

Numerical Linear Algebra for Computational Science and Information Engineering

Krylov Subspace Methods for Linear Systems

Nicolas Venkovic
nicolas.venkovic@tum.de

Chair of Computational Mathematics
School of Computation, Information and Technology
Technical University of Munich

Outline I

1	Projection methods for linear systems	1
2	Methods for general linear systems	7
	• Full orthogonalization method (FOM)	7
	• General minimal residual (GMRES) method	11
3	Methods for symmetric linear systems	21
	• Conjugate gradient (CG) method	21
	• Minimal residual (MINRES) method	37
	• SYMMLQ method	46
4	More methods for non-symmetric linear systems	58
	• Bi-orthogonalization process	58
	• Bi-conjugate gradient (BiCG) method	66
	• Quasi-minimal residual (QMR) method	70
5	Transpose-free methods	76
	• Matrix polynomials and Krylov subspaces	76

Outline II

• Conjugate gradient squared (CGS) method	79
• Bi-conjugate gradient stabilized (BiCGSTAB) method	89
6 Summary	100
7 References	102

Projection methods for linear systems

General framework of projection methods for linear systems

- Let \mathcal{K}_m be a proper m -dimensional subspace of \mathbb{R}^n , i.e., $\mathcal{K}_m \subset \mathbb{R}^n$, typically with $m \ll n$.

We then seek for a $\tilde{x} \in \mathcal{K}_m$ which approximates the solution x of $Ax = b$.

A typical way to form the approximation $\tilde{x} \in \mathcal{K}_m$ is to impose m **independent orthogonality conditions on the residual** $r := b - A\tilde{x}$ with respect to a m -dimensional **constraint subspace** $\mathcal{L}_m \subset \mathbb{R}^n$:

$$r = b - A\tilde{x} \perp \mathcal{L}_m. \quad (1)$$

If $\mathcal{K}_m = \mathcal{L}_m$, then Eq. (1) is referred to as the **Galerkin condition**, and \tilde{x} is formed by **orthogonal projection**.

More generally, we have $\mathcal{L}_m \neq \mathcal{K}_m$, in which case Eq. (1) is referred to as the **Petrov-Galerkin condition**. Then, the process of forming \tilde{x} is an **oblique projection**.

A projection technique onto the approximation/search space \mathcal{K}_m along the constraint subspace \mathcal{L}_m is summarized as:

$$\boxed{\text{Find } \tilde{x} \in \mathcal{K}_m \text{ such that } b - A\tilde{x} \perp \mathcal{L}_m.}$$

General framework of projection methods for linear systems, cont'd

- The **projection techniques** presented in this lecture are **iterative**. That is, as a pair $(\mathcal{K}_m, \mathcal{L}_m) \subset \mathbb{R}^n \times \mathbb{R}^n$ of m -dimensional search and constraint subspaces is used to form an approximate solution \tilde{x} of $Ax = b$, **the next iteration consists of expanding those subspaces**, leading to a pair $(\mathcal{K}_{m+1}, \mathcal{L}_{m+1})$ which is **then used to form a subsequent approximate solution**.

A projection technique is deployed with an **initial iterate** $x_0 \in \mathbb{R}^n$. Subsequent iterates are then formed leveraging x_0 by searching in the **affine subspace** $x_0 + \mathcal{K}_m$. The projection technique is then summarized as

$$\boxed{\text{Find } \tilde{x} \in x_0 + \mathcal{K}_m \text{ such that } b - A\tilde{x} \perp \mathcal{L}_m}.$$

If we write $\tilde{x} := x_0 + \hat{x}$ with $\hat{x} \in \mathcal{K}_m$, then the projection technique is reformulated as

$$\boxed{\text{Find } \hat{x} \in \mathcal{K}_m \text{ such that } r_0 - A\hat{x} \perp \mathcal{L}_m}$$

where $r_0 := b - Ax_0$.

Matrix form of projection techniques for linear systems

► Let the columns of $V_m := [v_1, \dots, v_m]$ and $W_m := [w_1, \dots, w_m]$ form **bases of the search and constraints spaces**, respectively, i.e.,

$$\text{range}(V_m) = \mathcal{K}_m \text{ and } \text{range}(W_m) = \mathcal{L}_m.$$

Once equipped with such bases, one can recast the projection defined as finding $\tilde{x} \in x_0 + \mathcal{K}_m$ such that $b - A\tilde{x} \perp \mathcal{L}_m$ into

Find $\tilde{y} \in \mathbb{R}^m$ such that $\tilde{x} := x_0 + V_m \tilde{y}$ and $b - A\tilde{x} \perp \text{range}(W_m)$.

Taking the dot product as inner product, this leads up to the following matrix form:

Find $\tilde{y} \in \mathbb{R}^m$ such that $\tilde{x} := x_0 + V_m \tilde{y}$ and $W_m^T(r_0 - AV_m \tilde{y}) = 0$.

If $W_m^T AV_m$ is **not singular**, we then have

$$\tilde{y} = (W_m^T AV_m)^{-1} W_m^T r_0$$

so that

$$\tilde{x} = x_0 + V_m (W_m^T AV_m)^{-1} W_m^T r_0.$$

Matrix form of projection techniques for linear systems, cont'd₁

- A proper projection technique to approximate the solution of a linear system in $x_0 + \text{range}(V_m)$ along $\text{range}(W_m)$ requires that $W_m^T A V_m$ is not singular.

It can be shown that $W_m^T A V_m$ is **not singular** if and only if **no vector of the subspace $A\mathcal{K}$ is orthogonal to the constraints subspace \mathcal{L}_m** , i.e., $A\mathcal{K}_m \cap \mathcal{L}_m^\perp = \{0\}$.

Saad (2003) states the following theorem:

Theorem (Non-singularity of $W_m^T A V_m$)

If A , \mathcal{K}_m and \mathcal{L}_m satisfy either of the two following conditions:

- A is symmetric positive definite and $\mathcal{L}_m = \mathcal{K}_m$, or
- A is non-singular and $\mathcal{L}_m = A\mathcal{K}_m$.

Then the $W_m^T A V_m$ matrix is non-singular for any full-rank V_m and W_m .

Matrix form of projection techniques for linear systems, cont'd₂

- ▶ In practical implementations of projection techniques to build approximate solutions to linear systems, we need to consider:
 - How to choose the search and constraints subspaces \mathcal{K}_m and \mathcal{L}_m at a given iteration m .
 - If an approximation is not good enough, how to expand those subspaces to \mathcal{K}_{m+1} and \mathcal{L}_{m+1} .

Of particular interest for the definition of projection techniques are the so-called **Krylov subspaces**:

$$\mathcal{K}_m(A, r_0) := \text{span}\{r_0, Ar_0, \dots, A^{m-1}r_0\} \subseteq \mathbb{F}^n$$

which form a nested sequence:

$$\mathcal{K}_1(A, r_0) \subseteq \mathcal{K}_2(A, r_0) \subseteq \dots \subseteq \mathcal{K}_m(A, r_0) \subseteq \dots$$

A **Krylov subspace method** is a projection technique based on the subspace $\mathcal{K}_m(A, r_0)$. Different choices of a constraints subspace lead to different kinds of Krylov subspace methods.

Matrix form of projection techniques for linear systems, cont'd₃

- The choice of the constraint subspace \mathcal{L}_m is often made so that the approximation in \mathcal{K}_m possesses some **optimality properties**, such as **minimizing the residual norm** or the **norm of the forward error**. Some widely used Krylov subspace methods are proposed based on the choices

$$\mathcal{L}_m = \mathcal{K}_m(A, r_0), \quad \mathcal{L}_m = A\mathcal{K}_m(A, r_0) \text{ and } \mathcal{L}_m = \mathcal{K}_m(A^T, r_0).$$

Methods for general linear systems

Full orthogonalization method (FOM)

- The full orthogonalization method (FOM), proposed by Saad (1981), is an **orthogonal projection in a Krylov subspace** $\mathcal{K}_m(A, r_0)$, with constraints subspace $\mathcal{L}_m = \mathcal{K}_m$, i.e., it reads

Find $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ such that $b - Ax_m \perp \mathcal{K}_m(A, r_0)$.

Assuming that the columns of $V_m := [v_1, \dots, v_m]$ form a basis of the Krylov subspace $\mathcal{K}_m(A, r_0)$, the iterate formed by FOM is then given by

$$x_m := x_0 + V_m(V_m^T A V_m)^{-1} V_m^T r_0.$$

We saw in lecture 11 that, if the columns of V_m form an orthonormal basis of $\mathcal{K}_m(A, r_0)$ as obtained by Arnoldi, we then have

$$V_m^T A V_m = H_m$$

where H_m is an upper-Hessenberg matrix.

Moreover, we have $v_1 := r_0/\beta$, where $\beta := \|r_0\|_2$, so that

$$V_m^T r_0 = [v_1, \dots, v_m]^T v_1 \beta = \beta e_1^{(m)} \text{ where } e_1^{(m)} := I_m[:, 1].$$

Full orthogonalization method (FOM), cont'd₁

Consequently, we have

$$x_m := x_0 + V_m \tilde{y} \text{ where } H_m \tilde{y} = \beta e_1^{(m)}.$$

In most cases, the dimension m of the Krylov subspace $\mathcal{K}_m(A, r_0)$ is much smaller n , so that one can solve for \tilde{y} such that $H_m \tilde{y} = \beta e_1^{(m)}$ using a direct method or, since H_m is Hessenberg, possibly also using a QR factorization.

- ▶ Let $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ be an iterate formed by FOM. Then, we have

$$\begin{aligned} r_m &:= b - Ax_m \\ &= b - A(x_0 + V_m \tilde{y}) \text{ where } H_m \tilde{y} = \beta e_1^{(m)} \\ &= r_0 - AV_m \tilde{y} \end{aligned}$$

where we recall the Arnoldi relation $AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^{(m)T}$, so that

$$\begin{aligned} r_m &= r_0 - V_m H_m y - h_{m+1,m} (e_m^{(m)T} \tilde{y}) v_{m+1} \\ &= r_0 - \beta v_1 - h_{m+1,m} (e_m^{(m)T} \tilde{y}) v_{m+1}. \end{aligned}$$

Full orthogonalization method (FOM), cont'd₂

But, remember that we have $r_0 = \beta v_1$, so that we obtain

$$r_m = -h_{m+1,m}(e_m^{(m)T} \tilde{y})v_{m+1}.$$

One can then promptly evaluate the residual norm $\|r_m\|_2$, without having to form the iterate x_m , nor to evaluate an additional matrix-vector product. Indeed, we have

$$\|r_m\|_2 = |h_{m+1,m}| |e_m^{(m)T} \tilde{y}|.$$

- ▶ In practice, FOM is seldom used for the purpose of solving linear systems.

Full orthogonalization method (FOM), cont'd₃

- ▶ Implementations of the FOM method are defined by specifying a procedure to construct an orthonormal basis of the Krylov subspace $\mathcal{K}_m(A, r_0)$. This can be done using any variant of the Arnoldi algorithm, e.g.,

Algorithm 1 MGS-based FOM: $(x_0, \varepsilon) \mapsto x_j$

```
1:  $r_0 := b - Ax_0$ 
2:  $\beta := \|r_0\|_2$ 
3:  $v_1 := r_0/\beta$ 
4: for  $j = 1, 2, \dots$  do
5:    $w := Av_j$ 
6:   for  $i = 1, \dots, j$  do
7:      $h_{ij} := w^T v_i$ 
8:      $w := w - h_{ij} v_i$ 
9:    $h_{j+1,j} := \|w\|_2$ 
10:  Solve for  $\tilde{y}$  such that  $H_j \tilde{y} = \beta e_1^{(j)}$ 
11:  if  $h_{j+1,j} |e_1^{(j)T} \tilde{y}| < \varepsilon \|b\|_2$  then
12:    Stop
13:     $v_{j+1} := w/h_{j+1,j}$ 
14:   $x_j := x_0 + V_j \tilde{y}$ 
```

▷ Stop if $\|r_j\|_2 < \varepsilon \|b\|_2$

Generalized minimal residual (GMRES) method

► The generalized minimal residual (GMRES) method, proposed by Saad and Schultz (1986), is an **oblique projection in a Krylov subspace \mathcal{K}_m** , with constraints subspace $\mathcal{L}_m = A\mathcal{K}_m$, i.e., it reads

Find $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ such that $b - Ax_m \perp A\mathcal{K}_m(A, r_0)$. (2)

Assuming that the columns of $V_m := [v_1, \dots, v_m]$ form a basis of the Krylov subspace $\mathcal{K}_m(A, r_0)$, the GMRES iterate is given by

$$x_m := x_0 + V_m((AV_m)^T AV_m)^{-1}(AV_m)^T r_0.$$

However, it is more common and practical to derive the GMRES iterate based on its **optimality property**:

Theorem (Optimality of GMRES iterates)

The iterate x_m is the solution of Pb. 2 if and only if it minimizes the residual norm $\|b - Ax\|_2$ over the affine subspace $x_0 + \mathcal{K}_m(A, r_0)$, i.e., if and only if

$$\|b - Ax_m\|_2 = \min_{x \in x_0 + \mathcal{K}_m(A, r_0)} \|b - Ax\|_2.$$

Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. *SIAM Journal on scientific and statistical computing*, 7(3), 856-869.

Generalized minimal residual (GMRES) method, cont'd₁

► Consequently, the GMRES iterate $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ is given by

$$x_m := x_0 + V_m \tilde{y}, \text{ where}$$

$$\begin{aligned}\tilde{y} &:= \arg \min_{y \in \mathbb{R}^m} \|b - A(x_0 + V_m y)\|_2 \\ &= \arg \min_{y \in \mathbb{R}^m} \|r_0 - AV_m y\|_2\end{aligned}$$

in which, we recall that $r_0 = \beta v_1$, where $\beta := \|r_0\|_2$, and, as the Arnoldi relation reads $AV_m = V_{m+1} \underline{H}_m$ in which $\underline{H}_m := V_{m+1}^T AV_m$, we obtain:

$$\begin{aligned}\tilde{y} &= \arg \min_{y \in \mathbb{R}^m} \|\beta v_1 - V_{m+1} \underline{H}_m y\|_2 \\ &= \arg \min_{y \in \mathbb{R}^m} \|V_{m+1}(\beta e_1^{(m+1)} - \underline{H}_m y)\|_2 \\ &= \arg \min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{H}_m y\|_2 \text{ where } e_1^{(m+1)} := I_{m+1}[:, 1].\end{aligned}$$

Generalized minimal residual (GMRES) method, cont'd₂

- The least-squares problem $\min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{H}_m y\|_2$ is solved using the QR decomposition of the Hessenberg matrix, which can be done efficiently provided that the dimension m of the approximation and constraints subspaces is not too large.

Let $Q_{m+1} \in \mathbb{R}^{(m+1) \times (m+1)}$ be the orthogonal matrix s.t.

$\underline{H}_m = Q_{m+1}^T \underline{R}_m$, where $\underline{R}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper-triangular matrix.

Then, the least-squares problem is recast into

$$\begin{aligned} \min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{H}_m y\|_2 &= \min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - Q_{m+1}^T \underline{R}_m y\|_2 \\ &= \min_{y \in \mathbb{R}^m} \|\beta Q_{m+1} e_1^{(m+1)} - \underline{R}_m y\|_2 \\ &= \min_{y \in \mathbb{R}^m} \left\| \beta q_1 - \begin{bmatrix} \underline{R}_m \\ 0_{1 \times m} \end{bmatrix} y \right\|_2 \end{aligned}$$

where $q_1 := Q_{m+1} e_1^{(m+1)} = Q_{m+1}[1 : m+1, 1]$ and $\underline{R}_m = \underline{R}_m[1:m, 1:m]$.

Generalized minimal residual (GMRES) method, cont'd₃

So that the least-squares problem is solved by solving the following triangular system:

$$R_m \tilde{y} = \beta q_1[1 : m].$$

- ▶ Then, the residual $r_m := b - Ax_m$ is s.t. $r_m = V_{m+1}(\beta e_1^{(m+1)} - \underline{H}_m \tilde{y})$ and

$$\begin{aligned}\|r_m\|_2 &= \|\beta e_1^{(m+1)} - \underline{H}_m \tilde{y}\|_2 \\ &= \left\| \beta q_1 - \begin{bmatrix} R_m \\ 0_{1 \times m} \end{bmatrix} \tilde{y} \right\|_2 \\ &= \left\| \beta q_1 - \begin{bmatrix} \beta q_1[1 : m] \\ 0 \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} 0_{m \times 1} \\ \beta q_1[m+1] \end{bmatrix} \right\|_2\end{aligned}$$

so that $\|r_m\|_2 = \beta |q_1[m+1]|$.

Thus, one needs not to assemble the iterate x_m , nor to perform an additional matrix-vector product in order to monitor convergence.

