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Projection methods for linear systems
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General framework of projection methods for linear systems

» Let K, be a proper m-dimensional subspace of R", i.e., K, C R",
typically with m < n.
We then seek for a & € K;,, which approximates the solution x of Ax = b.
A typical way to form the approximation is to impose m
independent orthogonality conditions on the residual r := b — A%
with respect to a m-dimensional constraint subspace £,, C R™:

r=b—Ai L Ly (1)

If o, = Lo, then Eq. (1) is referred to as the Galerkin condition, and
is formed by orthogonal projection.

More generally, we have L, # K., in which case Eq. (1) is referred to as
the Petrov-Galerkin condition. Then, the process of forming  is an
oblique projection.

A projection technique onto the approximation/search space K, along the
constraint subspace £,, is summarized as:

Find z € K,,, such that b — Az 1 C,, ‘
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General framework of projection methods for linear systems,
cont'd

» The projection techniques presented in this lecture are iterative.
That is, as a pair (K, L) C R™ x R™ of m-dimensional search and
constraint subspaces is used to form an approximate solution Z of Az = b,
the next iteration consists of expanding those subspaces, leading to
a pair (K41, Linm+1) which is then used to form a subsequent
approximate solution.
A projection technique is deployed with an initial iterate zy € R".
Subsequent iterates are then formed leveraging xo by searching in the
affine subspace z(+ K,,. The projection technique is then summarized as

‘Find T € xg + Ky, such thatb—AﬁcJ_[,m‘.

If we write & := x¢ + & with Z € KC);,, then the projection technique is
reformulated as
‘ Find € K,, such that ro — AZ L Em‘

where 79 := b — Axg.
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Matrix form of projection techniques for linear systems

» Let the columns of V,, := [v1,...,vy] and Wy, := (w1, ..., wy,] form
bases of the search and constraints spaces, respectively, i.e.,

range(Vy,) = Kp, and range(Wy,) = L.

Once equipped with such bases, one can recast the projection defined as
finding & € xo + K, such that b — Az | L, into

Find § € R™ such that Z := z¢g + V,,5 and b — AZ L range(W,,).

Taking the dot product as inner product, this leads up to the following
matrix form:

Find § € R™ such that  := 29 + Vj,, 7 and W, (rg — AV;,5) = 0.
If WL AV, is not singular, we then have

§=WZEAV,,)*Wlrg

so that
& =20+ Vi (WEAV,) "W hig |
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Matrix form of projection techniques for linear systems,
cont'd;
» A proper projection technique to approximate the solution of a linear

system in g + range(V;,,) along range(W,,,) requires that W,L AV, is not
singular.

It can be shown that WL AV,, is not singular if and only if no vector of

the subspace AKX is orthogonal to the constraints subspace L,,, i.e.,
AK,, N L = {0}

Saad (2003) states the following theorem:

Theorem (Non-singularity of W AV},)

If A, K., and L,, satisfy either of the two following conditions:

- A is symmetric positive definite and L,, = IC,,, or

- A is non-singular and L., = AKC,,.

Then the W.E AV,,, matrix is non-singular for any full-rank V,,, and W,,,.

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.
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Matrix form of projection techniques for linear systems,

cont'd,
» In practical implementations of projection techniques to build approximate
solutions to linear systems, we need to consider:
- How to choose the search and constraints subspaces IC,,, and £,, at a
given iteration m.
- If an approximation is not good enough, how to expand those subspaces
to Kppy1 and Lo41.
Of particular interest for the definition of projection techniques are the
so-called Krylov subspaces:

Km(A, o) := span{ro, Arg, ..., A" 1rg} C F”
which form a nested sequence:
K1(A,r0) € Ko(A,m0) C-+- CKm(A,7m0) S ...

A Krylov subspace method is a projection technique based on the
subspace IC,,,(A, ro). Different choices of a constraints subspace lead to
different kinds of Krylov subspace methods.
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Matrix form of projection techniques for linear systems,
cont'ds

» The choice of the constraint subspace L,, is often made so that the
approximation in /C,,, possesses some optimality properties, such as
minimizing the residual norm or the norm of the forward error.

Some widely used Krylov subspace methods are proposed based on the
choices

Lo = Km(A,70), L = AK(A,70) and Ly, = K (AT 70).
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Full orthogonalization method (FOM)

» The full orthogonalization method (FOM), proposed by Saad (1981), is an
orthogonal projection in a Krylov subspace K,,,(A, ), with
constraints subspace L,, = K,,, i.e., it reads

Find @, € 20 + Ko (4, 70) such that b — Az, L Kpn(4,70) .

Assuming that the columns of V,,, := [v1, ..., vy,] form a basis of the
Krylov subspace ., (A, 1), the iterate formed by FOM is then given by

Ty = To + Vm(VﬁAVm)*IVTZrO.

We saw in lecture 11 that, if the columns of V},, form an othonormal basis
of Kin(A,ro) as obtained by Arnoldi, we then have

vIav,, = H,
where H,, is an upper-Hessenberg matrix.
Moreover, we have vy := rg//3, where 3 := ||ro||2, so that
VI = [v1,...,vm) 018 = 5e§m) where egm) = L[, 1].

Saad, Y. (1981). Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of computation,
37(155), 105-126.
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Full orthogonalization method (FOM), cont'dy

Consequently, we have

T = 2o + Viny where H,, 5 = Begm) .

In most cases, the dimension m of the Krylov subspace KC,,, (A, 7o) is much
smaller n, so that one can solve for §j such that H,,j = Be;"” using a
direct method or, since H,, is Hessenberg, possibly also using a QR
factorization.
> Let x,, € ko + Kin(A, o) be an iterate formed by FOM. Then, we have
Tmi=b— Axpy,
—b— A(xo + Vinjl) where Hyjj = Bel™
=70 — Avmg

where we recall the Arnoldi relation AV,, = V,,, H,,, + hm+17mvm+1e7(7T)T,

so that ~
Ym =70 — VinHmy — hm+1,m(e£T)Ty)vm+1

=70 = Bv1 = b1 (5T G Om-
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Full orthogonalization method (FOM), cont'd;

But, remember that we have rqg = Sv1, so that we obtain

m)T

m = _hm+1,m(e£n

U)Vm+1 |-

One can then promptly evaluate the residual norm ||7,||2, without having
to form the iterate x,,, nor to evaluate an additional matrix-vector
product. Indeed, we have

17mll2 = [Pt 1m][eS T g] .

