenvalue approximations

Eigenvalue estimates

© Exact

This
eicenvalue
aot found

twice!

@ /
o <

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Reorthogonalization strategies
» Different strategies exist to circumvent the issue of loss of orthogonality in
finite precision.
- Full reorthogonalization: Explicitly orthogonalize each new vector
against all previous vectors.

O Exact
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\ Q
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Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.
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Reorthogonalization strategies, cont'd

Algorithm 9 Lanczos with full reorthogonalization
1: Choose a starting vector ¢ with |lg1]2 =1

2: Set fu=0and go =0

3: for j=1,2,....k do

4. v =Ag

5: Qj = quv

6 v=v—0a;¢ —Bi-1¢j-1

7. fori=1,2,...,5do

8: v=v— (¢fv)q > Reorthogonalization step
9 B =l

10:  gj41=0/B;

Full reorthogonalization turns Lanczos back into Arnoldi. Alternatives:

- Selective reorthogonalization: Only reorthogonalize when necessary,
based on loss of orthogonality measures

- Partial reorthogonalization: Reorthogonalize against a subset of
previous vectors
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Lanczos harmonic Ritz for interior eigenpairs

» Eigenvectors with interior eigenvalues are better approximated by
harmonic Ritz projections.

» A harmonic Ritz vector y € range((Q))) approximates an eigenvector of A
with the harmonic Ritz value o + X in the vicinity of o such that

(A—ol,)y — Ay L (A—ol,)range(Qy).

Let the columns of @ form an orthonormal basis of K (A, q1). Then, the
search for for the pair (o + A, ¢) is such that

Qi (A —0Ln) (A — 01,)Qkj = AQi (A — 01) Quy

((AQK)TAQy — QL AQR)Y = (0 + N\)(QLAQk — o li)d
(T Ty + ﬂkekek —0Ty)) = (0 + N (T — oli)y
)9 )
)9 )g

o~ o~ o~ o~

((Tk—O'Ik)Tk—Fﬁkeke o+ A (Tk—UIk)
(Tk + 5kfek o+ A
where f := (T}, — oI}) ey
po



Lanczos harmonic Ritz for interior eigenpairs

> Note that fel is not symmetric so that the reduced eigenpairs of the
harmonic Ritz procedure are generally complex.

However, they do converge towards the real eigenpairs.
» Similarly as with Arnoldi, the Rayleigh quotient is given by

p=0+A= 5" 1)k
whereas the residual # := Ay — py is such that

i = (o +X=p)(p—o0).

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 41 /42



Summary of Krylov subspace methods

» We studied two main Krylov subspace methods for eigenvalue problems:
- Arnoldi process: For general matrices, produces a Hessenberg matrix
Hy, requires orthogonalization against all previously formed vectors
- Lanczos process: For symmetric matrices, produces a tridiagonal
matrix T}, relies on a three terms recurence formula
» Both methods:
- Construct an orthonormal basis for the Krylov subspace (A, v)
- Can be used with either Rayleigh Ritz or harmonic Ritz projections
» Key advantages of Krylov subspace methods:
- Only require matrix-vector products, ideal for large sparse matrices
- Can find several eigenvalues simultaneously
» Modern implementations use:
- Restarting techniques to limit memory requirements and increasing
computational cost of Arnoldi (will be covered in Lecture 15)
- Reorthogonalization strategies for numerical stability of Lanczos
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