Generalized minimal residual (GMRES) method, cont'd₄

- ▶ Just like with FOM, the workhorse of GMRES is the orthogonalization of Krylov basis vectors. In particular, this is most frequently implemented on the basis of the MGS procedure:

Algorithm 2 MGS-based GMRES: $(x_0, \varepsilon) \mapsto x_j$

```
1:  $r_0 := b - Ax_0$ 
2:  $\beta := \|r_0\|_2$ 
3:  $v_1 := r_0/\beta$ 
4: for  $j = 1, 2, \dots$  do
5:    $w := Av_j$ 
6:   for  $i = 1, \dots, j$  do
7:      $h_{ij} := w^T v_i$ 
8:      $w := w - h_{ij} v_i$ 
9:    $h_{j+1,j} := \|w\|_2$ 
10:  Solve for  $\tilde{y} = \arg \min_{y \in \mathbb{R}^j} \|\beta e_1^{(j+1)} - \underline{H_j} y\|$ 
11:  if  $\|\beta e_1^{(j+1)} - \underline{H_j} \tilde{y}\| < \varepsilon \|b\|_2$  then
12:    Stop
13:     $v_{j+1} := w/h_{j+1,j}$ 
14:   $x_j := x_0 + V_j \tilde{y}$ 
```

▷ Stop if $\|r_j\|_2 < \varepsilon \|b\|_2$

Generalized minimal residual (GMRES) method, cont'd₅

- ▶ Remember that the least-squares problem $\min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{H}_m y\|_2$ is recast into the linear system $R_m \tilde{y} = \beta q_1[1:m]$ where $R_m := \underline{R}_m[1:m, 1:m]$ in which the QR decomposition $Q_{m+1}^T \underline{R}_m = \underline{H}_m$ is needed.

Suppose that we have obtained the QR decomposition of the matrix \underline{H}_{j-1} , and we are interested in getting the decomposition of \underline{H}_j with the least amount of work possible. Clearly, we have

$$\underline{H}_j = \begin{bmatrix} \underline{H}_{j-1} & h_{1:j,j} \\ 0_{1 \times j-1} & h_{j+1,j} \end{bmatrix}.$$

We saw in Lecture 07 that Givens rotations can be used to turn an upper Hessenberg matrix into triangular form. In particular, for \underline{H}_{j-1} , we have

$$\underline{R}_{j-1} = \begin{bmatrix} \underline{R}_{j-1} \\ 0_{1 \times (j-1)} \end{bmatrix} = G_{j-1}^{(j)} G_{j-2}^{(j)} \dots G_1^{(j)} \underline{H}_{j-1} = Q_j \underline{H}_{j-1}$$

Generalized minimal residual (GMRES) method, cont'd₆
 where the Givens rotation matrices $G_1^{(j)}, \dots, G_{j-1}^{(j)} \in \mathbb{R}^{j \times j}$ are given by

$$G_i^{(j)} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & c_i & s_i & & \text{i-th row} \\ & & & -s_i & c_i & & (i+1)\text{-th row} \\ & & & & & 1 & \\ & & & & & & \ddots \\ & & & & & & & 1 \end{bmatrix}$$

in which the scalars s_i and c_i are set so as to zero the $(i+1, i)$ -entry of the Hessenberg matrix $G_i^{(j)}$ is applied to.

Clearly, we have

$$G_i^{(j+1)} = \begin{bmatrix} G_i^{(j)} & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix}$$

for $i = 1, \dots, j-1$.

Generalized minimal residual (GMRES) method, cont'd₇

so that

$$\begin{aligned}\underline{R}_j &= G_j^{(j+1)} \dots G_1^{(j+1)} \underline{H}_j \\ &= G_j^{(j+1)} \begin{bmatrix} G_{j-1}^{(j)} \dots G_1^{(j)} \underline{H}_{j-1} & G_{j-1}^{(j)} \dots G_1^{(j)} h_{1:j,j} \\ 0_{1 \times (j-1)} & h_{j+1,j} \end{bmatrix} \\ &= G_j^{(j+1)} \begin{bmatrix} \underline{R}_{j-1} & G_{j-1}^{(j)} \dots G_1^{(j)} h_{1:j,j} \\ 0_{1 \times (j-1)} & h_{j+1,j} \end{bmatrix} \\ &= \begin{bmatrix} \underline{R}_{j-1} & G_j^{(j+1)}[1:j, 1:j+1] \begin{bmatrix} G_{j-1}^{(j)} \dots G_1^{(j)} h_{1:j,j} \\ h_{j+1,j} \end{bmatrix} \\ 0_{1 \times (j-1)} & 0 \end{bmatrix}.\end{aligned}$$

Therefore, while performing the j -th iteration of GMRES, one is equipped with \underline{R}_{j-1} and \underline{H}_j . In order to assemble \underline{R}_j , there only remains to apply the Givens rotations $G_1^{(j+1)}, \dots, G_j^{(j+1)}$ to the last column of \underline{H}_j , i.e.,

$$\boxed{\underline{R}_j[1:j+1, j] = G_j^{(j+1)} \dots G_1^{(j+1)} h_{1:j+1,j}}.$$

Generalized minimal residual (GMRES) method, cont'd₈

► We saw that the least-squares problem $\min_{x \in x_0 + \mathcal{K}_j(A, r_0)} \|b - Ax\|_2$ can be recast in the linear system $R_j \tilde{y} = \underline{g_j}[1 : j]$ where $\underline{g_j} := \beta Q_{j+1} e_1^{(j+1)}$ so that

$$\underline{g_j} := \beta G_j^{(j+1)} \dots G_1^{(j+1)} e_1^{(j+1)} = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_{j-1} \\ c_j \gamma_j \\ -s_j \gamma_j \end{bmatrix} \quad \text{where} \quad \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_j \end{bmatrix} = \underline{g_{j-1}}$$

with $\underline{g_0} = \beta$, and in which the scalars s_i and c_i are given by

$$s_j = \frac{h_{j+1,j}}{\sqrt{(h_{jj}^{(j-1)})^2 + h_{j+1,j}^2}} \quad \text{and} \quad c_j = \frac{h_{jj}^{(j-1)}}{\sqrt{(h_{jj}^{(j-1)})^2 + h_{j+1,j}^2}}.$$

where $\underline{H_j^{(j)}} := \underline{R_j}$.

Generalized minimal residual (GMRES) method, cont'd

► In practice, the $\underline{R}_1, \dots, \underline{R}_m$ and $\underline{g}_1, \dots, \underline{g}_m$ are often computed in-place, stored in pre-allocated \underline{H}_m and \underline{g}_m . This yields the following algorithm

Algorithm 3 Practical GMRES: $(x_0, m, \varepsilon) \mapsto x_j$

```
1: // Allocate  $\underline{H} \in \mathbb{R}^{(m+1) \times m}$ ,  $\underline{g} \in \mathbb{R}^{m+1}$  and  $V \in \mathbb{R}^{n \times (m+1)}$ 
2:  $r_0 := b - Ax_0$ ;  $\beta := \|r_0\|_2$ ;  $\underline{g} := [\beta, 0, \dots, 0]^T$ ;  $v_1 := r_0/\beta$ 
3: for  $j = 1, 2, \dots$  do
4:   Compute  $h_{1:j+1,j}$  and  $v_{j+1}$ 
5:   for  $i = 1, \dots, j-1$  do
6:     // Apply  $G_i^{(j+1)}$  to  $h_{1:j+1,j}$ .
7:     
$$\begin{bmatrix} h_{ij} \\ h_{i+1,j} \end{bmatrix} := \begin{bmatrix} c_i & s_i \\ -s_i & c_i \end{bmatrix} \begin{bmatrix} h_{ij} \\ h_{i+1,j} \end{bmatrix} \text{ where } \begin{cases} s_i := h_{i+1,i}/(h_{ii}^2 + h_{i+1,i}^2)^{1/2} \\ c_i := h_{ii}/(h_{ii}^2 + h_{i+1,i}^2)^{1/2} \end{cases}$$

8:     // Apply  $G_j^{(j+1)}$  to  $\underline{g}[1:j+1]$  and  $h_{1:j+1,j}$ 
9:     
$$\begin{bmatrix} \underline{g}[j] \\ \underline{g}[j+1] \end{bmatrix} := \begin{bmatrix} c_j & s_j \\ -s_j & c_j \end{bmatrix} \begin{bmatrix} \underline{g}[j] \\ 0 \end{bmatrix} \text{ where } \begin{cases} s_j := h_{j+1,j}/(h_{jj}^2 + h_{j+1,j}^2)^{1/2} \\ c_j := h_{jj}/(h_{jj}^2 + h_{j+1,j}^2)^{1/2} \end{cases}$$

10:     $h_{jj} := c_j h_{jj} + s_j h_{j+1,j}$ ;  $h_{j+1,j} := 0$ 
11:    if  $|\underline{g}[j+1]| < \varepsilon \|b\|_2$  then
12:      Stop
13:      ▷ Stop if  $\|r_j\|_2 < \varepsilon \|b\|_2$ 
14:       $x_j := x_0 + V_j \tilde{y}$  where  $\tilde{y}$  is solution of triangular system  $H[1:j, 1:j] \tilde{y} = \underline{g}[1:j]$ 
```

Methods for symmetric linear systems

Conjugate gradient (CG) method

► Here, we assume that the matrix A is **SPD**. Similarly to FOM, the CG method (Hestenes and Stiefel, 1952) is an **orthogonal projection** in the Krylov subspace $\mathcal{K}_m(A, r_0)$. That is, CG iterates are formed as follows:

Find $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ such that $b - Ax_m \perp \mathcal{K}_m(A, r_0)$.

Once again, assuming that the columns of $V_m := [v_1, \dots, v_m]$ form a basis of $\mathcal{K}_m(A, r_0)$, the CG iterate is given by

$$x_m := x_0 + V_m(V_m^T A V_m)^{-1} V_m^T r_0.$$

We saw in Lecture 11 that, if the columns of V_m form an orthonormal basis of $\mathcal{K}_m(A, r_0)$ as obtained by the Lanczos method, we then have

$$V_m^T A V_m = T_m$$

where T_m is a tridiagonal matrix.

Moreover, we have $v_1 := r_0/\beta$, where $\beta := \|r_0\|_2$, so that

$$V_m^T r_0 = [v_1, \dots, v_m]^T v_1 \beta = \beta e_1^{(m)} \text{ where } e_1^{(m)} := I_m[:, 1].$$

Hestenes M. R. & Stiefel E. L. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409–436.

Conjugate gradient (CG) method, cont'd₁

Consequently, we have

$$x_m := x_0 + V_m \tilde{y} \text{ where } T_m \tilde{y} = \beta e_1^{(m)}.$$

As formulated above, each CG iterate x_m requires to solve a linear system for \tilde{y} with the tridiagonal matrix T_m .

As A is SPD, so is T_m . Thus, one can make use of the LU decomposition of T_m in order to solve $T_m \tilde{y} = \beta e_1^{(m)}$.

Let x_{m+1} denote the CG iterate in $x_0 + \mathcal{K}_{m+1}(A, r_0)$, i.e.,

$$x_{m+1} := x_0 + V_{m+1} \tilde{y} \text{ where } T_{m+1} \tilde{y} = \beta e_1^{(m+1)}.$$

In what follows, we present the steps enumerated by Bai and Pan (2021) in order to construct the CG iterate x_{m+1} given x_m .

Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.

Conjugate gradient (CG) method, cont'd₂

Let the tridiagonal matrices T_m and T_{m+1} admit LU decompositions of the form $L_m U_m$ and $L_{m+1} U_{m+1}$, respectively, in which we have

$$L_\ell = \begin{bmatrix} 1 & & & \\ \gamma_1 & 1 & & \\ & \ddots & \ddots & \\ & & \gamma_{\ell-1} & 1 \end{bmatrix} \text{ and } U_\ell = \begin{bmatrix} \eta_1 & \beta_1 & & \\ \eta_2 & \ddots & & \\ & \ddots & \ddots & \beta_{\ell-1} \\ & & & \eta_\ell \end{bmatrix} \text{ for } \ell = m, m+1.$$

That is, L_m and U_m are the m -th leading principal sub-matrices of L_{m+1} and U_{m+1} .

More precisely, we have

$$\begin{cases} \eta_1 := \alpha_1 \\ \gamma_i := \beta_i / \eta_i & \text{for } i=1, \dots, m \\ \eta_{i+1} := \alpha_{i+1} - \gamma_i \beta_i & \text{for } i=1, \dots, m \end{cases}$$

where $\alpha_j := T_{jj} = v_j^T A v_j$ and $\beta_j := T_{j+1,j} := v_{j+1}^T A v_j = v_j^T A v_{j+1}$ denote the diagonal and off-diagonal components of T_m , respectively.

Conjugate gradient (CG) method, cont'd₃

Given those LU factorizations, the CG iterate $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ may be recast into

$$x_m := x_0 + P_m z^{(m)}$$

where $P_m := V_m U_m^{-1} \in \mathbb{R}^{n \times m}$ and $z^{(m)} := \beta L_m^{-1} e_1^{(m)} \in \mathbb{R}^m$. Then, we have

$$\begin{aligned} P_{m+1} &:= V_{m+1} U_{m+1}^{-1} = [V_m \ v_{m+1}] \begin{bmatrix} U_m^{-1} & *_{m \times 1} \\ 0_{1 \times m} & 1/\eta_{m+1} \end{bmatrix} = [V_m U_m^{-1} \ p_{m+1}] \\ &= [P_m \ p_{m+1}]. \end{aligned}$$

And, from $V_{m+1} = P_{m+1} U_{m+1}$, we get

$$v_{m+1} = \beta_m p_m + \eta_{m+1} p_{m+1} \implies p_{m+1} = (v_{m+1} - \beta_m p_m) / \eta_{m+1}$$

for $m = 1, 2, \dots$, while $p_1 = v_1 / \eta_1$.

Conjugate gradient (CG) method, cont'd₄

Then, as we denote $z^{(m+1)} := [z^{(m)T} \ z_{m+1}]^T = [z_1, \dots, z_m, z_{m+1}]^T$, we see that

$$L_{m+1}z^{(m+1)} = \beta e_1^{(m+1)}$$
$$\begin{bmatrix} L_m z^{(m)} \\ \gamma_m z_m + z_{m+1} \end{bmatrix} = \begin{bmatrix} \beta e_1^{(m)} \\ 0 \end{bmatrix}$$

so that $z_{m+1} = -\gamma_m z_m$ for $m = 1, 2, \dots$ while $z_1 = \beta$. Therefore, we get

$$\begin{aligned} x_{m+1} &:= x_0 + P_{m+1}z^{(m+1)} \\ &= x_0 + [P_m \ p_{m+1}] \begin{bmatrix} z^{(m)} \\ z_{m+1} \end{bmatrix} \\ &= x_0 + P_m z^{(m)} + z_{m+1} p_{m+1} \end{aligned}$$

so that

$$x_{m+1} := x_m + z_{m+1} p_{m+1} \text{ for } m = 0, 1, 2, \dots$$

Conjugate gradient (CG) method, cont'd₅

► Then, alongside an implementation of Lanczos procedure which generates a set of orthonormal basis vectors v_1, v_2, \dots, v_{m+1} spanning the subspace $\mathcal{K}_m(A, r_0)$ with the tridiagonal components $\alpha_1, \dots, \alpha_{m+1}$ and β_1, \dots, β_m , one can generate the sequence x_1, x_2, \dots, x_{m+1} of CG iterates as follows:

$$r_0 := b - Ax_0$$

$$\beta := \|r_0\|_2; z_1 := \beta$$

$$v_1 := r_0/\beta; \alpha_1 := v_1^T A v_1; \eta_1 := \alpha_1; p_1 := v_1/\eta_1$$

for $j = 1, \dots, m$

$$x_j := x_{j-1} + z_j p_j$$

Compute α_{j+1}, β_j and v_{j+1} by Lanczos iteration

$$\gamma_j := \beta_j/\eta_j$$

$$\eta_{j+1} := \alpha_{j+1} - \gamma_j \beta_j$$

$$z_{j+1} := -\gamma_j z_j$$

$$p_{j+1} := (v_{j+1} - \beta_j p_j)/\eta_{j+1}$$

Conjugate gradient (CG) method, cont'd₆

- We will find it useful to consider **generic inner products** (\cdot, \cdot) in place of the usual dot product. Two important results prove to be useful in deriving the CG algorithm. First, there is the **conjugacy** of the p vectors:

Theorem (*A*-orthogonality of p vectors)

Assuming A is SPD, the vectors p_1, \dots, p_{m+1} built as described on the previous slides are ***A*-orthogonal** (or **conjugate**). That is,

$$(p_i, p_j)_A := (Ap_i, p_j) = 0 \text{ if } i \neq j.$$

Second, there is the **orthogonality of residual vectors**:

Theorem (Orthogonality of residual vectors)

Let $r_j := b - Ax_j$ where x_j is the CG iterate in $x_0 + \mathcal{K}_m(A, r_0)$. Then,

$$r_j = \rho_j v_{j+1}, \text{ where } \rho_0 := \beta \text{ and } \rho_j := -\beta_j e_j^{(j)T} \tilde{y} \text{ s.t. } T_j \tilde{y} = \beta e_1^{(j)}$$

so that, by virtue of orthogonality of the Krylov basis vectors v_1, \dots, v_{m+1} , the CG residual vectors r_0, \dots, r_m are orthogonal, i.e., $(r_i, r_j) = 0$ if $i \neq j$.