» In practice, FOM is seldom used for the purpose of solving linear systems.
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Full orthogonalization method (FOM), cont'ds

» Implementations of the FOM method are defined by specifying a procedure
to construct an orthonormal basis of the Krylov subspace KC,,, (A, ro).
This can be done using any variant of the Arnoldi algorithm, e.g.,

Algorithm 1 MGS-based FOM: (zg,¢) — x;

1: ro ‘= b— AfEO

2: ﬁ = ||7’0H2

3 vy :=19/B

4: for j=1,2... do

5. w:= Av;

6: fori=1,...,5do

7: hij = U}TUZ'

8: w:i=w — hijvi

9 hjyrg = wle '
10:  Solve for § such that H;j = Begj)
11 if hypglet?) TGl < e]|b> then
12: Stop

13: Vj41 = w/thrl,j

14: xj =29+ V;y

> Stop if |72 < ||bll2
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Generalized minimal residual (GMRES) method

» The generalized minimal residual (GMRES) method, proposed by Saad and
Schultz (1986), is an oblique projection in a Krylov subspace KC,,,, with
constraints subspace £,, = AK,,, i.e., it reads

’ Find x,, € ¢ + K, (A, ro) such that b — Ax,,, L AK,,,(4,10) ‘ (2)

Assuming that the columns of V,,, := [v1,...,vy,] form a basis of the
Krylov subspace K., (A, 19), the GMRES iterate is given by
Ty 1= Xo + Vm((AVm)TAVm)_I(AVm)TTo.
However, it is more common and practical to derive the GMRES iterate
based on its optimality property:
Theorem (Optimality of GMRES iterates)

The iterate x,, is the solution of Pb. 2 if and only it minimizes the residual
norm ||b — Az||2 over the affine subspace xo + K,,,(A,10), i.e., if and only if

|b — Azl = min |b — Az||2.
x€$0+’Cm(A,T'0)

Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.
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Generalized minimal residual (GMRES) method, cont'd;

» Consequently, the GMRES iterate ,, € x¢ + K\, (A, o) is given by
‘ T = 2o + Viny

, where

Y := arg min ||b — A($0 + me)HQ
yeR™
= arg min ||rg — AV, yll2
yeR™

in which, we recall that 7o = vy, where 3 := ||r9]|2, and, as the Arnoldi
relation reads AV,, = V,,+1H,, in which H,, := $+1Avm' we obtain:

g = arg min ||fv1 — Vint1 Hnyllo
yeR™
. 1
= arg min \|Vm+1(ﬁe§m+ ) — Hyny)ll2
yeR™

= arg min [[6e""V — Hylo where " = I 1),
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Generalized minimal residual (GMRES) method, cont'd,

» The least-squares problem min,crm Hﬂegmﬂ) — Hpy||2 is solved using the

QR decomposition of the Hessenberg matrix, which can be done efficiently
provided that the dimension m of the approximation and constraints
subspaces is not too large.

Let Qi1 € R(MTDX(m+1) he the orthogonal matrix s.t.

H,, = Q%HRim' where R, € RmH+D)Xm s an upper-triangular matrix.

Then, the least-squares problem is recast into

. (m4+1) _H _ . (m+1) T R
yrélﬂl{l;ln H,Bel 7my”2 yrélﬂlg“l’” ”561 m+17myH2
. 1
= min [|8Qmi1ef™ Y = Ryl
yeR™
. R
o [,
yeR™ O1xm 9

where ¢1 := Qm+1€§m+1) =Qm+1[1:m+1,1]and R, = Rp[1:m, 1:m)].
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Generalized minimal residual (GMRES) method, cont'd;

So that the least-squares problem is solved by solving the following
triangular system:

‘Rmﬂzﬁfh[l :m] ‘

» Then, the residual 7, :=b— Ax,, iss.t. 7y, = Vmﬂ(ﬁegmﬂ) — H,,9) and

1 ~
Irmlle = 18" = Hungllo

R, | -
= ||Bq1 — [lem] ] ,

— gy - [5611[%]3 mq

_ Omxl

N [6% [m + 1]}
so that [ [ |2 = Blau[m + 1]]].

2

2

Thus, one needs not to assemble the iterate x,,,, nor to perform an
additional matrix-vector product in order to monitor convergence.
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Generalized minimal residual (GMRES) method, cont'd,

» Just like with FOM, the workhorse of GMRES is the orthogonalization of
Krylov basis vectors. In particular, this is most frequently implemented on
the basis of the MGS procedure:

Algorithm 2 MGS-based GMRES: (9, ¢) — z;

2: B:=lroll2

3 v = 7‘()/,8

4: for j=1,2... do

5 w:= Avy;

6 fori=1,...,jdo
7: hij = U}TUZ'

8 w ::w—hijvi
9 hjpr = [lwl

10:  Solve for § = arg min,cp; ||Be§j+1) — Hjyl|
11:if |8/ — H,j|| < e|b|l2 then
12: Stop o > Stop if |72 < ||bl|2
13: Vj41 = w/thrl,j
14: Tj 1= xo+ ‘/J:l]
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Generalized minimal residual (GMRES) method, cont'ds

» Remember that the least-squares problem min,cgm ||Begm+1) — Hpyllo is

recast into the linear system R,,§ = Bqi1[1:m] where R,,:= Ry,[1:m,1:m)]
in which the QR decomposition Q%HRA = H,, is needed.

Suppose that we have obtained the QR decomposition of the matrix H;_1,
and we are interested in getting the decomposition of H; with the least
amount of work possible. Clearly, we have o

H,:[Hjl hlzj,j]
L 01xjo1 hj14]

We saw in Lecture 07 that Givens rotations can be used to turn an upper
Hessenberg matrix into triangular form. In particular, for H;_1, we have

GGV H L = QiH

Rj1 ()
R‘_ pu— j pr— G.
=1 [leu—l)} -
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Generalized minimal residual (GMRES) method, cont'dg

where the Givens rotation matrices ng), s Gg-jjl € R/*J are given by
o -
1
ol ¢ 8 i-th row
i -8 ¢ (7 + 1)-th row
1
L 1_

in which the scalars s; and ¢; are set so as to zero the (i + 1,)-entry of
(@)

the Hessenberg matrix G’ is applied to.

