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Motivation
▶ Rayleigh-Ritz projections in Krylov subspaces from Lanczos/Arnoldi

procedures are very effective to compute exterior eigenpairs, provided
the targeted eigenvalues are well-separated from the rest of the spectrum.

▶ In combination with a shift-and-invert spectral transformation,
Rayleigh-Ritz projections in Krylov subspaces are also efficient to
compute interior eigenpairs in the vicinity of a shift σ.
A proper implementation of shift-and-invert transformations requires an
evaluation of the mapping x 7→ (A− σIn)

−1x at each iteration.
▶ The Jacobi-Davidson method is of particular interest when one cannot

afford to evaluate x 7→ (A− σIn)
−1x with sufficient precision.

The Jacobi-Davidson method was proposed by Sleijpen and Van der Vorst
(2000) on the basis of ideas from Jacobi (1845-46) and Davidson (1975).

Sleijpen, G. L., & Van der Vorst, H. A. (2000). A Jacobi–Davidson iteration method for linear eigenvalue problems.
SIAM review, 42(2), 267-293.
Jacobi, C.G.J. (1845), Ueber eine neue Auflosungsart der bei der Methode der kleinsten Quadrate vorkommende
linearen Gleichungen, Astronom Nachr, 297-306.
Jacobi, C. G. J. (1846). Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden
Gleichungen numerisch aufzulösen. J. Reine Angew. Math., 30, 51–94.
Davidson E. R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of
large real symmetric matrices. J. Comput. Phys., 17, 87–94.
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Davidson method
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Davidson method
▶ In the Davidson (1975) method, one is equipped with an orthonormal

basis in the columns of Qk := [q1, . . . , qk] ∈ Fn×k.
A Rayleigh-Ritz projection in range(Qk) is deployed where range(Qk) is
not a Krylov subspace. We search for (λ, ŷ) ∈ F× Fk such that

Bkŷ = λŷ

where Bk := QH
k AQk. We then have a Rayleigh-Ritz pair (λ, y) in which

y := Qkŷ, and a residual given by r := Ay − λy.
▶ The purpose of the Davidson method is to improve the Rayleigh-Ritz

vector y to decrease the residual norm ∥r∥2.
For this, Davidson (1975) suggests to compute the expansion vector
t ∈ Fn such that

(DA − λIn)t = r

where DA ∈ Fn×n is the diagonal matrix formed with the diagonal A.
Davidson E. R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of
large real symmetric matrices. J. Comput. Phys., 17, 87–94.
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Davidson method, cont’d1
▶ The expansion vector t is then orthogonalized against q1, . . . , qk,

normalized and used to expand the search space:

Solve for t such that (DA − λIn)t = r

t := Π(k)t //Π(k) is a projector onto range(Qk)
⊥

qk+1 := t/∥t∥2

New Rayleigh-Ritz pairs can then be sought in range(Qk+1).
▶ The Davidson method has shown great success to approximate exterior

eigenpairs of diagonally dominant, but not diagonal, matrices A.
Indeed, if A is diagonal, then

t = (DA − λIn)
−1r = (A− λIn)

−1(A− λIn)y = y ∈ range(Qk)

so that the search space range(Qk) cannot be expanded with t.
Then the method stagnates and becomes unable to achieve convergence.

▶ If DA ∝ In, then the Davidson method is equivalent to Lanczos or Arnoldi.
Davidson E. R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of
large real symmetric matrices. J. Comput. Phys., 17, 87–94.
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Davidson method, cont’d2

▶ Although the Davidson method was originaly applied to real symmetric
matrices, it seamlessly applies to non-symmetric/Hermitian matrices.
For non-symmetric/Hermitian matrices, the algorithm is as follows:

Algorithm 1 Davidson: (A, q, k) 7→ (λ, y)

1: Allocate memory for Qk,Wk ∈ Fn×k and Bk ∈ Fk×k

2: q1 := q/∥q∥2
3: for j = 1, . . . , k do
4: wj := Aqj
5: Bk[1 : j, j] := QH

j wj , Bk[j, 1 : j − 1] := qHj Wj−1

6: Solve for an exterior eigenpair (λ, ŷ) of Bj ▷ Bj := Bk[1 : j, 1 : j]
7: y := Qj ŷ
8: r := Ay − λy
9: Solve for t such that (DA − λIn)t = r

10: t := Π(j)t ▷ Π(j) is a projector onto range(Qj)
⊥

11: qj+1 := t/∥t∥2

Davidson E. R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of
large real symmetric matrices. J. Comput. Phys., 17, 87–94.
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Davidson method, cont’d3
▶ For Hermitian matrices, the algorithm is as follows:

Algorithm 2 Davidson: (A, q, k) 7→ (λ, y)