Conjugate gradient (CG) method, cont'd₇

► Now, let us define the **search direction** $\tilde{p}_{j+1} := \rho_j \eta_{j+1} p_{j+1}$ so that, using the fact that $r_j = \rho_j v_{j+1}$, we get

$$p_{j+1} := (v_{j+1} - \beta_j p_j) / \eta_{j+1}$$

$$\rho_j \eta_{j+1} p_{j+1} := \rho_j v_{j+1} - \rho_j \beta_j p_j$$

$$\tilde{p}_{j+1} := r_j - \rho_j \beta_j p_j$$

$$\boxed{\tilde{p}_{j+1} := r_j + \tau_j \tilde{p}_j}$$

where $\tau_j := -\rho_j \beta_j / (\rho_{j-1} \eta_j)$. These search directions are *A-orthogonal*. Then, from $x_j := x_{j-1} + z_j p_j$, we get

$$\boxed{x_j := x_{j-1} + \xi_j \tilde{p}_j} \quad \text{where } \xi_j := z_j / (\rho_{j-1} \eta_j).$$

Also, the CG residual vector r_j can be reformulated as follows:

$$r_j := b - Ax_j = b - A(x_{j-1} + \xi_j \tilde{p}_j) = b - Ax_{j-1} - \xi_j A \tilde{p}_j$$

so that $\boxed{r_j := r_{j-1} - \xi_j A \tilde{p}_j}$.

Conjugate gradient (CG) method, cont'd₈

- ▶ Now, we are only left with finding alternative expressions for τ_j and ξ_j which do not explicitly depend on the tridiagonal form T_j and its LU decomposition.
 - First, using the stated **orthogonality of CG residuals**, we get

$$\begin{aligned}(r_j, r_{j-1}) &= 0 \\ (r_{j-1} - \xi_j A \tilde{p}_j, r_{j-1}) &= 0 \\ (r_{j-1}, r_{j-1}) - \xi_j (A \tilde{p}_j, r_{j-1}) &= 0\end{aligned}$$

for which using the **conjugacy of search directions** as well as $\tilde{p}_{j+1} := r_j + \tau_j \tilde{p}_j$ leads to

$$\begin{aligned}(A \tilde{p}_j, r_{j-1}) &= (A \tilde{p}_j, \tilde{p}_j - \tau_{j-1} \tilde{p}_{j-1}) \\ &= (A \tilde{p}_j, \tilde{p}_j) - \tau_{j-1} (A \tilde{p}_j, \tilde{p}_{j-1}) \\ &= (A \tilde{p}_j, \tilde{p}_j)\end{aligned}$$

so that $\boxed{\xi_j = (r_{j-1}, r_{j-1}) / (A \tilde{p}_j, \tilde{p}_j)}.$

Conjugate gradient (CG) method, cont'd₉

- Second, in order to find an alternative expression for τ_j , we start as follows from the statement of **conjugacy of search directions**:

$$\begin{aligned}(A\tilde{p}_j, \tilde{p}_{j+1}) &= 0 \\ (A\tilde{p}_j, r_j + \tau_j \tilde{p}_j) &= 0 \\ (A\tilde{p}_j, r_j) + \tau_j (A\tilde{p}_j, \tilde{p}_j) &= 0\end{aligned}$$

so that $\tau_j = -(A\tilde{p}_j, r_j)/(A\tilde{p}_j, \tilde{p}_j)$. Then, using $r_j := r_{j-1} - \xi_j A\tilde{p}_j$ as well as the **orthogonality of CG residuals**, we get

$$\tau_j = -\frac{(A\tilde{p}_j, r_j)}{(A\tilde{p}_j, \tilde{p}_j)} = \frac{1}{\xi_j} \frac{(r_j - r_{j-1}, r_j)}{(A\tilde{p}_j, \tilde{p}_j)} = \frac{(A\tilde{p}_j, \tilde{p}_j)}{(r_{j-1}, r_{j-1})} \frac{(r_j, r_j)}{(A\tilde{p}_j, \tilde{p}_j)}$$

so that $\boxed{\tau_j = (r_j, r_j)/(r_{j-1}, r_{j-1})}$.

Conjugate gradient (CG) method, cont'd₁₀

- ▶ Piecing together all the expressions for the update of ξ_j, x_j, r_j, τ_j and \tilde{p}_{j+1} , we get the following iteration for the CG method:

```
 $r_0 := b - Ax_0$ 
 $\tilde{p}_1 := r_0$ 
for  $j = 1, \dots, m$ 
   $\xi_j := (r_{j-1}, r_{j-1}) / (A\tilde{p}_j, \tilde{p}_j)$ 
   $x_j := x_{j-1} + \xi_j \tilde{p}_j$ 
   $r_j := r_{j-1} - \xi_j A\tilde{p}_j$ 
   $\tau_j := (r_j, r_j) / (r_{j-1}, r_{j-1})$ 
   $\tilde{p}_{j+1} := r_j + \tau_j \tilde{p}_j$ 
```

Conjugate gradient (CG) method, cont'd₁₁

► In order to reflect the most commonly encountered formulations of the CG method, the following changes of variables are operated

$$\xi_j \mapsto \alpha_j, \tau_j \mapsto \beta_j \text{ and } \tilde{p}_j \mapsto p_j$$

where α_j and β_j are not to be confused with the components of the tridiagonal form of A .

This leads to the following algorithm:

Algorithm 4 CG: $(x_0, \varepsilon) \mapsto x_j$

- 1: $r_0 := b - Ax_0$
- 2: $p_1 := r_0$
- 3: **for** $j = 1, 2, \dots$ **do**
- 4: $\alpha_j := (r_{j-1}, r_{j-1})/(Ap_j, p_j)$
- 5: $x_j := x_{j-1} + \alpha_j p_j$
- 6: $r_j := r_{j-1} - \alpha_j Ap_j$
- 7: **if** $\|r_j\|_2 < \varepsilon \|b\|_2$ **then**
- 8: Stop
- 9: $\beta_j := (r_j, r_j)/(r_{j-1}, r_{j-1})$
- 10: $p_{j+1} := r_j + \beta_j p_j$

Conjugate gradient (CG) method, cont'd₁₂

► Note that the CG method can be implemented allocating storage only for the iterate x , the search direction p , the matrix-vector product Ap and the residual r . Doing so leads to the following practical implementation:

Algorithm 5 Practical CG: $(x_0, \varepsilon) \mapsto x_j$

```
1: Allocate memory for  $x, p, w, r \in \mathbb{R}^n$ 
2:  $r := b - Ax_0$ 
3:  $p := r$ 
4: for  $j = 1, 2, \dots$  do
5:    $w := Ap$ 
6:    $\alpha := (r, r)/(w, p)$ 
7:    $\beta := 1/(r, r)$ 
8:    $x := x + \alpha p$ 
9:    $r := r - \alpha w$ 
10:  if  $\|r\|_2 < \varepsilon \|b\|_2$  then
11:    Stop
12:     $\beta := \beta \cdot (r, r)$ 
13:     $p := r + \beta p$ 
```

Conjugate gradient (CG) method, cont'd₁₃

- An essential property of the CG method is that of **optimality**, namely

Theorem (Optimality of CG iterates)

Let A be SPD and $x_j \in x_0 + \mathcal{K}_j(A, r_0)$ denote the CG iterate approximating the solution of $Ax = b$. Then, x_j **minimizes the A -norm of the error** over the search space, i.e.,

$$\|x - x_j\|_A = \min_{y \in x_0 + \mathcal{K}_j(A, r_0)} \|x - y\|_A \text{ where } \|x\|_A := (Ax, x)^{1/2}.$$

Another important results on the CG method is about its convergence:

Theorem (Upper bound on the relative change of A -norm of the error)

Let A be SPD with smallest and largest eigenvalues given by λ_{min} and λ_{max} , respectively. Then, it holds that

$$\frac{\|x_j - x\|_A}{\|x_0 - x\|_A} \leq \left(\frac{\sqrt{\kappa_2(A)} - 1}{\sqrt{\kappa_2(A)} + 1} \right)^j$$

where $\kappa_2(A) = \lambda_{max}/\lambda_{min}$ is the spectral condition number of A .

Conjugate gradient (CG) method, cont'd₁₄

- An alternative presentation of the CG method to that of **orthogonal projection in a Krylov subspace** is frequent in the field of optimization.
 - That is, considering an SPD matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$, the **quadratic function**

$$f : \mathbb{R}^n \rightarrow \mathbb{R}$$

$$x \mapsto x^T A x - x^T b$$

has $\nabla f(x) = Ax - b$ and $\nabla^2 f(x) = A$ for 1st and 2nd derivatives.

- Since the Hessian $\nabla^2 f$ of f is SPD, the critical point x_* such that $\nabla f(x_*) = 0$ ($\implies Ax_* = b$), is a **minimizer** of the function $f(x)$.
- An iterative procedure started with x_0 and aimed at finding x_* is devised upon setting a set of **search directions** p_0, p_1, p_2, \dots , in the span of which subsequent approximations x_1, x_2, \dots of x_* are formed:

$$x_j := \sum_{i=0}^j \alpha_i p_i.$$

Conjugate gradient (CG) method, cont'd₁₅

- The search directions are chosen to be **A -orthogonal**, or **conjugate**, i.e., such that $(Ap_i, p_j) = 0$ for $i \neq j$.
- The initial **search direction** is chosen as the **opposite of the gradient of f at x_0** , i.e., $p_0 := -\nabla f(x_0) = b - Ax_0 =: r_0$.
- Subsequent search directions p_1, p_2, \dots being A -orthogonal with respect to $p_0 \propto \nabla f(x_0)$, they are **conjugate to the gradient $\nabla f(x_0)$** , hence the name **conjugate gradient** given to the method.

Minimal residual (MINRES) method

- The **optimality property** of the CG method is reliant on the **assumption of positive definiteness** of A . Furthermore, in cases A is **not positive definite**, the CG method may **break down** (Paige et al., 1995).

For cases where A is **symmetric but indefinite** (still non-singular), then, the minimal residual (MINRES) method (Paige and Saunders, 1975) is introduced as an **oblique projection in a Krylov subspace** $\mathcal{K}_m(A, r_0)$, with constraints subspace $\mathcal{L}_m := A\mathcal{K}_m$, i.e., similarly as GMRES, it reads

$$\text{Find } x_m \in x_0 + \mathcal{K}_m(A, r_0) \text{ such that } b - Ax_m \perp A\mathcal{K}_m(A, r_0), \quad (3)$$

the difference with GMRES being that A is symmetric.

Assuming that the columns of $V_m := [v_1, \dots, v_m]$ form a basis of the Krylov subspace $\mathcal{K}_m(A, r_0)$, the MINRES iterate is then given as follows from the **Petrov-Galerkin condition**:

$$x_m := x_0 + V_m((AV_m)^T AV_m)^{-1}(AV_m)^T r_0.$$

Paige, C. C., Parlett, B. N., & Van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. *Numerical linear algebra with applications*, 2(2), 115-133.

Paige, C. C. & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. *SIAM Journal on Numerical Analysis*, 12, 617-629.

Minimal residual (MINRES) method, cont'd₁

- ▶ However, similarly as for GMRES, it is more common and practical to derive the GMRES iterate based on the following **optimality property**:

Theorem (Optimality of MINRES iterates)

The iterate x_m is the solution of Pb. (3) if and only if it minimizes the residual norm $\|b - Ax\|_2$ over the affine subspace $x_0 + \mathcal{K}_m(A, r_0)$, i.e., iff

$$\|b - Ax_m\|_2 = \min_{x \in x_0 + \mathcal{K}_m(A, r_0)} \|b - Ax\|_2.$$

Consequently, the MINRES iterate $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ is given by

$$x_m := x_0 + V_m \tilde{y}, \text{ where}$$

$$\tilde{y} := \arg \min_{y \in \mathbb{R}^m} \|r_0 - AV_m y\|_2$$

in which, we recall that $r_0 = \beta v_1$, where $\beta := \|r_0\|_2$ and, as the Lanczos relation reads $AV_m = V_{m+1} \underline{T}_m$ in which $\underline{T}_m := V_{m+1}^T AV_m$, we obtain

$$\tilde{y} = \arg \min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{T}_m y\|.$$

Minimal residual (MINRES) method, cont'd₂

► Just as with GMRES, the least-squares problem $\min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{T}_m y\|_2$ can be solved using the QR decomposition of the tridiagonal matrix. Let $Q_{m+1} \in \mathbb{R}^{(m+1) \times (m+1)}$ be the orthogonal matrix s.t. $\underline{T}_m = Q_{m+1}^T \underline{R}_m$, where $\underline{R}_m \in \mathbb{R}^{(m+1) \times m}$ is an upper-triangular matrix. Since \underline{T}_m is tridiagonal, the upper-triangular matrix \underline{R}_m is banded with a bandwidth of 3, i.e., we have

$$\underline{R}_m = \begin{bmatrix} \tau_1^{(1)} & \tau_1^{(2)} & \tau_1^{(3)} & & & \\ 0 & \tau_2^{(1)} & \tau_2^{(2)} & \tau_2^{(3)} & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ \vdots & & \ddots & \tau_{m-2}^{(1)} & \tau_{m-2}^{(2)} & \tau_{m-2}^{(3)} \\ \vdots & & & \ddots & \tau_{m-1}^{(1)} & \tau_{m-1}^{(2)} \\ \vdots & & & & \ddots & \tau_m^{(1)} \\ 0 & \dots & \dots & \dots & \dots & 0 \end{bmatrix} = \begin{bmatrix} R_m \\ 0_{1 \times m} \end{bmatrix}$$

where $R_m := \underline{R}_m[1:m, 1:m]$.

Minimal residual (MINRES) method, cont'd₃

The least-squares problem is recast into

$$\min_{y \in \mathbb{R}^m} \|\beta e_1^{(m+1)} - \underline{T}_m y\|_2 = \min_{y \in \mathbb{R}^m} \left\| \beta q_1 - \begin{bmatrix} R_m \\ 0_{1 \times m} \end{bmatrix} y \right\|_2$$

where $q_1 := Q_{m+1} e_1^{(m+1)} = Q_{m+1}[1 : m+1, 1]$.

Then, as we let $\underline{g}_m := \beta q_1 \in \mathbb{R}^{m+1}$ with $\underline{g}_0 := \beta$, the least-squares problem is solved by solving the following triangular system:

$$R_m \tilde{y} = \underline{g}_m[1 : m].$$

Then, the residual $r_m := b - Ax_m$ is s.t. $r_m = V_{m+1}(\beta e_1^{(m+1)} - \underline{T}_m \tilde{y})$ and $\|r_m\|_2 = \beta |q_1[m+1]| = |\underline{g}_m[m+1]|$.

Thus, one needs not to assemble the iterate x_m , nor to perform an additional matrix-vector product in order to monitor convergence.