Clearly, we have

G(j+1)

i

ng) 0j><1
01><j 1

fori=1,...,5—1.
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Generalized minimal residual (GMRES) method, cont'd;
so that
- -
R; =GV eV,
_ e |G 6P H Gg.f_)l...cgﬂ)hlzj,j]
J

O1x(j—1) hjy1,;

_ ~(+1)
=G

Rii GY .. ng)hlij,j]

O1x(j-1) hjt1,

Rioi  GY™1:j1:j+1]

(]—) Gg )hl ]J]
hjt1i
O1x(j-1) 0
Therefore, while performing the j-th iteration of GMRES, one is equipped
with R;_; and Hj. In order to assemble R;, there only remains to apply
G+n L, GUtD ot

the Givens rotations G to the last column of Hj, i.e.,

i 71— Ut (+1)
&[1.]—}—1,]]—6% Gl hl:j+1,j .
e




Generalized minimal residual (GMRES) method, cont'dg

> We saw that the least-squares problem min ey x;(Ar) [0 — A%[[2 can be

recast in the linear system R;y = g;[1 : j] where g; := BQj11e

that

gj = ﬂG;jH) e ngﬂ)egﬁl)

il

Yi—1
Ci7j

| 5575

where

il

i

with go = 3, and in which the scalars s; and ¢; are given by

hji1;

\/ (h%‘_l))z +hi

where H;j) = R;.

S5 =

and ¢; =

)

Jj

(J+1)

1

i

LU=

JJ
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Generalized minimal residual (GMRES) method, cont'dg

» In practice, the R1,..., Ry, and g1,. .., gm are often computed in-place,
stored in pre-allocated H,, and g,,. This yields the following algorithm

Algorithm 3 Practical GMRES: (zg,m,¢) — z;

1: // A”Ocateg c R(m | l)><m,' i] c R™ 1 and 1% c Rux(m,-l)
2: 10 :=b— Axo; B := ||roll2; g := 18,0,...,0]"; vy :==10/8
3: forj=1,2... do

4. Compute h1;j+1,j and Vj+1
5 fori=1,...,7—1do
6: // Apply (,'E.'Hrl) to hi:ji1, .
. hij | _ e s | hi si = i1/ (B 4+ hig )2
7: = where 9 5 172
hiti =si i [hit1; ci i= hai /(W3 + hiy )Y
8: // Apply G.(/JH) to g[l:j+1] and hijt1,

LQU] } _ [Cj 8;} {g[}']} where & %3 7= i/ (S + i )12
g[.] + 1] ' —Sj G 0 cj 1= hjj/(h?j + h?+1’j)1/2

10: hyj = cjhyj + sihjta55 hjva, :=0

11:  if |g[j + 1]| < <||b]|2 then

12: Stop > Stop if |72 < €]|b]|2
13: z; := zo + V;§ where § is solution of triangular system H[1: 5,1 : j]g = g[1 : j]
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Conjugate gradient (CG) method

» Here, we assume that the matrix A is SPD. Similarly to FOM, the CG
method (Hestenes and Stiefel, 1952) is an orthogonal projection in the
Krylov subspace K, (A, 7). That is, CG iterates are formed as follows:

(Find 2, € 20 + Ko (A4, 70) such that b — Az, L Kn(A,70) |-

Once again, assuming that the columns of V,,, := [v1,...,v,,] form a basis
of K (A, rg), the CG iterate is given by

Ty = x0 + Vi (VI AV,,) 7V g,

We saw in Lecture 11 that, if the columns of V;,, form an orthonormal
basis of K,,(A,ro) as obtained by the Lanczos method, we then have

VAV, =T,
where T, is a tridiagonal matrix.
Moreover, we have vy := 19/, where 3 := ||r9||2, so that
Vg =[v1,. .., om] v 8 = Begm) where egm) = Il 1]

Hestenes M. R. & Stiefel E. L. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49, 409-436.
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Conjugate gradient (CG) method, cont'd;

Consequently, we have

Ty i= 2o + Vi where T, g = ﬂegm) .

As formulated above, each CG iterate x;, requires to solve a linear system
for ¢ with the tridiagonal matrix T},,.

As A is SPD, so is T},. Thus, one can make use of the LU decomposition
of T}, in order to solve T}, = ﬁegm).
Let z,,+1 denote the CG iterate in xg + Ky 1(A,10), i€,

3 5 1
Tmt1 = 20 + Ving1y where Thpq9 = ﬁengr .

In what follows, we present the steps enumerated by Bai and Pan (2021)
in order to construct the CG iterate x,,+1 given .

Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
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Conjugate gradient (CG) method, cont'd,

Let the tridiagonal matrices 7T, and T;,,+1 admit LU decompositions of the
form L, Uy, and Ly, 41U, 41, respectively, in which we have

1 m B

L, = _ _ and Uy = for £ =m,m + 1.

- B
7@71 1 T/e

That is, L,, and U, are the m-th leading principal sub-matrices of L,,11
and Upyy1.
More precisely, we have

m = o

i := Bi/ni fori=1,...,m

Ni4+1 ‘= &j41 — '}’iﬁi for i=1,. ..,Mm
where o :=T}j; = v;frAvj and B :=Tj11 = vaHAvj = vaAij
denote the diagonal and off-diagonal components of T,,,, respectively.
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Conjugate gradient (CG) method, cont'd;

Given those LU factorizations, the CG iterate x,, € xo + K, (A, 9) may
be recast into

L = Tg + Ppz™

where P, := V,, U1 € R™™ and (™) .= L1 (m € R™. Then, we
have

-1
Um *le

] = [VmUﬁl Pmt1]
== [Pm pm—l—l]-

And, from V.11 = Ppt1Unmt1, we get

Um+1 = BmPm + Dms1Pm+1 = | Pm+1 = (Um+1 — BmPm)/Mm+1

form=1,2,..., while|py =v1/m |
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Conjugate gradient (CG) method, cont'd,

(m)T ]T

Then, as we denote z(™+1) .= [~ =21, Zm, Zmy1] L, we

see that

Zm+1
L1z = Begmﬂ)
YmZm + Zm+1 0

so that | ;401 = —VYm2m ‘ form=1,2,... while . Therefore, we
get

Tmp1 i= 20 + P 2™

L(m) ]

=X + [Pmpm+1] |:Z .
m

=20 4 Pnz™ + 2o 1Pmi1

so that

T+l = Tm + Zm41Pm+1 for m=0,1,2,... ‘
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Conjugate gradient (CG) method, cont'ds

» Then, alongside an implementation of Lanczos procedure which generates

a set of orthonormal basis vectors vy, va, ..., Uy 41 spanning the subspace
K (A, 1) with the tridiagonal components aq, ..., am+1 and Bi,..., Bm,
one can generate the sequence x1,xa,. .., Tm,11 of CG iterates as follows:

To Z=b—A.%'0

B = ||roll2; z1 :=p
U1 = 7"0/5; ay = U%FAW; m = ai; p1 = 01/771
forj=1,...,m

$j = 33‘];1 + ijj
Compute 11, 3; and v;11 by Lanczos iteration

;= B/nj
Nj+1 1= Q1 — 504
Zjt1 = =%

pi+1 = (vjr1 — Bips) /M1
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Conjugate gradient (CG) method, cont'dg

» We will find it useful to consider generic inner products (-,-) in place of
the usual dot product. Two important results prove to be useful in deriving
the CG algorithm. First, there is the conjugacy of the p vectors:

Theorem (A-orthogonality of p vectors)

Assuming A is SPD, the vectors p1, .. .,pm+1 built as described on the
previous slides are A-orthogonal (or conjugate). That is,

(Pi,pj)a == (Api,p;) =0 if i # j.

Second, there is the orthogonality of residual vectors:
Theorem (Orthogonality of residual vectors)

Let rj := b — Ax; where x; is the CG iterate in xo + K,,(A,rg). Then,

rj = pjVj+1, where po:= [ and p; = —ﬁjegj)ng sit. Ty = Begj)
so that, by virtue of orthogonality of the Krylov basis vectors vi,. .., Um+1,
the CG residual vectors 1y, ..., ry,, are orthogonal, i.e., (r;,r;) =0 ifi # j.
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Conjugate gradient (CG) method, cont'd;
» Now, let us define the search direction p; ;1 := pjnj+1pj+1 so that, using
the fact that r; = p;vj11, we get
pi+1 = (U1 = Bipi)/niv1
PiNj+1Pj+1 = Pjvit1 — PiBip;
Dj+1 =175 — pjBjp;

‘ﬁj—&-l =T+ TiDj ‘

where 7; := —p;3;/(pj—1m;j). These search directions are A-orthogonal.
Then, from z; := x;_1 + 2z;p;, we get

‘:lij =T + gjﬁj ‘ where é-j = Zj/(pjflﬁj).

Also, the CG residual vector r; can be reformulated as follows:

ryi= b— Al‘j =b— A(fl}j71 + fj]aj) =b— Al’jfl - ngﬁj

so that Tii=Tji—1— fjAﬁj ‘
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Conjugate gradient (CG) method, cont'dg

> Now, we are only left with finding alternative expressions for 7; and &;
which do not explicitly depend on the tridiagonal form T} and its LU
decomposition.

- First, using the stated orthogonality of CG residuals, we get

(rj,7j-1) =0
(rj—1 = &Apj;7j-1) =0
(rj—1,7j-1) — &(Apj,7j-1) =0

for which using the conjugacy of search directions as well as
Dj+1 :=rj + 7;p; leads to

(Apj,rj_1) = (Ap;,pj — Tj—1Dj—1)
= (Apj, bj) — 7j-1(ADj, j-1)
= (Ap;,P;)

so that | &; = (rj-1,7j-1)/(Ap;, Dj) |
YR




Conjugate gradient (CG) method, cont'dg

- Second, in order to find an alternative expression for 7;, we start as
follows from the statement of conjugacy of search directions:

(Apj; Pjv1) =0

(Apj,rj + 7jp;) =0
(Apj,r5) + 7j(Ap;, ;) =0

so that 7; = —(Apj,r;)/(Apj,Dj). Then, using rj :==r;_; — &;Ap; as

well as the orthogonality of CG residuals, we get

o AWpyry) (i —rienry) o (ADppg) (1)
= — —

(Ap;,p5) & (Apj,by) (rj—1,7mi-1) (Apj, D))

so that | 7 = (rj,7;)/(rj—1,75-1) |
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Conjugate gradient (CG) method, cont'dyg

» Piecing together all the expressions for the update of &;,z;,r;,7; and
Dj+1, we get the following iteration for the CG method:

ro :=b— Axg

D1:=T0

forj=1,....m
&= (rj—1,m5-1)/(Apj, Bj)
Tj = Tj-1 + &§5Dj
rj=rj_1 —&Ap;
7y = (rj,r5)/(rj—1,mj-1)

Dj+1 =15 + T;Dj
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Conjugate gradient (CG) method, cont'dy;

» In order to reflect the most commonly encountered formulations of the CG
method, the following changes of variables are operated

fj'-)Oéj, Tj'-)ﬁj andﬁj '—)pj

where o and ; are not to be confused with the components of the
tridiagonal form of A.
This leads to the following algorithm:
Algorithm 4 CG: (z9,¢) — z;
1 ro = b— A(EO
2: p1i=1g
3: forj=1,2... do
aj = (rj-1,7j-1)/(Ap;, p;)
Tj = Tj-1+ QP
rj =11 — 0 Ap;
if ||7j]]2 < €]|b]|]2 then
Stop
Bj = (rj,r;)/(rj—1,7j-1)
10: Pj+1 =715+ ﬂjpj
32/102

Qe ook




Conjugate gradient (CG) method, cont'd;;

» Note that the CG method can be implemented allocating storage only for
the iterate x, the search direction p, the matrix-vector product Ap and the
residual 7. Doing so leads to the following practical implementation:

Algorithm 5 Practical CG: (zg,¢) — x;

1: Allocate memory for x,p,w,r € R"
2: r:=b— Axg

3 pi=r

4: for j=1,2... do

5 w:= Ap

6:  a:=(r,r)/(w,p)

7. B:=1/(rr)

8: Tr:=x+ap

9: rI=T—ow

10:  if ||r|l2 < ¢]|b]|2 then
11: Stop

122 f:=0-(rr)

13: p:=r+0p
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Conjugate gradient (CG) method, cont'dys
» An essential property of the CG method is that of optimality, namely
Theorem (Optimality of CG iterates)

Let A be SPD and x; € xo + K;(A,ro) denote the CG iterate approximating
the solution of Ax =b. Then, x; minimizes the A-norm of the error over
the search space, i.e.,

T —Tilla= min T — where ||z|[4 = (Ax, z)"/2.
Jo=ajla= _ min llo=ylla where o4 = (Az.2)

Another important results on the CG method is about its convergence:
Theorem (Upper bound on the relative change of A-norm of the error)

Let A be SPD with smallest and largest eigenvalues given by Ay and Apmaz,
respectively. Then, it holds that