1: Allocate memory for Qk ∈ Fn×k and Bk ∈ Fk×k

2: q1 := q/∥q∥2
3: for j = 1, . . . , k do
4: w := Aqj
5: Bk[1 : j, j] := QH

j w ▷ Bk[j, 1 : j − 1] := Bk[1 : j − 1, j]T

6: Solve for an exterior eigenpair (λ, ŷ) of Bj ▷ Bj := Bk[1 : j, 1 : j]
7: y := Qj ŷ
8: r := Ay − λy
9: Solve for t such that (DA − λIn)t = r

10: t := Π(j)t ▷ Π(j) is a projector onto range(Qj)
⊥

11: qj+1 := t/∥t∥2

Although Π(j) is most commonly defined as a MGS procedure, CGS2 can
also be used to mitigate potential stagnation, see van der Vorst (2002).

Davidson E. R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of
large real symmetric matrices. J. Comput. Phys., 17, 87–94.
van der Vorst, H. A. (2002). Computational methods for large eigenvalue problems.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 5 / 18



Generalized Davidson (GD) method
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Generalized Davidson method
▶ Some modificiations of the Davidson method introduced by Morgan &

Scott (1986) as well as Crouzeix et al. (1994) lead to variants collectively
referrred to as the generalized Davidson (GD) method.
Morgan & Scott (1986):
- A general preconditioner of the form M − ϑIn is used instead of the

original DA − λIn, without requirement of positive-definiteness.
- The aim is for M − ϑIn to approximate A− λIn while allowing for

fast evaluation of r 7→ (M − ϑIn)
−1r.

- The preconditioner should not be too good to avoid stagnation, i.e.,

M − ϑIn = A− λIn =⇒ t := (M − ϑIn)
−1r = y ∈ range(Qk).

This contradicts the common notion of preconditioner.
- Numerical results reported with significantly improved convergence

behaviors when letting M be the tridiagonal form of A and ϑ := λ.
- Upon setting ϑ := σ, one can drive global convergence toward some σ.

Morgan, R. B., & Scott, D. S. (1986). Generalizations of Davidson’s method for computing eigenvalues of sparse
symmetric matrices. SIAM Journal on Scientific and Statistical Computing, 7(3), 817-825.
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Generalized Davidson method, cont’d1
Morgan (1991):
- Harmonic Ritz pairs are used to yield even faster convergence

towards interior eigeinpairs.
Crouzeix et al. (1994):
- Several eigenpairs are sought at the same time and several vectors

are incorporated into each search space expansion, leading to a
block implementation.

- A maximum search space dimension is introduced, triggering
periodic restarts of the iterative method.

- Restarting of the GD method renders convergence dependent on
positive-definiteness of the preconditioners.

Sadkane (1993):
- Extension of the GD method to real non-symmetric matrices.

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.
Crouzeix, M., Philippe, B., & Sadkane, M. (1994). The Davidson method. SIAM Journal on Scientific Computing,
15(1), 62-76.
Sadkane, M. (1993). Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems. Numerische
Mathematik, 64, 195-211.
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Generalized Davidson method, cont’d2

▶ The computation of Rayleigh-Ritz pairs after the generalized Davidson (GD)
method is as follows:

Algorithm 3 GD: (A, q, k) 7→ (λ, y)

1: Allocate memory for Qk,Wk ∈ Fn×k and Bk ∈ Fk×k

2: q1 := q/∥q∥2
3: for j = 1, . . . , k do
4: wj := Aqj
5: Bk[1 : j, j] := QH

j wj , Bk[j, 1 : j − 1] := qHj Wj−1

6: Solve for an exterior eigenpair (λ, ŷ) of Bj ▷ Bj := Bk[1 : j, 1 : j]
7: y := Qj ŷ
8: r := Ay − λy
9: Solve for t such that (M − λIn)t = r

10: t := Π(j)t ▷ Π(j) is a projector onto range(Qj)
⊥

11: qj+1 := t/∥t∥2
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Generalized Davidson method, cont’d3
▶ For a harmonic Ritz pair (λ, y) with respect to a search space range(Qk),

there exists ŷ ∈ Fk such that y = Qkŷ and
G1ŷ = λGH

2 ŷ

where G1 := ((A− σIn)Qk)
H(A− σIn)Qk and G2 := QH

k (A− σIn)Qk.
If A is non-Hermitian, a basic implementation of the harmonic GD
method is as follows:

Algorithm 4 Basic harmonic GD: (A, q, σ, k) 7→ (λ, y)