Minimal residual (MINRES) method, cont'd₄

Suppose that we have obtained the QR decomposition of the matrix \underline{T}_{j-1} , and we are interested in getting the decomposition of \underline{T}_j with the least amount of work possible. Clearly, we have

$$\underline{T}_j = \begin{bmatrix} \underline{T}_{j-1} & t_{1:j,j} \\ 0_{1 \times j-1} & \beta_j \end{bmatrix} \text{ where } t_{1:j,j} = \begin{bmatrix} 0_{(j-2) \times 1} \\ \beta_{j-1} \\ \alpha_j \end{bmatrix}.$$

We saw in Lecture 07 that Givens rotations can be used to turn an upper Hessenberg matrix into triangular form. In particular, for \underline{T}_{j-1} , we have

$$\underline{R}_{j-1} = \begin{bmatrix} \underline{R}_{j-1} \\ 0_{1 \times (j-1)} \end{bmatrix} = G_{j-1}^{(j)} G_{j-2}^{(j)} \dots G_1^{(j)} \underline{T}_{j-1} = Q_j \underline{T}_{j-1}$$

where the Givens rotation matrix $G_i^{(j)} \in \mathbb{R}^{j \times j}$ zeroes the $(i+1, i)$ -entry of the tridiagonal matrix it is applied to. Also, we have

$$G_i^{(j+1)} = \begin{bmatrix} G_i^{(j)} & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix} \text{ for } i = 1, \dots, j-1.$$

Minimal residual (MINRES) method, cont'd₅

As we had for GMRES, we have that \underline{R}_j can be formed through minimal update of \underline{R}_{j-1} , i.e.,

$$\underline{R}_j = \begin{bmatrix} \underline{R}_{j-1} & G_j^{(j+1)}[1:j, 1:j+1] \begin{bmatrix} G_{j-1}^{(j)} \dots G_1^{(j)} t_{1:j,j} \\ \beta_j \end{bmatrix} \\ 0_{1 \times (j-1)} & 0 \end{bmatrix}.$$

Therefore, while performing the j -th iteration of MINRES, one is equipped with \underline{R}_{j-1} and \underline{T}_j . In order to assemble \underline{R}_j , there only remains to apply the Givens rotations $G_1^{(j+1)}, \dots, G_j^{(j+1)}$ to the last column of \underline{T}_j , i.e.,

$$\underline{R}_j[1:j+1, j] = G_j^{(j+1)} \dots G_1^{(j+1)} t_{1:j+1,j}.$$

But, since $t_{1:j-2,j} = 0_{(j-2) \times 1}$, this simplifies to

$$\boxed{\underline{R}_j[1:j+1, j] = G_j^{(j+1)} G_{j-1}^{(j+1)} G_{j-2}^{(j+1)} t_{1:j+1,j} \text{ when } j > 2}.$$

Minimal residual (MINRES) method, cont'd₆

► We recall that the MINRES iterate is given by $x_j := x_0 + V_j \tilde{y}$, where

$$R_j \tilde{y} = \underline{g_j}[1 : j],$$

so that, for $j = 1, \dots, m$, we have $x_j = x_0 + P_j \underline{g_j}[1 : j]$, in which $P_j = [p_1, \dots, p_j] := V_j R_j^{-1}$. But since R_j has a bandwidth of 3, we get

$$p_1 = v_1 / \tau_1^{(1)}, \quad p_2 = (v_2 - \tau_1^{(2)} p_1) / \tau_2^{(1)}$$

$$p_j = (v_j - \tau_{j-1}^{(2)} p_{j-1} - \tau_{j-2}^{(3)} p_{j-2}) / \tau_j^{(1)} \quad \text{for } j = 3, 4, \dots, m$$

so that the columns of P_j are an accessible by-product of the MINRES iteration. Finally, since $\underline{g_j}[1 : j - 1] = \underline{g_{j-1}}[1 : j - 1]$, we have

$$\begin{aligned} x_j &= x_0 + P_j \underline{g_j}[1 : j] = x_0 + [P_{j-1} p_j] \begin{bmatrix} \underline{g_j}[1 : j - 1] \\ \underline{g_j}[j] \end{bmatrix} \\ &= x_0 + P_{j-1} \underline{g_{j-1}}[1 : j - 1] + \underline{g_j}[j] p_j \end{aligned}$$

so that $x_j = x_{j-1} + \underline{g_j}[j] p_j$.

Minimal residual (MINRES) method, cont'd₇

► In practice, the $\underline{R}_1, \dots, \underline{R}_m$ and $\underline{g}_1, \dots, \underline{g}_m$ can be computed in-place, stored in pre-allocated \underline{T}_m and \underline{g}_m . This yields the following algorithm

Algorithm 6 MINRES: $(x_0, m, \varepsilon) \mapsto x_j$

```
1: // Allocate  $\underline{T} \in \mathbb{R}^{(m+1) \times m}$ ,  $\underline{g} \in \mathbb{R}^{m+1}$ 
2:  $r_0 := b - Ax_0$ ;  $\beta := \|r_0\|_2$ ;  $v_1 := r_0/\beta$ ;  $\underline{g} := [\beta, 0, \dots, 0]^T$ 
3: for  $j = 1, 2, \dots$  do
4:   // Perform Lanczos iteration
5:    $w_j := Av_j - \beta_{j-1}v_{j-1}$  where  $\beta_0 := 0$  and  $v_0 := 0$ 
6:    $\alpha_j := (w_j, v_j)$ ;  $w_j := w_j - \alpha_j v_j$ ;  $\beta_j := \|w_j\|_2$ 
7:   // Apply  $G_{j-2}^{(j+1)}$  to  $t_{1:j+1,j}$ .
8:   if  $j > 2$  then
9:     
$$\begin{bmatrix} t_{j-2,j} \\ t_{j-1,j} \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} t_{j-2,j} \\ t_{j-1,j} \end{bmatrix}$$
 where 
$$\begin{cases} s := t_{j-1,j-2}/(t_{j-2,j-2}^2 + t_{j-1,j-2}^2)^{1/2} \\ c := t_{j-2,j-2}/(t_{j-2,j-2}^2 + t_{j-1,j-2}^2)^{1/2} \end{cases}$$

10:   // Apply  $G_{j-1}^{(j+1)}$  to  $t_{1:j+1,j}$ .
11:   if  $j > 1$  then
12:     
$$\begin{bmatrix} t_{j-1,j} \\ t_{jj} \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} t_{j-1,j} \\ t_{jj} \end{bmatrix}$$
 where 
$$\begin{cases} s := t_{j,j-1}/(t_{j-1,j-1}^2 + t_{j,j-1}^2)^{1/2} \\ c := t_{j-1,j-1}/(t_{j-1,j-1}^2 + t_{j,j-1}^2)^{1/2} \end{cases}$$

```

Minimal residual (MINRES) method, cont'd

- ▶ In practice, the R_1, \dots, R_m and g_1, \dots, g_m can be computed in-place, stored in pre-allocated T_m and g_m . This yields the following algorithm

Algorithm 6 cont'd MINRES: $(x_0, m, \varepsilon) \mapsto x_j$

```

12:  // Apply  $G_j^{(j+1)}$  to  $\underline{g}[1:j+1]$  and  $t_{1:j+1,j}$ 
13:  
$$\begin{bmatrix} \underline{g}[j] \\ \underline{g}[j+1] \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} \underline{g}[j] \\ 0 \end{bmatrix} \text{ where } \begin{cases} s := t_{j+1,j}/(t_{jj}^2 + t_{j+1,j}^2)^{1/2} \\ c := t_{jj}/(t_{jj}^2 + t_{j+1,j}^2)^{1/2} \end{cases}$$

14:   $t_{jj} := ct_{jj} + st_{j+1,j}; t_{j+1,j} := 0$ 
15:   $p_j := (v_j - \tau_{j-1}^{(2)}p_{j-1} - \tau_{j-2}^{(3)}p_{j-2})/\tau_j^{(1)}$  where  $p_0 := 0$  and  $p_{-1} := 0$ 
16:   $x_j := x_{j-1} + \underline{g}[j]p_j$ 
17:  if  $|\underline{g}[j+1]| < \varepsilon\|b\|_2$  then Stop
18:   $v_{j+1} := w_j/\beta_j$  ▷ Stop if  $\|r_j\|_2 < \varepsilon\|b\|_2$ 

```

SYMMLQ method

- The SYMMLQ method (Paige and Saunders, 1975) is an **orthogonal projection** in a Krylov subspace $\mathcal{K}_m(A, r_0)$ where A is **symmetric**, possibly **indefinite**. Thus, equivalently to the CG method, it sums up to

$$\text{Find } x_m \in x_0 + \mathcal{K}_m(A, r_0) \text{ such that } b - Ax_m \perp \mathcal{K}_m(A, r_0).$$

Assuming that the columns of $V_m := [v_1, \dots, v_m]$ form a basis of the Krylov subspace $\mathcal{K}_m(A, r_0)$, the SYMMLQ iterate is given by

$$x_m := x_0 + V_m T_m^{-1} V_m^T r_0$$

where $T_m := V_m^T A V_m$ is the tridiagonal matrix of a Lanczos procedure. The main difference with CG stems from the assumed factorization of T_m . While CG assumes that T_m admits an **LU** factorization **without pivoting** (not guaranteed to exist for an indefinite A), the SYMMLQ method relies on a **LQ** decomposition of T_m (guaranteed to exist for all non-singular A). That is, we search for the lower-triangular $\tilde{L}_m \in \mathbb{R}^{m \times m}$ and an orthogonal $Q_m \in \mathbb{R}^{m \times m}$ such that $T_m = \tilde{L}_m Q_m$.

Paige C. C. & Saunders M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 12, 617–629.

SYMMLQ method, cont'd₁

- Given an LQ decomposition of the tridiagonal matrix T_j , the SYMMLQ iterate can be recast into

$$x_j = x_0 + \tilde{P}_j \tilde{z}^{(j)} \text{ where } \tilde{L}_j \tilde{z}^{(j)} = \beta e_1^{(j)} \text{ and } \tilde{P}_j := V_j Q_j^T.$$

Since T_j is tridiagonal, it is also Hessenberg, and its LQ decomposition can be constructed through the application of **Givens rotations**:

$$\tilde{L}_j = T_j G_1^{(j)} \dots G_{j-1}^{(j)} \text{ so that } Q_j = \left(G_1^{(j)} \dots G_{j-1}^{(j)} \right)^T.$$

Since T_j is tridiagonal, \tilde{L}_j is banded with a bandwidth of 3.

Let $\tilde{Q}_{j+1} := \begin{bmatrix} Q_j & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix}$. Then, we have

$$G_j^{(j+1)T} \tilde{Q}_{j+1} = G_j^{(j+1)T} \begin{bmatrix} G_{j-1}^{(j)T} \dots G_1^{(j)T} & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix}$$

SYMMLQ method, cont'd₂

$$\begin{aligned}
 G_j^{(j+1)T} \tilde{Q}_{j+1} &= G_j^{(j+1)T} \begin{bmatrix} G_{j-1}^{(j)T} & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix} \dots \begin{bmatrix} G_1^{(j)T} & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix} \\
 &= G_j^{(j+1)T} G_{j-1}^{(j+1)T} \dots G_1^{(j+1)T}
 \end{aligned}$$

so that $G_j^{(j+1)T} \tilde{Q}_{j+1} = Q_{j+1}$. Then, we have

$$\begin{aligned}
 T_{j+1} Q_{j+1}^T &= T_{j+1} \tilde{Q}_{j+1}^T G_j^{(j+1)} \\
 &= \begin{bmatrix} T_j & t_{1:j,j+1} \\ t_{j+1,1:j} & \alpha_{j+1} \end{bmatrix} \begin{bmatrix} Q_j^T & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix} G_j^{(j+1)} \\
 &= \begin{bmatrix} T_j Q_j^T & t_{1:j,j+1} \\ t_{j+1,1:j} Q_j^T & \alpha_{j+1} \end{bmatrix} G_j^{(j+1)}
 \end{aligned}$$

where

$$\begin{aligned}
 t_{j+1,1:j} Q_j^T &= [0_{1 \times (j-1)} \ \beta_j] G_1^{(j+1)} \dots G_{j-1}^{(j+1)} \\
 &= [0_{1 \times (j-1)} \ \beta_j] G_{j-1}^{(j+1)} \\
 &= [0_{1 \times (j-2)} \ -s_{j-1} \beta_j \ c_j \beta_j].
 \end{aligned}$$

SYMMLQ method, cont'd₃

We can see that the application of $G_j^{(j+1)}$ to the right of $T_{j+1}\tilde{Q}_{j+1}$:

- zeroes the only non-zero component over the diagonal in the last column of $T_{j+1}\tilde{Q}_{j+1}$;
- modifies the $(j+1, j)$ -entry of $T_{j+1}\tilde{Q}_{j+1}$;
- modifies the (j, j) -entry of $(T_{j+1}Q_{j+1}^T)[1:j, 1:j] = T_j Q_j^T = \tilde{L}_j$.

Consequently, the components of \tilde{L}_j can be denoted as follows:

$$\tilde{L}_j = \begin{bmatrix} \ell_1^{(1)} & 0 & \dots & \dots & \dots & 0 \\ \ell_2^{(2)} & \ell_2^{(1)} & \ddots & & & \vdots \\ \ell_3^{(3)} & \ell_3^{(2)} & \ell_3^{(1)} & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ell_{j-1}^{(3)} & \ell_{j-1}^{(2)} & \ell_{j-1}^{(1)} & 0 \\ 0 & \dots & 0 & \ell_j^{(3)} & \ell_j^{(2)} & \ell_j^{(1)} \end{bmatrix}$$

where the \sim over \tilde{L}_j marks the difference with $L_j := \tilde{L}_{j+1}[1:j, 1:j]$. That is, only the (j, j) -entry differ between \tilde{L}_j and L_j .

SYMMLQ method, cont'd₄

- ▶ Let us introduce $z^{(j)} \in \mathbb{R}^j$ such that

$$L_j z^{(j)} = \beta e_1^{(j)},$$

which differs only in its last entry from $\tilde{z}^{(j)}$, which we previously introduced as the solution of $\tilde{L}_j \tilde{z}^{(j)} = \beta e_1^{(j)}$.

That is, we have

$$z^{(j)} = \begin{bmatrix} z^{(j-1)} \\ z_j \end{bmatrix} \quad \text{and} \quad \tilde{z}^{(j)} = \begin{bmatrix} z^{(j-1)} \\ \tilde{z}_j \end{bmatrix}$$

where $z^{(j-1)}$ is the solution of $L_{j-1} z^{(j-1)} = \beta e_1^{(j-1)}$.

Given that L_j and \tilde{L}_j are both lower-triangular and differ from each other only in their (j, j) -entry, we have

$$\tilde{z}_j = \ell_j^{(1)} z_j / \tilde{\ell}_j^{(1)}$$

where $\ell_j^{(1)} = L_j[j, j]$ and $\tilde{\ell}_j^{(1)} = \tilde{L}_j[j, j]$.

SYMMLQ method, cont'd₅

- It follows from $L_j z^{(j)} = \beta e_1^{(j)}$ that

$$\begin{cases} z_1 = \beta / \ell_1^{(1)}, \\ z_2 = -\ell_2^{(2)} z_1 / \ell_2^{(1)}, \\ z_j = -\left(\ell_j^{(3)} z_{j-2} + \ell_j^{(2)} z_{j-1} \right) / \ell_j^{(1)} \text{ for } j = 3, 4, \dots, m. \end{cases}$$

Given $\tilde{P}_j = V_j Q_j^T$ and $\tilde{P}_{j+1} = V_{j+1} Q_{j+1}^T$, we introduce

$$P_{j-1} := \tilde{P}_j[1 : n, 1 : j-1] \text{ and } P_j := \tilde{P}_{j+1}[1 : n, 1 : j],$$

and we write $\tilde{P}_j = [P_{j-1} \tilde{p}_j]$ and $\tilde{P}_{j+1} = [P_j \tilde{p}_{j+1}]$. Then, we have

$$\tilde{P}_{j+1} = V_{j+1} Q_{j+1}^T = [V_j \ v_{j+1}] \begin{bmatrix} Q_j^T & 0_{j \times 1} \\ 0_{1 \times j} & 1 \end{bmatrix} G_j^{(j+1)} = [V_j Q_j^T \ v_{j+1}] G_j^{(j+1)}$$

so that

$$\tilde{P}_{j+1} = [\tilde{P}_j \ v_{j+1}] G_j^{(j+1)} = [P_{j-1} \ \tilde{p}_j \ v_{j+1}] G_j^{(j+1)}.$$

SYMLMLQ method, cont'd₆

Therefore, we have

$$\tilde{P}_{j+1}[1:n, 1:j] = [P_{j-1} (c_j \tilde{p}_j - s_j v_{j+1})]$$

so that $P_j = [P_{j+1} \ p_j]$, where

$$\begin{cases} \tilde{p}_1 = v_1 \\ p_j = c_j \tilde{p}_j - s_j v_{j+1} \\ \tilde{p}_{j+1} = s_j \tilde{p}_j + c_j v_{j+1} \text{ for } j = 1, 2, \dots, m. \end{cases}$$

- ▶ Consider the iterate given by $\tilde{x}_j := x_0 + P_j z^{(j)}$, then we have

$$\tilde{x}_j = x_0 + [P_{j-1} \ p_j] \begin{bmatrix} z^{(j-1)} \\ z_j \end{bmatrix} = x_0 + P_{j-1} z^{(j-1)} + z_j p_j = \tilde{x}_{j-1} + z_j p_j.$$

The new iterate $x_{j+1} := x_0 + \tilde{P}_{j+1} \tilde{z}^{(j+1)}$ can then be recast as follows:

$$x_j = x_0 + [P_j \ \tilde{p}_{j+1}] \begin{bmatrix} z^{(j)} \\ \tilde{z}_{j+1} \end{bmatrix} = x_0 + P_j z^{(j)} + \tilde{z}_{j+1} \tilde{p}_{j+1} = \tilde{x}_j + \tilde{z}_{j+1} \tilde{p}_{j+1}$$

so that x_{j+1} can be formed efficiently from \tilde{x}_j .