J
|z —zlla _ [ V/r2(A4) —1
[zo —zlla = \ /k2(A) + 1
where k2(A) = Mpaz/Amin IS the spectral condition number of A.
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Conjugate gradient (CG) method, cont'dyy

> An alternative presentation of the CG method to that of orthogonal
projection in a Krylov subspace is frequent in the field of
optimization.
- That is, considering an SPD matrix A € R™"*™ and a vector b € R", the
quadratic function
f:R*" >R
r ol Az —x
has Vf(x) = Az — b and V2f(z) = A for 1st and 2nd derivatives.
- Since the Hessian V2f of f is SPD, the critical point z, such that
Vf(zs) =0 (= Az, =0b), is a minimizer of the function f(z).
- An iterative procedure started with 2y and aimed at finding x, is

devised upon setting a set of search directions pg, p1,po, ..., in the
span of which subsequent approximations x1, zo, ... of x, are formed:

J
l’j = E Q;Pj.
=0
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Conjugate gradient (CG) method, cont'd;s

- The search directions are chosen to be A-orthogonal, or conjugate,
i.e., such that (Ap;,p;) =0 for i # j.

- The initial search direction is chosen as the opposite of the gradient
of f at xzg, i.e., pg:= —Vf(x0> =b— Axg =: ry.

- Subsequent search directions p1, ps, ... being A-orthogonal with respect
to pg ox V f(zg), they are conjugate to the gradient V f(zg), hence
the name conjugate gradient given to the method.
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Minimal residual (MINRES) method

» The optimality property of the CG method is reliant on the assumption
of positive definiteness of A. Furthermore, in cases A is not positive
definite, the CG method may break down (Paige et al., 1995).

For cases where A is symmetric but indefinite (still non-singular), then,
the minimal residual (MINRES) method (Paige and Saunders, 1975) is
introduced as an oblique projection in a Krylov subspace K,,,(A4, ro),
with constraints subspace L, := AK,,, i.e., similarly as GMRES, it reads

Find @, € 20 + Km(A, 70) such that b — Az, L AKpn(A,70)],  (3)

the difference with GMRES being that A is symmetric.

Assuming that the columns of V;,, := [v1, ..., vy] form a basis of the
Krylov subspace KC,,, (A4, 19), the MINRES iterate is then given as follows
from the Petrov-Galerkin condition:

T = To + Vm((AVm)TAVm)_l(AVm)TTo.

Paige, C. C., Parlett, B. N., & Van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov
subspaces. Numerical linear algebra with applications, 2(2), 115-133.

Paige, C. C. & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12, 617—629.
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Minimal residual (MINRES) method, cont'd;
» However, similarly as for GMRES, it is more common and practical to
derive the GMRES iterate based on the following optimality property:
Theorem (Optimality of MINRES iterates)

The iterate x,, is the solution of Pb. (3) if and only if it minimizes the
residual norm ||b — Ax||y over the affine subspace xo + K., (A, 10), i.e., iff
16— Azmlla =

min |b — Az||2.
z€X0+Km (A,ro)

Consequently, the MINRES iterate z,, € x¢ + K,y (A, ro) is given by
Ty 1= X + Vmgj‘, where

g = arg min |rg — AV;pyl|2
yeR™
in which, we recall that 79 = Sv1, where 5 := ||r¢||2 and, as the Lanczos
relation reads AV;, = V411, in which T, := V,%’HAVm, we obtain
_ . +1
g = arg min | Be{" "V = Ty,
yeR™
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Minimal residual (MINRES) method, cont'd;

» Just as with GMRES, the least-squares problem min,cgm ||e )—Tﬂy\\g
can be solved using the QR decomposition of the tridiagonal matrix.
Let Q41 € RMHDX0m+1) be the orthogonal matrix s.t. Ty, = QL | Rin,
where R, € RM+DXm is an upper-triangular matrix.
Since T}, is tridiagonal, the upper-triangular matrix R, is banded with a
bandwidth of 3, i.e., we have

(m+1
1

‘7_1(1) 7_1(2) 7_1(3) 7
0 72(1) 72(2) 7'2(3)
R = Wy 2y 29, = o
7'151111 77(311
: ' 7'7%)
0 0 |

where R, := Ry,[1:m, 1:m)].
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Minimal residual (MINRES) method, cont'ds

The least-squares problem is recast into

. (m+1) . o .
Join, ey Tyll2 = min,

5Q1—[Rm}y

O1><m

2

1
where ¢ := Qm+1e§m+ ) = Qm+1[l :m+1,1].
Then, as we let g,, := Bq1 € R™+1 with go := B3, the least-squares
problem is solved by solving the following triangular system:

Ry = gm[l:m]|.

Then, the residual 7, := b— Ax,, is s.t. r,, = Vm+1(ﬁe§m+1) — T,,7j) and
[rmll2 = Blgi[m + 1]| = |gm[m + 1]||.

Thus, one needs not to assemble the iterate x,,,, nor to perform an
additional matrix-vector product in order to monitor convergence.
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Minimal residual (MINRES) method, cont'd,

Suppose that we have obtained the QR decomposition of the matrix Tj_1,
and we are interested in getting the decomposition of T; with the least
amount of work possible. Clearly, we have

0,
T b (j=2)x1
T = [Jl 1'“] where t1.;; = | Bj—1
—_ 01><j71 ﬁj (6%

We saw in Lecture 07 that Givens rotations can be used to turn an upper
Hessenberg matrix into triangular form. In particular, for T;_1, we have

Rj_l

_aW cv e o
01><(j1):| =606, ¢V = Qi1

R];l = |:

where the Givens rotation matrix GY) € R7*J zeroes the (i +1,4)-entry of

i
the tridiagonal matrix it is applied to. Also, we have
G 0.
Gi7 Opa fori=1,...,5—1.
O1x;
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Minimal residual (MINRES) method, cont'ds

As we had for GMRES, we have that R; can be formed through minimal
update of R;_1, i.e., o

Rioi  GYI[j1:j+1]

ng_)l - ng)tl:j,j
Bj

& =
O1x(j-1) 0

Therefore, while performing the j-th iteration of MINRES, one is equipped
with R;_1 and Tj. In order to assemble RR;, there only remains to apply

the Givens rotations ngﬂ), . ,G§j+1) to the last column of Ty, ie.,
. . j+1 i+1
&[1 )+ 1,]] = Gg-j—’— ) . G§]+ )t1:j+1,j~