1: Allocate memory for Qk,Wk ∈ Fn×k and G1, G2 ∈ Fk×k

2: q1 := q/∥q∥2
3: for j = 1, . . . , k do
4: wj := (A− σIn)qj
5: G1[1 : j, j] := WH

j wj ▷ G1[j, 1 : j − 1] := G1[1 : j − 1, j]H

6: G2[1 : j, j] := QH
j wj , G2 := [j, 1 : j − 1] := qHj Wj−1

7: Solve for eigenpair (λ, ŷ) of G2[1 : j, 1 : j]−HG1[1 : j, 1 : j] closest to 0
8: y := Qj ŷ, δρ := ŷHG2ŷ, ρ := σ + δρ, r := Wj ŷ − δρy
9: Solve for t such that (M − ρIn)t = r

10: t := Π(j)t, qj+1 := t/∥t∥2 ▷ Π(j) is a projector onto range(Qj)
⊥
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Jacobi methods
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Orthogonal complement corrections
▶ Jacobi orthogonal complement correction (JOCC):

Jacobi (1845) considered an eigenvalue problem as a linear system of
equations for which an iterative solver, e.g., Jacobi iteration, is used as a
means to generate a sequence of orthogonal complement corrections
to a given approximate eigenvector.
- Suppose we have a strongly diagonally dominant matrix A, of which
α := a11 is the largest element.

- Then (α, e1) is an approximation of the largest eigenpair (θ, z) of A.
- In matrix notation, the JOCC approach is as follows. Consider

A

(
e1 +

[
0
w

])
= θ

(
e1 +

[
0
w

])
[
α cT

b F

](
e1 +

[
0
w

])
= θ

(
e1 +

[
0
w

])
where [0wT ]T is an orthogonal complement correction to the
approximate eigenvector e1.

Jacobi, C.G.J. (1845), Ueber eine neue Auflosungsart der bei der Methode der kleinsten Quadrate vorkommende
linearen Gleichungen, Astronom Nachr, 297-306.
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Orthogonal complement corrections, cont’d
- The eigenvalue problem leads to the following equations:

λ =α+ cTw

(F − λIn)w = − b

which Jacobi proceeded to solve with the following iteration:

λk :=α+ cTwk

(DF − λkIn)wk+1 =(DF − F )wk − b

with w1 := 0.
- This later became known as the Jacobi iteration.
- Although λk is not a Rayleigh-Ritz value, it is nevertheless an

approximation of the largest eigenvalue θ.
▶ As the JOCC approach is best-suited for strongly diagonally dominant

matrices, Jacobi (1846) coupled this approach with a set of rotations
whose application makes the matrix more diagonally dominant.

Jacobi, C.G.J. (1845), Ueber eine neue Auflosungsart der bei der Methode der kleinsten Quadrate vorkommende
linearen Gleichungen, Astronom Nachr, 297-306.
Jacobi, C. G. J. (1846). Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden
Gleichungen numerisch aufzulösen. J. Reine Angew. Math., 30, 51–94.
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Jacobi-Davidson method
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JOCC by Sleijpen and van der Vorst (1996)
▶ Sleijpen and van der Vorst (2000) revisited the JOCC approach in the

more general setting where an arbitrary iterate yj ∈ Fn is known as an
approximate eigenvector of A ∈ Fn×n.
JOCC’s adaptation to this more general context lies in setting a correction
δ ∈ Fn to yj with unit norm such that

A(yj + δ) = θ(yj + δ), δ ⊥ yj (1)

where θ is the wanted eigenvalue of A.
Eq. (1) can be decomposed into two parts, along and orthogonal to yj :
- First, the part parallel to yj , given by

yjy
H
j A(yj + δ) = θyjy

H
j (yj + δ)

is such that ϑj + yHj Aδ = θ where ϑj := yHj Ayj is the corrected
eigenvalue estimate.

Sleijpen, G. L., & Van der Vorst, H. A. (2000). A Jacobi–Davidson iteration method for linear eigenvalue problems.
SIAM review, 42(2), 267-293.
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JOCC by Sleijpen and van der Vorst (1996), cont’d
- Second, the part orthogonal to yj , given by

(In − yjy
H
j )A(yj + δ) = θ(In − yjy

H
j )(yj + δ)

is such that (In − yjy
H
j )(A− θIn)δ =(In − yjy

H
j )(−Ayj + θyj)

= − (In − yjy
H
j )Ayj

= − (Ayj − ϑjyj) =: −rj .

Since δ ⊥ yj , we have δ = (In − yjy
H
j )δ, and we obtain:

(In − yjy
H
j )(A− θIn)(In − yjy

H
j )δ = −rj

where θ, which is unknown, is replaced by ϑj to yield the
Jacobi-Davidson correction equation given by:

(In − yjy
H
j )(A− ϑjIn)(In − yjy

H
j )δ = −rj .

Note that rHj yj = yHj Ayj − ϑj = 0 =⇒ rj ⊥ yj so that this equation
is consistent as long as A− ϑjIn is not singular.

Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson iteration method for linear eigenvalue problems.
SIAM review, 42(2), 267-293.
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Exact solution of the Jacobi-Davidson correction equation
▶ The Jacobi-Davidson correction equation is such that

(In − yjy
H
j )(A− ϑjIn)δ = −rj , δ ⊥ yj

(A− ϑjIn)δ − yjy
H
j (A− ϑjIn)δ = −rj

so that (A− ϑjIn)δ = αyj − rj where α := yHj (A− ϑjIn)δ. If ϑj is not
an exact eigenvalue of A, then we get

δ = α(A− ϑjIn)
−1yj − (A− ϑjIn)

−1rj .

And from the orthogonality condition yj ⊥ δ, we get

α =
yHj (A− ϑjIn)

−1rj

yHj (A− ϑjIn)−1yj
.

Then, we set: yj+1 := yj + δ

= yj + α(A− ϑjIn)
−1yj − (A− ϑjIn)

−1rj

=α(A− ϑjIn)
−1yj

which corresponds to a Rayleigh quotient iteration.
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Iterative solve of the Jacobi-Davidson equation
▶ In practice, the J-D correction equation is only solved approximately,

typically using either MINRES (Paige & Saunders, 1975) when A is
symmetric/Hermitian, or GMRES (Saad & Schultz, 1986) or even
BiCGSTAB (Van der Vorst, 1992), when A is non-Hermitian.

▶ At every step j of the iteration, one has to solve a linear system with
a varying shift.

▶ Based on the decomposition of the orthogonal correction δ presented by
Sleijpen and van der Vorst (2000), a preconditioning of the following form
is proposed:

r 7→ αM−1yj +M−1r where α :=
yHj M−1r

yHj M−1yj
,

in which M serves as an approximation of A− ϑjIn.
Paige, C.C. & M.A. Saunder (1975). Solution of sparse indefinite systems of linear equations. SIAM, J Numer Anal 12,
617-629.
Saad, Y. & Schultz M.H. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J Sci Statist Comput 7, 856-869.
van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13(2):631–644.
Sleijpen, G. L. G. & van der Vorst, H. A. (2000). A Jacobi–Davidson iteration method for linear eigenvalue problems,
SIAM Review, 42(2), 267–293.
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Jacobi-Davidson algorithm with Rayleigh-Ritz projections
▶ Applying the Jacobi-Davidson (J-D) method to Rayleigh-Ritz projections,

we obtain the following algorithm:

Algorithm 5 J-D: (A, q, k) 7→ (λ, y)

1: Allocate memory for Qk,Wk ∈ Fn×k and Bk ∈ Fk×k

2: t̃ := q
3: for j = 1, . . . , k do
4: t̃ := Π(j−1)t̃ ▷ Π(j) is a projector onto range(Qj)

⊥

5: qj := t̃/∥t̃∥2
6: wj := Aqj
7: Bk[1 : j, j] := QH

j wj , Bk[j, 1 : j − 1] := qHj Wj−1

8: Solve for eigenpair (λ, ŷ) of Bj

9: y := Qj ŷ
10: r := Wj ŷj − λy
11: Solve for t̃ ≈ t such that (In − yjy

H
j )(A− λIn)(In − yjy

H
j )t = r

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 16 / 18



Jacobi-Davidson algorithm with harmonic Ritz projections
▶ We saw in previous lectures that Rayleigh-Ritz projections converge first

towards exterior eigenpairs, generally offering only poor approximations of
interior pairs.

▶ Harmonic Ritz projections are the method of choice to find better
approximations of interior eigenpairs.
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Jacobi-Davidson algorithm with harmonic Ritz projections,
cont’d
▶ Similarly as we previously saw for the GD method, the use of harmonic Ritz

projections is recommended when trying to approximate interior eigenpair:

Algorithm 6 Basic harmonic J-D: (A, q, σ, k) 7→ (λ, y)

1: Allocate memory for Qk,Wk ∈ Fn×k and G1, G2 ∈ Fk×k

2: t̃ := q
3: for j = 1, . . . , k do
4: t̃ := Π(j−1)t̃ ▷ Π(j) is a projector onto range(Qj)

⊥

5: qj := t̃/∥t̃∥2
6: wj := (A− σIn)qj
7: G1[1 : j, j] := WH

j wj ▷ G1[j, 1 : j − 1] := G1[1 : j − 1, j]H

8: G2[1 : j, j] := QH
j wj , G2[j, 1 : j − 1] := qHj Wj−1

9: Solve for eigenpair (λ, ŷ) of G2[1 :j, 1:j]
−HG1[1 :j, 1:j] closest to 0

10: y := Qj ŷ
11: δρ := ŷHG2ŷ, ρ := σ + δρ
12: r := Wj ŷj − δρy
13: Solve for t̃ ≈ t such that (In − yjy

H
j )(A− ρIn)(In − yjy

H
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