SYMMLQ method, cont'd

- We recall that, as an orthogonal projection in the Krylov subspace $\text{range}(V_j)$, the SYMMLQ iterate is equivalently given by

$$x_j = x_0 + V_j \tilde{y} \text{ where } T_j \tilde{y} = \beta e_1^{(j)}.$$

But since A , and thus T_j are symmetric, we have

$$\begin{aligned} T_j^T \tilde{y} &= \beta e_1^{(j)} \\ (\tilde{L}_j Q_j)^T \tilde{y} &= \beta e_1^{(j)} \\ Q_j^T \tilde{L}_j^T \tilde{y} &= \beta e_1^{(j)} \\ \tilde{L}_j^T \tilde{y} &= \beta Q_j e_1^{(j)}. \end{aligned}$$

By comparing the last entries on both sides of $\tilde{L}_j^T \tilde{y} = \beta Q_j e_1^{(j)}$, we have

$$\begin{aligned} e_j^{(j)T} \tilde{L}_j^T \tilde{y} &= \beta e_j^{(j)T} Q_j e_1^{(j)} \\ \tilde{\ell}_j^{(1)}(e_j^{(j)} \tilde{y}) &= \beta e_j^{(j)T} (G_1^{(j)} \dots G_{j-1}^{(j)})^T e_1^{(j)} \\ &= \beta (G_1^{(j)} \dots G_{j-1}^{(j)} e_j^{(j)})^T e_1^{(j)} \end{aligned}$$

SYMMLQ method, cont'd₈

so that

$$\tilde{\ell}_j^{(1)}(e_j^{(j)}\tilde{y}) = \beta s_1 s_2 \dots s_{j-1}. \quad (4)$$

Also, by construction of $G_j^{(j+1)}$, it can be shown that $s_j \tilde{\ell}_j^{(1)} + c_j \beta_j = 0$.

Then, recalling the Lanczos relation, i.e., $AV_j = V_j T_j + \beta_j v_{j+1} e_j^{(j)T}$, the SYMMLQ residual $r_j := b - Ax_j$ is recast as follows:

$$r_j = r_0 - AV_j \tilde{y} = r_0 - (V_j T_j + \beta_j v_{j+1} e_j^{(j)T}) \tilde{y} = \beta v_1 - V_j T_j \tilde{y} - \beta_j (e_j^{(j)T} \tilde{y}) v_{j+1}$$

where $T_j \tilde{y} = \beta e_1^{(j)}$, so that

$$r_j = \beta v_1 - \beta V_j e_1^{(j)} - \beta_j (e_j^{(j)T} \tilde{y}) v_{j+1} = -\beta_j (e_j^{(j)T} \tilde{y}) v_{j+1}$$

in which we use Eq. (4) to obtain

$$r_j = - \left(\beta s_1 \dots s_{j-1} / \tilde{\ell}_j^{(1)} \right) v_{j+1} = (\beta s_1 \dots s_j / c_j) v_{j+1}.$$

SYMMLQ method, cont'd₉

Then, as we have

$$\|r_{j-1}\|_2 = |\beta s_1 \dots s_{j-1} / c_{j-1}| \text{ and } \|r_j\|_2 = |\beta s_1 \dots s_j / c_j|$$

so that

$$\|r_j\|_2 = \left| \frac{c_{j-1} s_j}{c_j} \right| \|r_{j-1}\|_2.$$

Thus, the convergence of SYMMLQ can be monitored without forming the iterate x_j , or even solve the tridiagonal system for \tilde{y} , neither forming r_j nor computing its vector norm.

SYMMLQ method, cont'd₁₀

► Now we are equipped to put the SYMMLQ algorithm together:

Algorithm 7 SYMMLQ: $(x_0, m, \varepsilon) \mapsto x_j$

```
1: // Allocate  $\underline{T} \in \mathbb{R}^{(m+1) \times m}$ ,  $\underline{g} \in \mathbb{R}^{m+1}$ 
2:  $r_0 := b - Ax_0$ ;  $\beta := \|r_0\|_2$ ;  $v_1 := r_0/\beta$ ;  $\underline{g} := [\beta, 0, \dots, 0]^T$ ;  $\tilde{x}_0 := x_0$ 
3: for  $j = 1, 2, \dots$  do
4:   // Perform Lanczos iteration
5:    $w_j := Av_j - \beta_{j-1}v_{j-1}$  where  $\beta_0 := 0$  and  $v_0 := 0$ 
6:    $\alpha_j := (w_j, v_j)$ ;  $w_j := w_j - \alpha_j v_j$ ;  $\beta_j := \|w_j\|_2$ 
7:   if  $j = 1$  then  $\tilde{\ell}_j^{(1)} := \alpha_j$ 
8:   // Apply  $G_{j-2}^{(j)}$  to the last row of  $T_j$ 
9:   if  $j > 2$  then  $\begin{bmatrix} \ell_j^{(3)} & \beta_{j-1} \end{bmatrix} := \begin{bmatrix} 0 & \beta_{j-1} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$  where  $\begin{cases} s := s_{j-2} \\ c := c_{j-2} \end{cases}$ 
10:  // Apply  $G_{j-1}^{(j)}$  to the last 2 columns of  $T_j \tilde{Q}_j$ 
11:  if  $j > 1$  then
12:     $\ell_{j-1}^{(1)} := \sqrt{\left(\tilde{\ell}_{j-1}^{(1)}\right)^2 + \beta_{j-1}^2}$ 
13:     $\begin{bmatrix} \ell_j^{(2)} & \tilde{\ell}_j^{(1)} \end{bmatrix} := \begin{bmatrix} \beta_{j-1} & \alpha_j \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$  where  $\begin{cases} s := s_{j-1} \\ c := c_{j-1} \end{cases}$ 
```

SYMMLQ method, cont'd₁₁

► Now we are equipped to put the SYMMLQ algorithm together:

Algorithm 7 cont'd SYMMLQ: $(x_0, m, \varepsilon) \mapsto x_j$

```
14:  // Compute  $z_{j-1}$ 
15:  if  $j = 2$  then  $z_1 := \beta/\ell_1^{(1)}$ 
16:  if  $j = 3$  then  $z_2 := -\ell_2^{(2)}z_1/\ell_2^{(1)}$ 
17:  if  $j > 3$  then  $z_{j-1} := -\left(\ell_{j-1}^{(3)}z_{j-3} + \ell_{j-1}^{(2)}z_{j-2}\right)/\ell_{j-1}^{(1)}$ 
18:  if  $j = 1$  then  $\tilde{p}_1 := v_1$ 
19:  if  $j > 1$  then
20:     $p_{j-1} := c_{j-1}\tilde{p}_{j-1} - s_{j-1}v_j$ 
21:     $\tilde{p}_j := s_{j-1}\tilde{p}_{j-1} + c_{j-1}v_j$ 
22:     $\underline{g}[j] := \tilde{x}_{j-2} + z_{j-1}p_{j-1}$ 
23:     $\underline{g}[j] := (c_{j-2}s_{j-1}/c_{j-1})\underline{g}[j-1]$  where  $c_0 := 1$ 
24:    if  $|\underline{g}[j]| > \varepsilon\|b\|_2$  then
25:       $x_{j-1} := \tilde{x}_{j-2} + \left(\ell_{j-1}^{(1)}/\tilde{\ell}_{j-1}^{(1)}\right)\tilde{p}_{j-1}$ 
26:      Stop
```

More methods for non-symmetric linear systems

Bi-orthogonalization process

- ▶ The **bi-orthogonalization** process is an extension of the Lanczos procedure to **non-symmetric matrices**.
It is sometimes called the **two-sided Lanczos** procedure.
- ▶ This procedure generates a pair of **bi-orthogonal** bases in the columns of $V_j = [v_1, \dots, v_j] \in \mathbb{R}^{n \times j}$ and $W_j = [w_1, \dots, w_j] \in \mathbb{R}^{n \times j}$ for Krylov subspaces of A and A^T , respectively, i.e., that is, we have

$$\text{range}(V_j) = \mathcal{K}_j(A, r_0) \text{ and } \text{range}(W_j) = \mathcal{K}_j(A^T, \tilde{r}_0)$$

such that $V_j^T W_j = W_j^T V_j = I_j$ where \tilde{r}_0 is an **auxiliary vector** used to generate the **left Krylov subspace** $\mathcal{K}_j(A^T, \tilde{r}_0)$ with $(r_0, \tilde{r}_0) \neq 0$.

- ▶ During the bi-orthogonalization process, instead of forming v_{j+1} by orthonormalizing Av_j against v_j and v_{j-1} , it is done by orthonormalizing against w_j and w_{j-1} .
Simultaneously, w_{j+1} is obtained by orthonormalizing $A^T w_j$ against v_j and v_{j-1} .

Bi-orthogonalization process, cont'd₁

► The resulting procedure is given by the following algorithm:

Algorithm 8 Bi-Orthogonalization: $(r_0, \tilde{r}_0, m) \mapsto (V_m, W_m)$

- 1: // r_0 and \tilde{r}_0 must be such that $(r, \tilde{r}_0) \neq 0$
- 2: $\beta := \|r_0\|_2$; $v_1 := r_0/\beta$; $w_1 := \beta \tilde{r}_0 / (\tilde{r}_0, r_0)$; $\beta_0 := 0$; $\gamma_0 := 0$
- 3: **for** $j = 1, 2, \dots, m$ **do**
- 4: $v_{j+1} := Av_j - \beta_{j-1}v_{j-1}$ where $v_0 := 0$
- 5: $w_{j+1} := A^T w_j - \gamma_{j-1}w_{j-1}$ where $w_0 := 0$
- 6: $\alpha_j := (v_j, w_{j+1})$
- 7: $v_{j+1} := v_{j+1} - \alpha_j v_j$
- 8: $w_{j+1} := w_{j+1} - \alpha_j w_j$
- 9: $\gamma_j := \sqrt{|(v_{j+1}, w_{j+1})|}$
- 10: $\beta_j := (v_{j+1}, w_{j+1})/\gamma_j$
- 11: $v_{j+1} := v_{j+1}/\gamma_j$
- 12: $w_{j+1} := w_{j+1}/\beta_j$

Bi-orthogonalization process, cont'd₂

► We obtain the following **three-term recurrences** from the last algorithm:

$$\boxed{\begin{cases} \gamma_j v_{j+1} = Av_j - \alpha_j v_j - \beta_{j-1} v_{j-1}, \\ \beta_j w_{j+1} = A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1} \text{ for } j = 2, \dots, m \end{cases}}.$$

► We can show that the bases stored in the columns of V_m and W_m are orthonormal.

- For that, we first note that $(v_1, w_1) = (r_0/\beta, \beta \tilde{r}_0/(\tilde{r}_0, r_0)) = 1$.
- Then, for $j = 1$, we have

$$\begin{aligned} (v_{j+1}, w_{j+1}) &= (Av_1 - \alpha_1 v_1, A^T w_1 - \alpha_1 w_1) / (\beta_1 \gamma_1) \\ &= ((Av_1, A^T w_1) - \alpha_1 (v_1, A^T w_1)) / (\beta_1 \gamma_1) \\ &\quad - (\alpha_1 (Av_1, w_1) - \alpha_1^2 (v_1, w_1)) / (\beta_1 \gamma_1) \\ &= ((Av_1, A^T w_1) - \alpha_1^2 - \alpha_1 (Av_1, w_1) + \alpha_1^2) / (\beta_1 \gamma_1) \\ &= (Av_1, A^T w_1 - \alpha_1 w_1) / (\beta_1 \gamma_1) \end{aligned}$$

where $\beta_1 = (Av_1 - \alpha_1 v_1, A^T w_1 - \alpha_1 w_1) / \gamma_1 = (Av_1, A^T w_1 - \alpha_1 w_1) / \gamma_1$
so that $(v_{j+1}, w_{j+1}) = 1$.

Bi-orthogonalization process, cont'd₃

- For $j = 2, \dots, m$, we have

$$(v_{j+1}, w_{j+1}) = (\gamma_j v_{j+1}, \beta_j w_{j+1}) / (\gamma_j \beta_j)$$

$$= (Av_j - \alpha_j v_j - \beta_{j-1} v_{j-1}, A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1}) / (\gamma_j \beta_j)$$

where $\beta_j = (Av_j - \alpha_j v_j - \beta_{j-1} v_{j-1}, A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1}) / \gamma_j$ so that $(v_1, w_1) = \dots = (v_{m+1}, w_{m+1}) = 1$.

- There remains to show $(v_i, w_j) = 0$ if $i \neq j$. Let us proceed by induction and show that, for an integer j with $2 \leq j \leq m+1$, we have

$$(v_i, w_j) = (v_j, w_i) = 0 \text{ for } i = 1, \dots, j-1 \quad (5)$$

- For $j = 2$, we have

$$\begin{aligned} (v_1, w_2) &= (v_1, A^T w_1 - \alpha_1 w_1) / \beta_1 = ((v_1, A^T w_1) - \alpha_1 (v_1, w_1)) / \beta_1 \\ &= (\alpha_1 - \alpha_1) / \beta_1 = 0 \end{aligned}$$

and

$$\begin{aligned} (v_2, w_1) &= (Av_1 - \alpha_1 v_1, w_1) / \gamma_1 = ((Av_1, w_1) - \alpha_1 (v_1, w_1)) / \gamma_1 \\ &= ((v_1, A^T w_1) - \alpha_1) / \gamma_1 = (\alpha_1 - \alpha_1) / \gamma_1 = 0. \end{aligned}$$

Bi-orthogonalization process, cont'd₄

- Suppose that Eq: (5) holds for j , then we need to show that

$$(v_i, w_{j+1}) = (v_{j+1}, w_i) = 0 \text{ for } i = 1, \dots, j.$$

First, we have

$$\alpha_j = (v_j, A^T w_j - \gamma_{j-1} w_{j-1}) = (v_j, A^T w_j) - \gamma_{j-1} (v_j, w_{j-1}) = (v_j, A^T w_j).$$

We also have

$$\begin{aligned} (v_j, w_{j+1}) &= (v_j, A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1}) / \beta_j \\ &= ((v_j, A^T w_j) - \alpha_j (v_j, w_j)) / \beta_j \\ &= (\alpha_j - \alpha_j) / \beta_j = 0. \end{aligned}$$

as well as

$$\begin{aligned} (v_{j-1}, w_{j+1}) &= (v_{j-1}, A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1}) / \beta_j \\ &= ((v_{j-1}, A^T w_j) - \gamma_{j-1} (v_{j-1}, w_{j-1})) / \beta_j \\ &= ((Av_{j-1}, w_j) - \gamma_{j-1}) / \beta_j \\ &= ((\gamma_{j-1} v_j + \alpha_{j-1} v_{j-1} + \beta_{j-2} v_{j-2}, w_j) - \gamma_{j-1}) / \beta_j \\ &= (\gamma_{j-1} - \gamma_{j-1}) / \beta_j = 0. \end{aligned}$$

Bi-orthogonalization process, cont'd₅

- and, for $i = 1, \dots, j - 2$, we get

$$\begin{aligned}(v_i, w_{j+1}) &= (v_i, A^T w_j - \alpha_j w_j - \gamma_{j-1} w_{j-1}) / \beta_j \\&= (v_i, A^T w_j) / \beta_j \\&= (A v_i, w_j) / \beta_j \\&= (\gamma_i v_{i+1} + \alpha_i v_i + \beta_{i-1} v_{i-1}, w_j) / \beta_j = 0.\end{aligned}$$

- We have shown that $(v_i, w_{j+1}) = 0$ for $i = 1, \dots, j$.

Similarly, we can show that $(v_{j+1}, w_i) = 0$ for $i = 1, \dots, j$, after what the bi-orthonormality of the bases is proven.

► In the case of the dot product, the stated orthonormality implies

$$\boxed{V_m^T W_m = W_m^T V_m = I_m}.$$

Bi-orthogonalization process, cont'd₆

- The three-term recurrence formulae can be cast into matrix form as follows:

$$\boxed{AV_m = V_{m+1} \underline{T}_m} \\ = V_m T_m + \gamma_m v_{m+1} e_m^{(m)T}$$

$$\boxed{A^T W_m = W_{m+1} \tilde{\underline{T}}_m^T} \\ = W_m T_m^T + \beta_m w_{m+1} e_m^{(m)T}$$

where the tridiagonal matrices $\underline{T}_m \in \mathbb{R}^{(m+1) \times m}$ and $\tilde{\underline{T}}_m^T \in \mathbb{R}^{(m+1) \times m}$ are given by

$$\underline{T}_m = \begin{bmatrix} \alpha_1 & \beta_1 & & & \\ \gamma_1 & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & \beta_{m-1} \\ & & \ddots & \ddots & \alpha_m \\ & & & \gamma_{m-1} & \alpha_m \\ & & & & \gamma_m \end{bmatrix} \quad \text{and} \quad \tilde{\underline{T}}_m^T = \begin{bmatrix} \alpha_1 & \gamma_1 & & & \\ \beta_1 & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & \gamma_{m-1} \\ & & \ddots & \ddots & \alpha_m \\ & & & \beta_{m-1} & \alpha_m \\ & & & & \beta_m \end{bmatrix}$$

with $T_m := \underline{T}_m[1:m, 1:m] = \tilde{\underline{T}}_m[1:m, 1:m]$.