But, since 1.2 ; = 0(j_2)x1, this simplifies to

Rj[1:j+1,j] = Gg-jﬂ)Gg»j_Jrll)Gg-j_J;l)tLjJrLj when j >2|.
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Minimal residual (MINRES) method, cont'dg
» We recall that the MINRES iterate is given by x; := z¢ + V;gy, where
R;y = gj[1 : jl,

so that, for j =1,...,m, we have z; = z¢ + Pj&[l : 7], in which

P =[p1,...,pj] = VjRj_l. But since R; has a bandwidth of 3, we get
=1/, pa = (v2 - 71 Dp1) /s
p; = (UJ_T()lpJ 1_T 21”] )/T for j=3,4,...,m

so that the columns of P; are an accessible by-product of the MINRES

iteration. Finally, since g;[1:j —1] = gj—1[1: j — 1], we have

=x0+ Pj_1gj-1[1: j — 1] + g;[j]p;

so that | z; = x;—1 + g;[j]p;
43 /102




Minimal residual (MINRES) method, cont'd;

» In practice, the Ry,..., Ry and g1, ..., gm can be computed in-place,
stored in pre-allocated T, and g,. This y|e|ds the following algorithm
Algorithm 6 MINRES: (zg,m,¢) — x;
1: // Allocate T € R(™HDxm g ¢ Rm+1

2: 19 :=b— Axo; B := ||roll2; v1 :=10/B; g := [,B,O,...,O]T
3: forj=1,2... do

4: /] Perform Lanczos iteration

5.  wj = Av; — fj—1vj—1 where By := 0 and vp :=0
6: oy = (wj,v5); wy = w; — a;vy; By = [lwjll2
7/ Apply(Y H) to t1:j41,5-

8 ifj>2 then

9: [tj—m] — [C 8} [tj—2,j] where {S =12/ (] a0+ 152)"?

ti—1,j —s c] [tj-14 C:i= tj—2,j—2/(t?_27j_2 + t?_l,j_2)1/2
10:  // Apply (’UJr to t1:j41,5-
11:  ifj>1 then

ti—15| | ¢ S| |ti-1,4 h §i=1jj- 1/( j-1-171 tg G- 1)1/2
= 7| where 12
tjj —-s ¢ tjj c _tJ 1,5— 1/( j—1,j—1 +t33 1)
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Minimal residual (MINRES) method, cont'dg

» In practice, the Ry,..., Ry and g1, ..., gm can be computed in-place,
stored in pre-allocated T, and g,,. This yields the following algorithm

Algorithm 6 cont’d MINRES: (2o, m,€) — z;
12:  // Apply G_,E-Hl) tog[l:j+1] and t1;41,5
Lg[j] } _ {c S] {g[jl} bere 4 8= titna /() +1540,)"
; = where 5 ) 172
gli +1] s ¢/[0 ci=t5/(t5; + ti41,5)
14: tjj = ctjj + stjt1,5; tj+1,5 :=0
15:  pj = (v; — Tﬁ)lpj_l — T;i)ij_z)/T;I) where pg :=0and p_1 :=0
16: = xj-1 +gljlp;
17: if |g[j + 1]| < £[|b]|2 then Stop > Stop if ||rjll2 < €||bl|2
18: Vj+1 = ’LUj//Bj

1

w
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SYMMLQ method

» The SYMMLQ method (Paige and Saunders, 1975) is an orthogonal
projection in a Krylov subspace ., (A, rg) where A is symmetric,
possibly indefinite. Thus, equivalently to the CG method, it sums up to

Find z,,, € ¢ + Ky (A, ro) such that b — Az, L K, (A, 1) ‘

Assuming that the columns of V,,, := [v1,...,vy] form a basis of the
Krylov subspace ., (A, 19), the SYMMLQ iterate is given by

T = Xg + Van_lan{ro

where T}, := V.I' AV, is the tridiagonal matrix of a Lanczos procedure.
The main difference with CG stems from the assumed factorization of T;,,.
While CG assumes that 7T,,, admits an LU factorization without pivoting
(not guaranteed to exist for an indefinite A), the SYMMLQ method relies
on a LQ decomposition of T},, (guaranteed to exist for all non-singular A).
That is, we search for the lower-triangular L,, € R™*™ and an orthogonal
Qum € R™ ™ such that Tl = Ly Q.

Paige C. C. & Saunders M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12, 617—629.
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SYMMLQ method, cont'd;

» Given an LQ decomposition of the tridiagonal matrix T}, the SYMMLQ
iterate can be recast into

Since Tj is tridiagonal, it is also Hessenberg, and its LQ decomposition can
be constructed through the application of Givens rotations:

~ . . . . T
Lj:Tngj)...GS-J_)l so that Q; = (Gg])...Gy_)l)

Since T} is tridiagonal, ij is banded with a bandwidth of 3.

Let Q41 1= [ @ 05

. Then, we have

G(J+1 TQ G(J+1)
j 01><] 1

G§j)1T N G(])T 0]“]
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SYMMLQ method, cont'ds

G§j+1)TQj+1 _ G§j+1)T

G;j_)lT Ojx1| ng)T 0jx1
01x; 1 O1x; 1

j+1 j+1 j+1
GUINTGUNT | gyt

so that Gg.jH)TQjH = Qj+1. Then, we have
A i+1
T1Ql =T QL GV
_ [ T tl:j,j+1] [Q;‘F ijl] G+
tit11y o O1; 1 |79
J+1,1:5 741 1xj
_[ TQRT  tiin] 4G+
= T GY
titv11QF

where i ;
tj+11:Q) = [O1x(j-1) ﬁj]Gﬁ“l) . ngjll)

_ (7+1)
= [le(j—l) /Bj]Gj—l
= [le(j—Q) —sj-1B; ¢jBjl-
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SYMMLQ method, cont'ds

We can see that the application of GUtY

j to the right of Tj—l—l@j—&—l:
zeroes the only non-zero component over the diagonal in the last
column of Tj11Qj41;

modifies the (5 + 1, j)-entry of Tj+1c~2j+1; .
modifies the (7, j)-entry of (TjHQ]TH)[l 24 1:g] = T]Q]T =1Lj.