Bi-orthogonalization process, cont'd₇

- ▶ Combining the matrix form of the first three-term recurrence formula with the statement of bi-orthonormality, we obtain:

$$AV_m = V_m T_m + \gamma_m v_{m+1} e_m^{(m)T}$$

$$W_m^T A V_m = W_m^T V_m T_m + \gamma_m W_m^T v_{m+1} e_m^{(m)T}$$

$$W_m^T A V_m = T_m$$

where, as for a regular Lanczos procedure, T_m is tridiagonal, although this time not symmetric.

- ▶ In general, neither $\{v_1, \dots, v_m\}$ nor $\{w_1, \dots, w_m\}$ are orthogonal by themselves, i.e., $V_m^T V_m \neq I_m$ and $W_m^T W_m \neq I_m$.
- ▶ The bi-orthogonalization procedure is similar to Arnoldi in that they both apply to non-symmetric matrices.

The advantage of the bi-orthogonalization method is that it relies on short recurrences, unlike Arnoldi, which requires full orthogonalization against all previously formed vectors.

Bi-conjugate gradient (BiCG) method

- ▶ The BiCG method (Lanczos, 1952; Fletcher, 1976) is an **oblique projection** method in a Krylov subspace $\mathcal{K}_m(A, r_0)$, with a left Krylov constraints subspace $\mathcal{L}_m := \mathcal{K}_m(A^T, \tilde{r}_0)$ and iterates given by
Find $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ such that $b - Ax_m \perp \mathcal{K}_m(A^T, \tilde{r}_0)$.
- ▶ From a two-sided Lanczos procedure, we get $V_m, W_m \in \mathbb{R}^{n \times m}$ such that

$$\text{range}(V_m) = \mathcal{K}_m(A, r_0) \text{ and } \text{range}(W_m) = \mathcal{K}_m(A^T, \tilde{r}_0)$$

so that $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ implies that there exists $\tilde{y} \in \mathbb{R}^m$ such that $x_m = x_0 + V_m \tilde{y}$. Along with the Petrov-Galerkin condition, this yields

$$W_m^T(b - A(x_0 + V_m \tilde{y})) = 0$$

$$W_m^T r_0 - W_m^T A V_m \tilde{y} = 0$$

$$\beta W_m^T v_1 - T_m \tilde{y} = 0$$

so that the bi-orthonormality of the bases implies $T_m \tilde{y} = \beta e_1^{(m)}$.

Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations, *Journal of Research of the National Bureau of Standards*, 49, 33–53.

Fletcher, R. (1976). Conjugate gradient methods for indefinite systems, in "Proceeding of the Dundee Conference on Numerical Analysis 1975", G. A. Watson (Editor), *Lecture Notes in Mathematics*, Springer-Verlag, Berlin, 506, pp. 73–89.

Bi-conjugate gradient (BiCG) method, cont'd₁

- ▶ Analogously to the CG method, we can introduce an LU decomposition with no pivoting of the tridiagonal T_m to derive the BiCG iteration. This leads to the following algorithm:

Algorithm 9 BiCG: $(x_0, \varepsilon) \mapsto x_j$

- 1: $r_0 := b - Ax_0$
- 2: Pick \tilde{r}_0 such that $(r_0, \tilde{r}_0) \neq 0$ ▷ E.g., $\tilde{r}_0 := r_0$
- 3: $p_1 := r_0; \tilde{p}_1 := \tilde{r}_0$
- 4: **for** $j = 1, 2, \dots$ **do**
- 5: $\alpha_j := (r_{j-1}, \tilde{r}_{j-1}) / (Ap_j, \tilde{p}_j)$
- 6: $x_j := x_{j-1} + \alpha_j p_j$
- 7: $r_j := r_{j-1} - \alpha_j Ap_j$
- 8: **if** $\|r_j\|_2 < \varepsilon \|b\|_2$ **then** Stop
- 9: $\tilde{r}_j := \tilde{r}_{j-1} - \alpha_j A^T \tilde{p}_j$
- 10: $\beta_j := (r_j, \tilde{r}_j) / (r_{j-1}, \tilde{r}_{j-1})$
- 11: $p_{j+1} := r_j + \beta_j p_j$
- 12: $\tilde{p}_{j+1} := \tilde{r}_j + \beta_j \tilde{p}_j$

Clearly, if A is SPD and $\tilde{r}_0 = r_0$, then the BiCG iterates are the same as those from CG.

Bi-conjugate gradient (BiCG) method, cont'd₂

- Six vectors need be allocated for a practical implementation:

Algorithm 10 Practical BiCG: $(x_0, \varepsilon) \mapsto x_j$

```
1: Allocate memory for  $x, p, \tilde{p}, w, r, \tilde{r} \in \mathbb{R}^n$ 
2:  $r := b - Ax_0$ 
3: Pick  $\tilde{r}$  such that  $(r, \tilde{r}) \neq 0$                                 ▷ E.g.,  $\tilde{r} := r$ 
4:  $p := r; \tilde{r} := \tilde{p}$ 
5: for  $j = 1, 2 \dots$  do
6:    $w := Ap$ 
7:    $\alpha := (r, \tilde{r})/(w, \tilde{p})$ 
8:    $\beta := 1/(r, \tilde{r})$ 
9:    $x := x + \alpha p$ 
10:   $r := r - \alpha w$ 
11:  if  $\|r\|_2 < \varepsilon \|b\|_2$  then Stop
12:   $w := A^T \tilde{p}$ 
13:   $\tilde{r} := \tilde{r} - \alpha w$ 
14:   $\beta := \beta \cdot (r, \tilde{r})$ 
15:   $p := r + \beta p$ 
16:   $\tilde{p} := \tilde{r} + \beta \tilde{p}$ 
```

Bi-conjugate gradient (BiCG) method, cont'd₃

- In addition to $Ax = b$, a dual system

$$A^T \tilde{x} = \tilde{b}$$

can be solved by BiCG iteration upon setting $\tilde{r}_0 := \tilde{b} - A^T \tilde{x}_0$ for some initial iterate \tilde{x}_0 , in which the dual iterate, given by

$$\tilde{x}_j := \tilde{x}_{j-1} + \alpha_j \tilde{p}_j$$

is such that

$$\tilde{x}_j \in \tilde{x}_0 + \mathcal{K}_j(A^T, \tilde{r}_0) \text{ with } \tilde{r}_j := \tilde{b} - A^T \tilde{x}_j \perp \mathcal{K}_j(A, r_0).$$

- Similarly as for CG, we assumed that T_j admits an LU decomposition *without pivoting*. However, for a general matrix A , this may not be true. We have also assumed that T_j is *not singular* which also is not guaranteed.
- Analogously to what we did for the CG method, one can show that the residuals and their duals are orthogonal, while the search directions and their duals are A -orthogonal. That is

$$(r_i, \tilde{r}_j) = 0 \text{ and } (Ap_i, \tilde{p}_j) = 0 \text{ for } i \neq j.$$

Quasi-minimal residual (QMR) method

- ▶ The BiCG method is notoriously unstable (Gutknecht & Strakoš, 2000) and it often displays irregular convergence behaviors, i.e., no monotone decrease of residual norm, unlike GMRES.
- ▶ The QMR method (Freund & Nachtigal, 1991) can be viewed as an extension of the GMRES method in the sense that it builds iterates as

$$\text{Find } x_m \in x_0 + \mathcal{K}_m(A, r_0)$$

$$\text{such that } \|r_m\|_2 := \|b - Ax_m\|_2 = \min_{x \in x_0 + \mathcal{K}_m(A, r_0)} \|b - Ax\|_2$$

with the important difference that the basis of $\mathcal{K}_m(A, r_0)$ is produced by bi-orthogonalization.

For a given V_{m+1} such that $\text{range}(V_m) = \mathcal{K}_m(A, r_0)$, similarly as with GMRES, we have

$$r_m := b - Ax_m = r_0 - AV_m \tilde{y} = \beta v_1 - V_{m+1} \underline{T_m} \tilde{y} = V_{m+1} (\beta e_1^{m+1} - \underline{T_m} \tilde{y}).$$

Gutknecht, M. H. & Strakoš, Z. (2000). Accuracy of two three-term and three two-term recurrences for Krylov space solvers, SIAM Journal on Matrix Analysis and Applications, 22, 213–229.

Freund, R. W. & Nachtigal, N. M. (1991). QMR: A quasi-minimal residual method for non-Hermitian linear systems, SIAM Journal: Numer. Math. 60, pp. 315–339.

Quasi-minimal residual (QMR) method, cont'd₁

The main difference with a basis produced by Arnoldi is that V_{m+1} is *not orthogonal*. Thus, we are left with

$$\|r_m\|_2 = \|V_{m+1}(\beta e_1^{(m+1)} - \underline{T}_m \tilde{y})\|_2$$

Although we have

$$\|r_m\|_2 \leq \|V_{m+1}\|_2 \cdot \|\beta e_1^{(m+1)} - \underline{T}_m \tilde{y}\|_2$$

Like in GMRES, we still form the iterate by minimizing $\|\beta e_1^{(m+1)} - \underline{T}_m y\|_2$, which here, is referred to as the *quasi-residual norm*, hence the name of *quasi-minimal residual* method.

- ▶ Because of the tridiagonal structure of \underline{T}_m , minimizing the quasi-residual norm is a bit simpler than minimizing the residual norm in GMRES.
In particular, updating the QR factorization of the tridiagonal requires only up to three applications of Givens rotations.

Quasi-minimal residual (QMR) method, cont'd₂

► The least-squares problem $\min_{y \in \mathbb{R}^j} \|\beta e_1^{(j+1)} - T_j y\|_2$ is, once again, solved by making use of a QR decomposition of \underline{T}_j . We have

$$\underline{R}_j = \begin{bmatrix} R_j \\ 0_{1 \times j} \end{bmatrix} = G_j^{(j+1)} \dots G_1^{(j+1)} \underline{T}_j = G_j^{(j+1)} G_{j-1}^{(j+1)} G_{j-2}^{(j+1)} \underline{T}_j = Q_{j+1} \underline{T}_j$$

and $\underline{g}_j := \beta Q_{j+1} e_1^{(j+1)}$, so that the least-squares problem is recast in a banded triangular linear system:

$$R_j \underline{\tilde{y}} = \underline{g}_j [1:j]$$

where R_j has a bandwidth of three. R_j and \underline{g}_j are updated as follows, with minimal effort, given R_{j-1} and \underline{g}_{j-1} :

$$\underline{R}_j = \begin{bmatrix} \underline{R}_{j-1} & G_j^{(j+1)} [1:j, 1:j+1] \begin{bmatrix} G_{j-1}^{(j)} G_{j-2}^{(j)} t_{1:j,j} \\ \beta_j \end{bmatrix} \\ 0_{1 \times j-1} & 0 \end{bmatrix}$$

so that updating \underline{R}_j boils down to computing

$$\underline{R}_j [1:j+1, j] = G_j^{(j+1)} G_{j-1}^{(j+1)} G_{j-2}^{(j+1)} t_{1:j+1,j}.$$

Quasi-minimal residual (QMR) method, cont'd₃

and \underline{g}_j is updated as follows:

$$\underline{g}_j = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_{j-1} \\ c_j \gamma_j \\ -s_j \gamma_j \end{bmatrix} \quad \text{where} \quad \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_j \end{bmatrix} := \underline{g}_{j-1}$$

with

$$s_j := \frac{t_{j+1,j}}{\sqrt{\left(t_{jj}^{(j-1)}\right)^2 + t_{j+1,j}^2}} \quad \text{and} \quad c_j := \frac{t_{j+1,j}^{(j-1)}}{\sqrt{\left(t_{jj}^{(j-1)}\right)^2 + t_{j+1,j}^2}}$$

in which $\underline{T}_j^{(j)} := \underline{R}_j$.

► Finally, given $\underline{R}_j \tilde{y} = \underline{g}_j[1:j]$, we obtain

$$r_j = V_{j+1}(\beta e_1^{(j+1)} - \underline{T}_j \tilde{y}) = V_{j+1} \begin{bmatrix} 0_{j \times 1} \\ \underline{g}_j[j+1] \end{bmatrix} \quad \text{so that} \quad \|r_j\|_2 = |\underline{g}_j[j+1]|.$$

Quasi-minimal residual (QMR) method, cont'd₄

► Finally, the QMR iteration is given as follows:

Algorithm 11 QMR: $(x_0, \varepsilon) \mapsto x_j$

```
1: // Allocate  $\underline{T} \in \mathbb{R}^{(m+1) \times m}$  and  $\underline{g} \in \mathbb{R}^{m+1}$ 
2:  $r_0 := b - Ax_0$ ;  $\beta := \|r_0\|_2$ ;  $\underline{g} := [\beta, 0, \dots, 0]^T$ ;  $v_1 := r_0/\beta$ 
3: Pick  $\tilde{r}_0$  such that  $(r_0, \tilde{r}_0) \neq 0$  ▷ E.g.,  $\tilde{r}_0 := r_0$ 
4:  $w_1 := \beta \tilde{r}_0 / (r_0, \tilde{r}_0)$ 
5: for  $j = 1, 2, \dots$  do
6:   Get  $v_{j+1}$  and  $t_{1:j+1,j}$  from iteration of two-sided Lanczos
7:   // Apply  $G_{j-2}^{(j+1)}$  to  $t_{1:j+1,j}$ .
8:   if  $j > 2$  then
9:     
$$\begin{bmatrix} t_{j-2,j} \\ t_{j-1,j} \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} t_{j-2,j} \\ t_{j-1,j} \end{bmatrix} \text{ where } \begin{cases} s := t_{j-1,j-2} / (t_{j-2,j-2}^2 + t_{j-1,j-2}^2)^{1/2} \\ c := t_{j-2,j-2} / (t_{j-2,j-2}^2 + t_{j-1,j-2}^2)^{1/2} \end{cases}$$

10:    // Apply  $G_{j-1}^{(j+1)}$  to  $t_{1:j+1,j}$ .
11:    if  $j > 1$  then
12:      
$$\begin{bmatrix} t_{j-1,j} \\ t_{jj} \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} t_{j-1,j} \\ t_{jj} \end{bmatrix} \text{ where } \begin{cases} s := t_{j,j-1} / (t_{j-1,j-1}^2 + t_{j,j-1}^2)^{1/2} \\ c := t_{j-1,j-1} / (t_{j-1,j-1}^2 + t_{j,j-1}^2)^{1/2} \end{cases}$$

```

Quasi-minimal residual (QMR) method, cont'd₅

► Finally, the QMR iteration is given as follows:

Algorithm 11 QMR: $(x_0, \varepsilon) \mapsto x_j$

```
12:   // Apply  $G_j^{(j+1)}$  to  $\underline{g}[1:j+1]$  and  $t_{1:j+1,j}$ 
13:   
$$\begin{bmatrix} \underline{g}[j] \\ \underline{g}[j+1] \end{bmatrix} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} \underline{g}[j] \\ 0 \end{bmatrix}$$
 where  $\begin{cases} s := t_{j+1,j}/(t_{jj}^2 + t_{j+1,j}^2)^{1/2} \\ c := t_{jj}/(t_{jj}^2 + t_{j+1,j}^2)^{1/2} \end{cases}$ 
14:    $t_{jj} := c \cdot t_{jj} + s \cdot t_{j+1,j}; t_{j+1,j} := 0$ 
15:    $p_j := (v_j - \tau_{j-1}^{(2)} p_{j-1} - \tau_{j-2}^{(3)} p_{j-2})/\tau_j^{(1)}$  where  $p_0 := 0$  and  $p_{-1} := 0$ 
16:    $x_j := x_{j-1} + \underline{g}[j]p_j$ 
17:   if  $|\underline{g}[j+1]| < \varepsilon \|b\|_2$  then Stop ▷ Stop if  $\|r_j\|_2 < \varepsilon \|b\|_2$ 
```

The QMR usually exhibits a much smoother convergence behavior than BiCG.

Transpose-free methods

Matrix polynomials

► Let $A \in \mathbb{R}^{n \times n}$, and consider the scalar **polynomial** of degree m given by

$$p_m : \mathbb{C} \rightarrow \mathbb{C}$$

$$t \mapsto a_0 + a_1 t + a_2 t^2 + \cdots + a_m t^m.$$

That is, $a_m \neq 0$. An associated **matrix polynomial** is then given by

$$p_m : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$$

$$A \mapsto a_0 I_n + a_1 A + a_2 A^2 + \cdots + a_m A^m.$$

Theorem (Eigenvalues of matrix polynomials)

Let $p : \mathbb{C} \rightarrow \mathbb{C}$ be a scalar polynomial, and $\theta \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{R}^{n \times n}$ with an associated eigenvector $y \in \mathbb{C}^n$. Then, $p(\theta)$ is an eigenvalue of $p(A)$, and y is an associated eigenvector, i.e., $p(A)y = p(\theta)y$.

Theorem (Cayley-Hamilton theorem)

Let $P_A(t) := \det(A_n - tI_n)$ denote the (scalar) characteristic polynomial of $A \in \mathbb{R}^{n \times n}$, then $P_A(A) = 0_{n \times n}$.

Matrix polynomials, cont'd

- ▶ The Cayley-Hamilton theorem guarantees that, for any matrix $A \in \mathbb{R}^{n \times n}$, there is a polynomial p of degree no greater than n such that $p(A) = 0$. A polynomial whose value is zero at the matrix is called the **annihilating polynomial**.
- ▶ Since $p(A) = 0$ implies $\alpha p(A) = 0$ for all $\alpha \in \mathbb{C}$, we may always normalize a polynomial so that its highest-order term is 1. Such polynomials are called **monic polynomials**.

Theorem (Minimum polynomial of a matrix)

- For a matrix $A \in \mathbb{R}^{n \times n}$, there exists a unique monic polynomial q_A of **minimum degree**, no greater than n , that annihilates the matrix A , i.e., $q_A(A) = 0_{n \times n}$.
- The unique monic polynomial q_A of minimum degree that annihilates the matrix A is called the **minimal polynomial** of A .

▶ Similar matrices have the same minimal polynomial.

Krylov subspaces and matrix polynomials

- ▶ All Krylov subspace methods introduced for the solving of linear systems construct iterates of the form $x_m \in x_0 + \mathcal{K}_m(A, r_0)$ where, we recall that

$$\mathcal{K}_m(A, r_0) = \text{span}\{r_0, Ar_0, \dots, A^{m-1}r_0\}$$

so that, for every such iterate x_m , there exists a polynomial p_{m-1} of degree $m - 1$ such that

$$x_m = x_0 + p_{m-1}(A)r_0.$$

Moreover, for the residual associated to such iterates, we have

$$r_m := b - Ax_m = r_0 - Ap_{m-1}(A)r_0$$

so that there exists a polynomial of degree no greater than m , which we denote by φ_m , such that

$$r_m = \varphi_m(A)r_0.$$

We refer to φ_m as the **residual polynomial**.

Conjugate gradient squared (CGS) method

- ▶ While both the BiCG and QMR methods offer alternatives to solve non-symmetric linear systems on the basis of short-recurrence relations, they do both require to be able to compute $x \mapsto A^T x$.
The CGS method (Sonneveld, 1989) was introduced as a means to approximate the solution of non-symmetric linear systems, on the basis on short-recurrence relations, without the need to be able to evaluate $x \mapsto Ax$.
- ▶ The CGS method is derived from the perspective of BiCG iterates, that is,

$$x_j \in x_0 + \mathcal{K}_j(A, r_0) \text{ such that } r_j := b - Ax_j \perp \mathcal{K}_j(A^T, \tilde{r}_0)$$

for which we saw that, there exists a **residual polynomial** φ_j of degree no greater than j , and such that

$$r_j = \varphi_j(A)r_0.$$

Without loss of generality, we assume $\varphi_j(0) = 1$.

Sonneveld, P. (1989). CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 10, 36–52.

Conjugate gradient squared (CGS) method, cont'd₁

- Furthermore, there exists another polynomial ψ_j of degree no greater than j such that the BiCG search direction p_{j+1} is given by

$$p_{j+1} = \psi_j(A)r_0.$$

- The BiCG dual vectors \tilde{r}_j and \tilde{p}_{j+1} being updated after the same schemes as those of the vectors r_j and p_{j+1} , respectively, except with A^T instead of A , we then have

$$\tilde{r}_j = \varphi(A^T)\tilde{r}_0 \text{ and } \tilde{p}_{j+1} = \psi_j(A^T)\tilde{r}_0 \text{ for } j = 1, 2, \dots, m.$$

- The diagonal and super-diagonal components of the tridiagonal, α_j and β_j , respectively, formed by the BiCG iteration, can then be recast as follows:

$$\alpha_j = \frac{(r_{j-1}, \tilde{r}_{j-1})}{(Ap_j, \tilde{p}_j)} = \frac{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)}{(A\psi_{j-1}(A)r_0, \psi_{j-1}(A^T)\tilde{r}_0)} = \frac{(\varphi_{j-1}^2(A)r_0, \tilde{r}_0)}{(A\psi_{j-1}^2(A)r_0, \tilde{r}_0)},$$

$$\beta_j = \frac{(r_j, \tilde{r}_j)}{(r_{j-1}, \tilde{r}_{j-1})} = \frac{(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0)}{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)} = \frac{(\varphi_j^2(A)r_0, \tilde{r}_0)}{(\varphi_{j-1}^2(A)r_0, \tilde{r}_0)}$$

which indicates that it is possible to compute x_{j+1} and r_{j+1} without any evaluation of $x \mapsto A^T x$.

Conjugate gradient squared (CGS) method, cont'd₂

- The problem we are left with is to find update formulae for

$$\boxed{\varphi_j^2(A)r_0} \quad \text{and} \quad \boxed{\psi_j^2(A)r_0}.$$

- The update formula for the BiCG residual is recast into

$$r_j = r_{j-1} - \alpha_j A p_j$$

$$\varphi_j(A)r_0 = \varphi_{j-1}(A)r_0 - \alpha_j A \psi_{j-1}(A)r_0$$

which, as it holds irrespective of r_0 , leads to

$$\varphi_j(A) = \varphi_{j-1}(A) - \alpha_j A \psi_{j-1}(A) \quad \text{where} \quad \varphi_0(A) = \psi_0(A) = I_n. \quad (6)$$

Irrespective of the polynomial p , we have $Ap(A) = p(A)A$, so that

$$\varphi_j^2(A) = \varphi_{j-1}^2(A) + \alpha_j^2 A^2 \psi_{j-1}^2(A) - 2\alpha_j A \varphi_{j-1}(A) \psi_{j-1}(A). \quad (7)$$

- Similarly, from the update formula for the BiCG search direction, we get

$$p_{j+1} = r_j + \beta_j p_j$$

$$\psi_j(A)r_0 = \varphi_j(A)r_0 + \beta_j \psi_{j-1}(A)r_0$$

$$\psi_j(A) = \varphi_j(A) + \beta_j \psi_{j-1}(A) \quad (8)$$

so that we obtain $\psi_j^2(A) = \varphi_j^2(A) + \beta_j^2 \psi_{j-1}^2(A) + 2\beta_j \varphi_j(A) \psi_{j-1}(A)$. (9)

Conjugate gradient squared (CGS) method, cont'd₃

- The cross-term of Eq. (7) is developed as follows using Eq. (8):

$$\begin{aligned}\varphi_{j-1}(A)\psi_{j-1}(A) &= \varphi_{j-1}(A)(\varphi_{j-1}(A) + \beta_{j-1}\psi_{j-2}(A)) \\ &= \varphi_{j-1}^2(A) + \beta_{j-1}\varphi_{j-1}(A)\psi_{j-2}(A).\end{aligned}\quad (10)$$

Using Eqs. (6) and (8), we get the following expression for the cross-term of Eq. (9):

$$\begin{aligned}\varphi_j(A)\psi_{j-1}(A) &= (\varphi_{j-1}(A) - \alpha_j A\psi_{j-1}(A))\psi_{j-1}(A) \\ &= \varphi_{j-1}(A)\psi_{j-1}(A) - \alpha_j A\psi_{j-1}^2(A) \\ &= \varphi_{j-1}(A)(\varphi_{j-1}(A) + \beta_{j-1}\psi_{j-2}(A)) - \alpha_j A\psi_{j-1}^2(A) \\ &= \varphi_{j-1}^2(A) + \beta_{j-1}\varphi_{j-1}(A)\psi_{j-2}(A) - \alpha_j A\psi_{j-1}^2(A)\end{aligned}\quad (11)$$

where $\beta_0 := 0$.

Conjugate gradient squared (CGS) method, cont'd₄

► We are now equipped to develop the update formulae of $\varphi_j^2(A)$ and $\psi_j^2(A)$:

- First, using Eq. (6), $\phi_0(A) = \psi_0(A) = I_n$ and Eq. (8), we obtain:

$$\begin{cases} \varphi_1^2(A) = (\varphi_0(A) - \alpha_1 A \psi_0(A))^2 = (I_n - \alpha_1 A)^2 \\ \varphi_1(A) \psi_0(A) = \varphi_1(A) = \varphi_0(A) - \alpha_1 A \psi_0(A) = I_n - \alpha_1 A \\ \psi_1^2(A) = (\varphi_1(A) + \beta_1 \psi_0(A))^2 = (\varphi_1(A) + \beta_1 I_n)^2 \end{cases} .$$

- Then using Eqs. (7) with Eq. (10), Eq. (11), and Eq. (9), respectively, for $j = 2, 3, \dots, m$, we get:

$$\begin{cases} \varphi_j^2(A) = \varphi_{j-1}^2(A) + \alpha_j^2 A^2 \psi_{j-1}^2(A) \\ \quad - 2\alpha_j A \left(\varphi_{j-1}^2(A) + \beta_{j-1} \varphi_{j-1}(A) \psi_{j-2}(A) \right) \\ \varphi_j(A) \psi_{j-1}(A) = \varphi_{j-1}^2(A) + \beta_{j-1} \varphi_{j-1}(A) \psi_{j-2}(A) - \alpha_j A \psi_{j-1}^2(A) \\ \psi_j^2(A) = \varphi_j^2(A) + \beta_j^2 \psi_{j-1}^2(A) + 2\beta_j \varphi_j(A) \psi_{j-1}(A) \end{cases} .$$

Conjugate gradient squared (CGS) method, cont'd 5

► Let us define

$$\hat{r}_j := \varphi_j^2(A)r_0, \quad \hat{p}_{j+1} := \psi_j^2(A)r_0 \quad \text{and} \quad \hat{q}_j := \varphi_j(A)\psi_{j-1}(A)r_0.$$

Using the update formulae from the last slide, we get

$$\begin{aligned}\hat{r}_j &= \varphi_{j-1}^2(A)r_0 + \alpha_j^2 A^2 \psi_{j-1}^2(A)r_0 \\ &\quad - 2\alpha_j A (\varphi_{j-1}^2(A) + \beta_{j-1} \varphi_{j-1}(A)\psi_{j-2}(A)) r_0 \\ &= \hat{r}_{j-1} + \alpha_j^2 A^2 \hat{p}_j - 2\alpha_j A (\hat{r}_{j-1} + \beta_{j-1} \hat{p}_{j-1}) \\ &= \hat{r}_{j-1} + \alpha_j A (\alpha_j A \hat{p}_j - 2\hat{r}_{j-1} - 2\beta_{j-1} \hat{p}_{j-1}).\end{aligned}$$

As well as,

$$\begin{aligned}\hat{q}_j &= \varphi_j(A)\psi_{j-1}(A)r_0 \\ &= \varphi_{j-1}^2(A)r_0 + \beta_{j-1} \varphi_{j-1}(A)\psi_{j-2}(A)r_0 - \alpha_j A \psi_{j-1}^2(A)r_0 \\ &= \hat{r}_{j-1} + \beta_{j-1} \hat{q}_{j-1} - \alpha_j A \hat{p}_j.\end{aligned}$$

and

$$\begin{aligned}\hat{p}_{j+1} &= \varphi_j^2(A)r_0 + \beta_j^2 \psi_{j-1}^2(A)r_0 + 2\beta_j \varphi_j(A)\psi_{j-1}(A)r_0 \\ &= \hat{r}_j + \beta_j^2 \hat{p}_j + 2\beta_j \hat{q}_j.\end{aligned}$$

Conjugate gradient squared (CGS) method, cont'd₆

- ▶ Still using the update formulae for $\varphi_j^2(A)$ and $\psi_j^2(A)$, we get:

$$\alpha_j = \frac{(\varphi_{j-1}^2(A)r_0, \tilde{r}_0)}{(A\psi_{j-1}^2(A)r_0, \tilde{r}_0)} = \frac{(\hat{r}_{j-1}, \tilde{r}_0)}{(A\hat{p}_j, \tilde{r}_0)}$$

as well as

$$\beta_j = \frac{(\varphi_j^2(A)r_0, \tilde{r}_0)}{(\varphi_{j-1}^2(A)r_0, \tilde{r}_0)} = \frac{(\hat{r}_j, \tilde{r}_0)}{(\hat{r}_{j-1}, \tilde{r}_0)}.$$

- ▶ For the sake of brevity, let $u_j := \hat{r}_j + \beta_j \hat{q}_j$, so that we have:

$$\left\{ \begin{array}{l} \hat{q}_j = u_{j-1} - \alpha_j A\hat{p}_j, \\ \hat{r}_j = \hat{r}_{j-1} + \alpha_j A(\alpha_j A\hat{p}_j - 2u_{j-1}) \\ \quad = \hat{r}_{j-1} + \alpha_j A(u_{j-1} - \hat{q}_j - 2u_{j-1}) \\ \quad = \hat{r}_{j-1} - \alpha_j A(\hat{q}_j + u_{j-1}), \\ \hat{p}_{j+1} = u_j + \beta_j^2 \hat{p}_j + \beta_j \hat{q}_j. \end{array} \right.$$

Conjugate gradient squared (CGS) method, cont'd₇

- If the BiCG method converges, then $\|r_j\|_2 = \|\varphi_j(A)r_0\|_2$ tends to zero. Then, one might expect that $\|\hat{r}_j\|_2 = \|\varphi_j^2(A)r_0\|_2$ tends faster to zero. Hence, in an attempt to accelerate convergence, the CGS iterate x_j is defined so as to yield

$$b - Ax_j = \hat{r}_j.$$

Given our update formula for \hat{r}_j , we get:

$$b - Ax_j = \hat{r}_{j-1} - \alpha_j A(\hat{q}_j + u_{j-1})$$

$$Ax_j = b - \hat{r}_{j-1} + \alpha_j A(\hat{q}_j + u_{j-1})$$

$$Ax_j = b - (b - Ax_{j-1}) + \alpha_j A(\hat{q}_j + u_{j-1})$$

$$Ax_j = Ax_{j-1} + \alpha_j A(\hat{q}_j + u_{j-1})$$

so that

$$x_j = x_{j-1} + \alpha_j(\hat{q}_j + u_{j-1}).$$

Conjugate gradient squared (CGS) method, cont'd₈

► Eventually, we obtain the following algorithm:

Algorithm 12 CGS: $(x_0, \varepsilon) \mapsto x_j$

- 1: $r_0 := b - Ax_0$
- 2: Pick \tilde{r}_0 such that $(r_0, \tilde{r}_0) \neq 0$ ▷ E.g., $\tilde{r}_0 = r_0$
- 3: $\hat{p}_1 := r_0; \hat{r}_0 := r_0; u_0 := r_0$
- 4: **for** $j = 1, 2, \dots$ **do**
- 5: $\alpha_j := (\hat{r}_{j-1}, \tilde{r}_0) / (A\hat{p}_j, \tilde{r}_0)$
- 6: $\hat{q}_j := u_{j-1} - \alpha_j A\hat{p}_j$
- 7: $x_j := x_{j-1} + \alpha_j(\hat{q}_j + u_{j-1})$
- 8: $\hat{r}_j := \hat{r}_{j-1} - \alpha_j A(\hat{q}_j + u_{j-1})$
- 9: **if** $\|\hat{r}_j\|_2 < \varepsilon \|b\|_2$ **then** Stop
- 10: $\beta_j := (\hat{r}_j, \tilde{r}_0) / (\hat{r}_{j-1}, \tilde{r}_0)$
- 11: $u_j := \hat{r}_j + \beta_j \hat{q}_j$
- 12: $\hat{p}_{j+1} := u_j + \beta_j^2 \hat{p}_j + \beta_j \hat{q}_j$

- A CGS iteration entails two matrix-vector products, which is similar to BiCG, the difference being that CGS does not need to evaluate $x \mapsto A^T x$.
- When it converges, CGS often does so about twice as fast as BiCG.

Conjugate gradient squared (CGS) method, cont'd₉

- However, as the residual polynomial is squared, i.e., $\hat{r}_j = \varphi_j^2(A)r_0$ where $r_j = \varphi_j(A)r_0$, if the residual r_j increases in BiCG, then it does so even more significantly in CGS.

As a result, CGS convergence curves can exhibit important oscillations, sometimes leading to numerical instability.

Bi-conjugate gradient stabilized (BiCGSTAB) method

- ▶ The CGS method, which is based on squaring the BiCG residual polynomial, i.e., $\hat{r}_j := \varphi_j^2(A)r_0$, is prone to substantial build-up of rounding error, possibly even overflow.
- ▶ The BiCGSTAB method (van der Vorst, 1992) is a variant of CGS developed to remedy unwanted oscillations, hence the name of BiCG stabilized.