Consequently, the components of f/j can be denoted as follows:

¢ 0 ... .. ... 0]
ééQ) €(21)
3 2 1
i ) 6P Y
0
3 2 1
' o g;@))l 4(5))1 0
o ... 0 £ g

where the ~ over L; marks the difference with L; := L;1[1:j,1: j].
That is, only the (4, j)-entry differ between ij and L;.
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SYMMLQ method, cont'ds

» Let us introduce 2(9) € RJ such that

= e,
which differs only in its last entry from 2 which we previously
introduced as the solution of L;20) = Be; ])
That is, we have
2U0) = [z(jl)] and zU) = [Z(J;l)}
Zj 2

where zU~1 is the solution of Lj_lz(j_l) = Begjfl).
Given that L; and ij are both lower-triangular and differ from each other
only in their (4, j)-entry, we have

Zj = E(I)Z]/él)

1
where é; ) = L;[j, 7] and E( ) = L[4, 4]
50102



SYMMLQ method, cont'ds

> It follows from L;z() = Be{’) that

B/gll )
Z9 = (2)21/52 y
z2j = — (43)2] 2—|—€( _1> /E for 1=3,4,....m
Given 15] = VJQf and ]5j+1 = V}‘+1Q}ﬂ+1. we introduce

Pj_1:=Pj1:n,1:j5—1] and P;:= ]5j+1[1 in,1: 7],

and we write P; = [Pj_1 p;] and Pj1 = [P} pj41]. Then, we have

. T QF  0jx1] ~G+1) T (+1)
P11 =VinQj = [V} vj41] 01ij 1 Gj [VQ Uj+1 ]G

so that
P = [Py 01]GY Y = [Pty v ) GYY.
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SYMMLQ method,

Therefore, we have

cont'dg

Pipa[l:n,1: 4] = [Pi_1 (¢;Bj — sjvj41)]

so that P; = [Pj+1 pj]

, where

p1 =1
Pj = ¢jPj — $jVj+1

ﬁj-i—l = Sjﬁj + ¢jvj41 for j=1,2,...,m.

» Consider the iterate given by Z; := xo + sz(j), then we have

Zj = xo + [Pj-1pj]
The new iterate ;41 :

zj = w0 + [P} Pj]

-Z(j_l) (._1) -

L | T a0t Pz A 2ipy = &+ 2pj
L %
= 20 + P; 112U+ can then be recast as follows:

r,0)

. ] =20+ P29 + 2Py 11 = & + Zbin
LZ5+1

so that ;41 can be formed effciently from ;.
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SYMMLQ method, cont'd;

» We recall that, as an orthogonal projection in the Krylov subspace
range(V;), the SYMMLAQ iterate is equivalently given by

xj = x0+ Vjy where Tjy = ,Bel .
But since A, and thus T} are symmetric, we have
~ _5€(j)
(L QJ)TN 56
QF L]y =pey
L]§=pBQje
By comparing the last entries on both sides of fLJng = ﬂQjegj), we have
egj)Tf/]ng :Bey)TQjegj)
~§1)(e§j)~) :ﬂe(.j)T(G(j) GQ )7 g)
—5( V) ; ))T ©)

J
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SYMMLQ method, cont'dg

so that
41)( (J) ) ﬁ8182 Sj—1- (4)

Also, by construction of G(-j+1), it can be shown that sjg(-l) +¢;B; =0.

Then, recalling the Lanczos relation, i.e., AV; = V;T; +BJU]+16(]) the
SYMMLAQ residual rj := b — Ax; is recast as follows

rj=ro— AV;j =ro — (V;T; + ij]He T)g =Bor — ViTj5 — Bj(GE-j)T?J)UjH
where ;7 = ﬂegj), so that
= Bo — pViel!) = B Tg v = =B (e TH)vj
in which we use Eq. (4) to obtain
- (551 . Sj_l/Z§1)> Vjt1 = (Bs1...55/¢j) vjt1.
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SYMMLQ method, cont'dg

Then, as we have

”Tj_lHQ = |,881 e Sj_l/Cj_l‘ and ”TjHQ = |681 N Sj/Cj|
so that

ijlsj

[7jll2 = [rj—1ll2-

J

Thus, the convergence of SYMMLQ can be monitored without forming the
iterate x;, or even solve the tridiagonal system for g, neither forming r;
nor computing its vector norm.
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SYMMLQ method, cont'dqg

» Now we are equipped to put the SYMMLQ algorithm together:
Algorithm 7 SYMMLQ: (z¢, m,€) — z;
L: // Allocate T € R(™HD>*m g ¢ Rm+!

2: 19 :=b— Axo; B := ||roll2; v1 :=10/B; g := [B,0,.. 0T Zo := x0
3: forj=1,2... do

4: /] Perform Lanczos iteration

5: w; = AUJ' - ,8];11)]‘71 where /80 :=0 and v =0
6 aj = (wy,v5); wi = w; — agus; By = [lwslle

7:  if j =1 then 57(1) = qj

8: // Apply C'm to the last row of T}

9: if j > 2 then [6(3) ﬂj_l] =10 Bj1] [C 3] where { ® 77 %72
J —S C C:=cCj-2

10:  // Apply G;.j)l to the last 2 columns of T;Q;

11:  if j > 1 then

12: oY, = (13(”) B2,

13: [Z;Q) Zg.l)} = [,Bj—l aj] {_CS ﬂ where {8 R

C .= Cj_l

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 56 /102



SYMMLQ method, cont'dyy

» Now we are equipped to put the SYMMLQ algorithm together:
Algorithm 7 cont'd SYMMLQ: (zg,m,€) — x;
14:  // Compute z;j_1

15:  if j =2 then z; := g/¢{V

16:  if j =3 then 2 := —é(z)z /K(l)

17:  if j > 3 then z;_; := — (Z( )133 3 —|—€( ) 2 2) /E(l)

7j—1

18: if j=1thenp; := v
19:  if j > 1 then

20: Dj—1 = Cj—1Pj—1 — Sj-1U;

21: Dj = 8j—1Pj—1 + Cj—1v;

22: Q[j] =Zj—2+ 2zj—1pj-1

23: gljl := (cj—28j-1/ci-1)g[j — 1] where co := 1
24: if |g[5]| > €l|b]|2 then

25: Tj—1 = i'J 2+ (Z(Dl/é(l) )p] 1

26: Stop
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More methods for non-symmetric linear
systems

Numerical Linear Algebra for CS and IE



Bi-orthogonalization process
» The bi-orthogonalization process is an extension of the Lanczos
procedure to non-symmetric matrices.
It is sometimes called the two-sided Lanczos procedure.