BiCGSTAB iterates are defined so as to yield a residual of the form

$$r_j = \phi_j(A)\varphi_j(A)r_0$$

where φ_j is, still, the *residual polynomial* of the BiCG method, and ϕ_j is a *new j -th degree polynomial* introduced to remedy those potentially spurious oscillations, and defined as follows:

$$\phi_0(A) = I_n \quad \text{and} \quad \phi_j(A) = (I_n - \omega_j A)\phi_{j-1}(A) \quad \text{for } j = 1, 2, \dots$$

where ω_j is chosen so as to minimize the residual norm.

van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. *SIAM Journal on Scientific and Statistical Computing*, 13, 631–644.

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd

Then, the search direction is defined as

$$p_{j+1} = \phi_j(A)\psi_j(A)r_0 \quad \text{for } j = 1, 2, \dots$$

where the polynomial ψ_j is the *search direction polynomial of CGS*. We thus have the following update formulae:

$$\begin{cases} \varphi_j(A) = \varphi_{j-1}(A) - \alpha_j A \psi_{j-1}(A) \\ \psi_j(A) = \varphi_j(A) + \beta_j \psi_{j-1}(A) \\ \phi_j(A) = (I_n - \omega_j A) \phi_{j-1}(A) \end{cases} \quad \text{for } j = 1, 2, \dots \quad (12)$$

where $\varphi_0(A) = \psi_0(A) = \phi_0(A) = I_n$.

- We can then develop the following update formula for the polynomial of the BiCGSTAB residual:

$$\begin{aligned} \phi_j(A)\varphi_j(A) &= (I_n - \omega_j A)\phi_{j-1}(A)(\varphi_{j-1}(A) - \alpha_j A \psi_{j-1}(A)) \\ &= (I_n - \omega_j A)(\phi_{j-1}(A)\varphi_{j-1}(A) - \alpha_j A \phi_{j-1}(A)\psi_{j-1}(A)). \end{aligned} \quad (13)$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd

- From $r_j = \phi_j(A)\varphi_j(A)r_0$, Eq. (13) and $p_{j+1} = \phi_j(A)\psi_j(A)r_0$, we get the following residual update formula:

$$\begin{aligned} r_j &= (I_n - \omega_j A) (\phi_{j-1}(A)\varphi_{j-1}(A) - \alpha_j A\phi_{j-1}(A)\psi_{j-1}(A)) r_0 \\ &= (I_n - \omega_j A) (\phi_{j-1}(A)\varphi_{j-1}(A)r_0 - \alpha_j A\phi_{j-1}(A)\psi_{j-1}(A)r_0) \\ &= (I_n - \omega_j A) (r_{j-1} - \alpha_j A p_j). \end{aligned}$$

- From $p_{j+1} = \phi_j(A)\psi_j(A)r_0$, $r_j = \phi_j(A)\varphi_j(A)r_0$ and Eq. (12), we get the following expression for the update of the search direction:

$$\begin{aligned} p_{j+1} &= \phi_j(A) (\varphi_j(A) + \beta_j \psi_{j-1}(A)) r_0 \\ &= \phi_j(A) \varphi_j(A) r_0 + \beta_j \phi_j(A) \psi_{j-1}(A) r_0 \\ &= r_j + \beta_j (I_n - \omega_j A) \phi_{j-1}(A) \psi_{j-1}(A) r_0 \\ &= r_j + \beta_j (I_n - \omega_j A) p_j. \end{aligned}$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd₃

- ▶ Similarly as for BiCG and CGS, we have

$$\alpha_j = \frac{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)}{(A\psi_{j-1}(A)r_0, \psi_{j-1}(A^T)\tilde{r}_0)} \quad \text{and} \quad \beta_j = \frac{(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0)}{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)}.$$

However, unlike with CGS, we do not intend to compute the squared polynomials $\varphi_j^2(A)$ and $\psi_j^2(A)$. We proceed as follows.

- First, from the update formulae for ϕ_j and ψ_j in Eq. (12), we have

$$\varphi_j(A^T) = -\alpha_j A^T \varphi_{j-1}(A^T) + \varphi_{j-1}(A^T) - \alpha_j \beta_{j-1} A^T \psi_{j-2}(A^T),$$

which implies that the highest-order term of $\varphi_j(A^T)$ is the same as that of $-\alpha_j A^T \varphi_{j-1}(A^T)$. Thus, proceeding by induction, we find that this term is

$$(-1)^j \alpha_j \alpha_{j-1} \cdots \alpha_1 (A^T)^j.$$

- Let us then restate the orthogonality of BiCG residuals with their duals as follows:

$$(\varphi_i(A)r_0, \varphi_j(A^T)\tilde{r}_0) = 0 \quad \text{for } i \neq j.$$

As this holds for all $j \neq i$, this implies $(\varphi_i(A)r_0, (A^T)^j \tilde{r}_0) = 0$ for $i \neq j$.

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd₄

As a result, the only term of $\varphi_j(A^T)$ which contributes to the non-zero part of $(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0)$ is the highest-order one. Thus, we have:

$$(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0) = (-1)^j \alpha_j \alpha_{j-1} \cdots \alpha_1 (\varphi_j(A)r_0, (A^T)^j \tilde{r}_0). \quad (14)$$

- Secondly, from the update formula of ϕ_j in Eq. (12), we have:

$$\phi_j(A^T) = (I_n - \omega_j A) \phi_{j-1}(A^T) = -\omega_j A^T \phi_{j-1}(A^T) + \phi_{j-1}(A^T),$$

which indicates that the highest-order term of $\phi_j(A^T)$ is the same as that of $-\omega_j A^T \phi_{j-1}(A^T)$. Thus, by induction again, we get that this term is

$$(-1)^j \omega_j \omega_{j-1} \cdots \omega_1 (A^T)^j.$$

- As we have previously stated that $(\varphi_i(A)r_0, (A^T)^j \tilde{r}_0) = 0$ for all $i \neq j$, we have that the only term of $\phi_j(A^T)$ which contributes to the non-zero part of $(\varphi_j(A)r_0, \phi_j(A^T)\tilde{r}_0)$ is the highest-order one. Therefore, we have:

$$(\varphi_j(A)r_0, \phi_j(A^T)\tilde{r}_0) = (-1)^j \omega_j \omega_{j-1} \cdots \omega_1 (\varphi_j(A)r_0, (A^T)^j \tilde{r}_0). \quad (15)$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd 5

- Now, by combining Eqs. (14) and (15), we obtain

$$(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0) = \frac{\alpha_j \alpha_{j-1} \cdots \alpha_1}{\omega_j \omega_{j-1} \cdots \omega_1} (\varphi_j(A)r_0, \phi_j(A^T)\tilde{r}_0). \quad (16)$$

Consequently, using Eq. (16), the formula for the β_j can be recast as follows:

$$\begin{aligned}\beta_j &= \frac{(\varphi_j(A)r_0, \varphi_j(A^T)\tilde{r}_0)}{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)} \\ &= \frac{\alpha_j}{\omega_j} \cdot \frac{(\varphi_j(A)r_0, \phi_j(A^T)\tilde{r}_0)}{(\varphi_{j-1}(A)r_0, \phi_{j-1}(A^T)\tilde{r}_0)} \\ &= \frac{\alpha_j}{\omega_j} \cdot \frac{(\phi_j(A)\varphi_j(A)r_0, \tilde{r}_0)}{(\phi_{j-1}(A)\varphi_{j-1}(A)r_0, \tilde{r}_0)} \\ &= \frac{\alpha_j}{\omega_j} \cdot \frac{(r_j, \tilde{r}_0)}{(r_{j-1}, \tilde{r}_0)}.\end{aligned}$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd

- In order to find an adequate formula for α_j , we now work on simplifying

$$(A\psi_{j-1}(A)r_0, \psi_{j-1}(A^T)\tilde{r}_0).$$

From the update formula of ψ_j given in Eq. (12), we get:

$$\psi_j(A^T) = \varphi_j(A^T) + \beta_j \psi_{j-1}(A^T),$$

which indicates that the highest-order term of $\psi_j(A^T)$ is the same as that of $\varphi_j(A^T)$. We recall this term is

$$(-1)^j \alpha_j \alpha_{j-1} \cdots \alpha_1 (A^T)^j.$$

- We then restate the A -orthogonality of BiCG search directions with their duals as follows:

$$(A\psi_i(A)r_0, \psi_j(A^T)\tilde{r}_0) = 0 \text{ for } i \neq j.$$

As this holds for all $j \neq i$, this implies $(A\psi_i(A)r_0, (A^T)^j \tilde{r}_0) = 0$ for $i \neq j$.

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd

Therefore, the only term of $\psi_j(A^T)$ which contributes to the non-zero part of $(A\psi_j(A)r_0, \psi_j(A^T)\tilde{r}_0)$ is the highest order. Thus, we have:

$$(A\psi_j(A)r_0, \psi_j(A^T)\tilde{r}_0) = (-1)\alpha_j\alpha_{j-1} \cdots \alpha_1 (A\psi_j(A)r_0, (A^T)^j\tilde{r}_0). \quad (17)$$

- Analogously, we can show that

$$(A\psi_j(A)r_0, \phi_j(A^T)\tilde{r}_0) = (-1)\omega_j\omega_{j-1} \cdots \omega_1 (A\psi_j(A)r_0, \phi_j(A^T)\tilde{r}_0). \quad (18)$$

- Then, upon combining Eqs. (17) and (18), we obtain:

$$(A\psi_j(A)r_0, \psi_j(A^T)\tilde{r}_0) = \frac{\alpha_j\alpha_{j-1} \cdots \alpha_1}{\omega_j\omega_{j-1} \cdots \omega_1} (A\psi_j(A)r_0, \phi_j(A^T)\tilde{r}_0). \quad (19)$$

- Finally, an update formula for α_j is obtained as follows by combining Eqs. (14), (15) and (19):

$$\begin{aligned} \alpha_j &= \frac{(\varphi_{j-1}(A)r_0, \varphi_{j-1}(A^T)\tilde{r}_0)}{(A\psi_{j-1}(A)r_0, \psi_{j-1}(A^T)\tilde{r}_0)} \\ &= \frac{(\varphi_{j-1}(A)r_0, \phi_{j-1}(A^T)\tilde{r}_0)}{(A\psi_{j-1}(A)r_0, \phi_{j-1}(A^T)\tilde{r}_0)} \end{aligned}$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd

so that

$$\alpha_j = \frac{(\phi_{j-1}(A)\varphi_{j-1}(A)r_0, \tilde{r}_0)}{(A\phi_{j-1}(A)\psi_{j-1}(A)r_0, \tilde{r}_0)} = \frac{(r_{j-1}, \tilde{r}_0)}{(Ap_{j-1}, \tilde{r}_0)}.$$

- In summary, we have obtained the following updating formula:

$$\begin{cases} r_j = (I_n - \omega_j A)(r_{j-1} - \alpha_j A p_j) \text{ where } \alpha_j = (r_{j-1}, \tilde{r}_0) / (Ap_j, \tilde{r}_0) \\ p_{j+1} = r_j + \beta_j (I_n - \omega_j A) p_j \text{ where } \beta_j = \alpha_j (r_j, \tilde{r}_0) / (\omega_j (r_{j-1}, \tilde{r}_0)) \end{cases}$$

for $j = 1, 2, \dots$ where $p_1 := r_0$.

- Using the update formulae found for r_j and p_{j+1} , we can find the update formula of the BiCGSTAB iterate as follows:

$$b - Ax_j = r_j$$

$$b - Ax_j = (I_n - \omega_j A)(r_{j-1} - \alpha_j A p_j)$$

$$b - Ax_j = r_{j-1} - \alpha_j A p_j - \omega_j A (r_{j-1} - \alpha_j A p_j)$$

$$Ax_j = b - r_{j-1} + \alpha_j A p_j + \omega_j A (r_{j-1} - \alpha_j A p_j)$$

$$Ax_j = b - (b - Ax_{j-1}) + \alpha_j A p_j + \omega_j A (r_{j-1} - \alpha_j A p_j)$$

so that
$$x_j = x_{j-1} + \alpha_j p_j + \omega_j (r_{j-1} - \alpha_j A p_j).$$

Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd₉

- All what remains to do is to define ω_j . As previously mentioned, our goal is to pick ω_j so as to minimize the residual norm $\|r_j\|_2$, that is

$$\omega_j = \arg \min_{\omega \in \mathbb{R}} \|(I_n - \omega A)(r_{j-1} - \alpha_j A p_j)\|_2.$$

For this, let $q_j := r_{j-1} - \alpha_j A p_j$, so that we aim at finding

$$\min_{\omega \in \mathbb{R}} \|(I_n - \omega A)q_j\|_2$$

which yields

$$\omega_j = \frac{(q_j, Aq_j)}{(Aq_j, Aq_j)}.$$

► Eventually, BiCGSTAB iterations are given as follows:

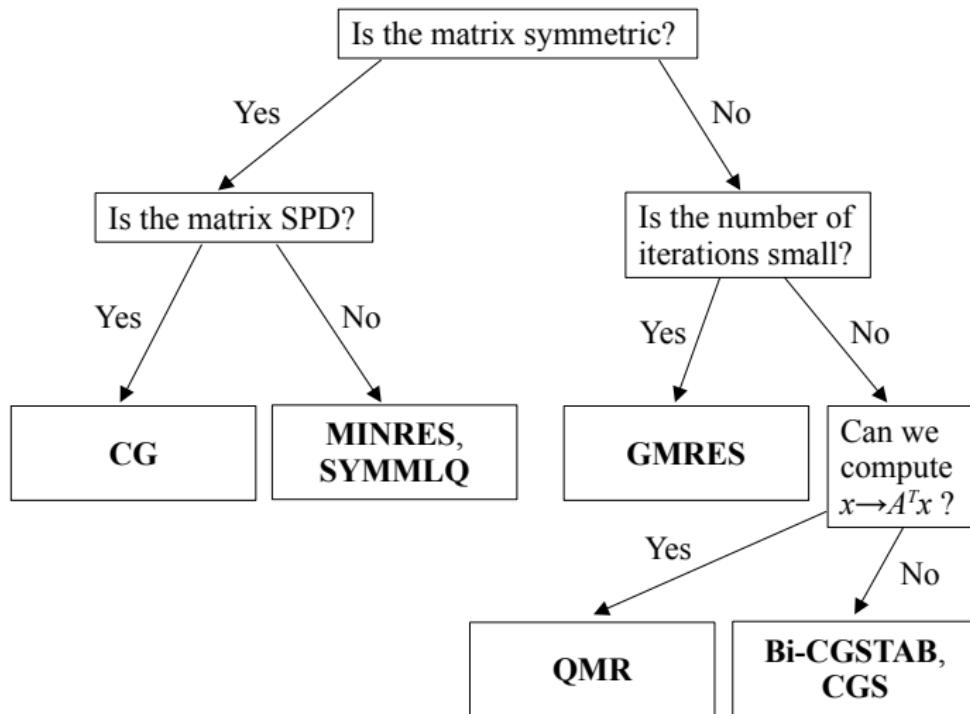
Algorithm 13 BiCGSTAB: $(x_0, \varepsilon) \mapsto x_j$

```
1:  $r_0 := b - Ax_0$ 
2: Pick  $\tilde{r}_0$  such that  $(r_0, \tilde{r}_0) \neq 0$  ▷ E.g.,  $\tilde{r}_0 = r_0$ 
3:  $p_1 := r_0$ 
4: for  $j = 1, 2, \dots$  do
5:    $\alpha_j := (r_{j-1}, \tilde{r}_0) / (Ap_j, \tilde{r}_0)$ 
6:    $q_j := r_{j-1} - \alpha_j Ap_j$ 
7:    $\omega_j := (q_j, Aq_j) / (Aq_j, Aq_j)$ 
8:    $x_j := x_{j-1} + \alpha_j p_j + \omega_j q_j$ 
9:    $r_j := q_j - \omega_j Aq_j$ 
10:  if  $\|\tilde{r}_j\|_2 < \varepsilon \|b\|_2$  then Stop
11:   $\beta_j := (\alpha_j / \omega_j) \cdot (r_j, \tilde{r}_0) / (r_{j-1}, \tilde{r}_0)$ 
12:   $p_{j+1} := r_j + \beta_j (p_j - \omega_j Ap_j)$ 
```

Summary

Flowchart of Krylov subspace-based linear iterative solvers

- The following flowchart can be used for practical solver selection:



Things we did not talk about

- ▶ Breakdowns.
- ▶ Convergence theories.
- ▶ Effects of finite precision.
- ▶ Preconditioning (Lecture 14).
- ▶ Restarting strategies (Lecture 15).
- ▶ Block variants for multiple simultaneously available right-hand sides.
- ▶ Communication-avoiding variants.

References

References

- ▶ Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
- ▶ Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.