» This procedure generates a pair of bi-orthogonal bases in the columns of
Vi =[v1,...,v5] € R"7 and W; = [wy,...,w;] € R™ for Krylov
subspaces of A and AT, respectively, i.e., that is, we have

range(V;) = K;(A,ro) and range(W;) = K;(AT, )

such that VjTWj = WjTVj = I; where 7 is an auxiliary vector used to
generate the left Krylov subspace KC;(AT, 7) with (rg, 7o) # 0.
» During the bi-orthogonalization process, instead of forming v;41 by

orthonormalizing Awv; against v; and v;_1, it is done by orthonormalizing
against w; and w;_;.

Simultaneously, w;1 is obtained by orthonormalizing ATw; against v,
and Vj—1-
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Bi-orthogonalization process, cont'd;

» The resulting procedure is given by the following algorithm:

Algorithm 8 Bi-Orthogonalization: (rg, 79, m) — (Vin, Win)
1: // ro and 7y must be such that (r7) # 0
2: B :=||rolle; v1 := ro/B; w1 = Bo/(To,70); o := 0; 70 :=0
3: for j=1,2,...,mdo

Vj+1 = Avj — ﬁj_lvj_l where Vo = 0

Wj41 = Aij —Yj—-1Wj5—-1 where wo = 0

a; = (vj, wjt1)

Uj+1 = Vj+1 = &5Uj

wj+1 = wj+1 — Oéjw]'

V= V(W1 w41)]

10: B = (vj41,wit1)/7

11: Vj41 1= Uj+1/"yj

122wyt = wjt1/P;

© NSO
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Bi-orthogonalization process, cont'd,

» We obtain the following three-term recurrences from the last algorithm:

Vjvi+1 = Avj — ayuj — Bj-1vj-1,
— AT 5 —
ﬁjijrl =A Wy — oWy — Vj—1W5—-1 for ] = 2, oo, M

» We can show that the bases stored in the columns of V;,, and W,,, are
orthonormal.
- For that, we first note that (vi,w1) = (r0/8, 870/ (70, 70)) = 1.
- Then, for j = 1, we have
(vj+1, wjt1) = (Avy — aqvr, ATwy — aqwr)/(Bim)
= ((Avl, ATw1) - 041(1117ATU11)) /(B171)
— (a1 (Avi,wr) — af(vi,wr)) /(Bin)
= ((Avl, ATwy) — a? — a1 (Avy, wp) + a%) /(B171)

T
= (Avy, A" w1 — aqwy)/(Bim)
where ﬁl = (A’Ul — (11, ATw1 — alwl)/vl = (Avl,ATwl — alwl)/*yl
so that (vj41, wj+1) = 1.
0, 10



Bi-orthogonalization process, cont'ds
- For j =2,...,m, we have
(vj+1, wi41) = (VjV+1, Bjwjs1)/ (1iB5)
= (Av; — ajvj — Bj1vj1, AT w; — ajw; —yj-1wj1)/(v;8;)
where ,Bj = (Avj — QU5 — 5j711}j71, Aij — QW — ’}/jflefl)/’)/j SO
that (”U1,’w1) =...= (vm+1,wm+1) =1.
» There remains to show (v;,w;) = 0 if i # j. Let us proceed by induction
and show that, for an integer j with 2 < j < m + 1, we have
(vi,wj) = (vj,w;) =0 for i=1,...,j—1 (5)

- For j =2, we have

(vi,w2) = (v, ATwy — aywy)/B1 = ((v1, ATwr) — a1 (vi,w1)) /Ba
=(1—a1)/B1=0
and
(v2,w1) = (Avi — aqur, wi) /11 = ((Avr, wi) — (v, wi)) /7

T
= ((v1,A"w1) — 1) /1= (a1 — 1) /7 = 0.
—



Bi-orthogonalization process, cont'dy
- Suppose that Eq: (5) holds for j, then we need to show that
(vi,wjg1) = (Wjp1,w;) =0 for i=1,...,j
First, we have
a; = (v, ATw; — yj_1wi—1) = (vj, ATw;) — vj-1(vj, wj—1) = (v, ATw;).
We also have
(v, wjs1) = (v, ATw; — ajw; —vj-1wj-1)/B;
= ((vj, ATwj) — aj(vj, wy)) /B
= (aj —a;)/B; = 0.

as well as

(0j-1, wj41) = (vj-1, ATwj — Qgwj — vj-1wj-1)/B;
((vj—1, ATw)) = 5j-1(vj-1,w5-1)) /B;
(Avj—1,w;) —vj-1) /By
((vj—1vj + jm1vj—1 + Bj—2vj—2, w;) — Vj-1) /B;
(Vj—1 —v-1)/B; = 0.
CRfLE



Bi-orthogonalization process, cont'ds

-and, fori=1,...,5 — 2, we get

(Vi wjt1) =

- We have shown that (v;,wj;1) =0fori=1,...,7.

Similarly, we can show that (vj11,w;) =0 fori=1,...,7, after what the
bi-orthonormality of the bases is proven.

» In the case of the dot product, the stated orthonormality implies

VIW,, =wWiv,, =I,|.
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Bi-orthogonalization process, cont'dg

» The three-term recurrence formulae can be cast into matrix form as

follows:

AV = m+1T_m

=VinTon + YmUmi1€l”

T

AT Wy = Wi 1 T,

= Wanj; + 6mwm+1€%ﬂ)T

where the tridiagonal matrices T, € R("+*1>™ and 71 ¢ RmM+1xm are

given by

&3
I

ar P

il

Tm—1

5m—1

Qmy
Tm

ar M
s
and T = -
m —
/Bm—l (6749
Bm

with Ty, == T [1 2 m, 12 m] = Tp[1 2 m, 12 m).
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Bi-orthogonalization process, cont'd;

» Combining the matrix form of the first three-term recurrence formula with
the statement of bi-orthonormality, we obtain:

AV, =V, T, + ’ymvmﬂef?T)T
Wg,:AVm = Wg,;Vme + ’yng,:vae%n)T
WLAV,, =T,

where, as for a regular Lanczos procedure, T, is tridiagonal, although this
time not symmetric.

» In general, neither {vy,..., vy} nor {wi,...,wy,} are orthogonal by
themselves, i.e., V.I'V,, # I, and WLW,, # I,,..

» The bi-orthogonalization procedure is similar to Arnoldi in that they both
apply to non-symmetric matrices.
The advantage of the bi-orthogonalization method is that relies on short
recurrences, unlike Arnoldi, which requires full orthogonalization against all
previously formed vectors.
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Bi-conjugate gradient (BiCG) method
» The BiCG method (Lanczos, 1952; Fletcher, 1976) is an oblique
projection method in a Krylov subspace K,,,(A, 1), with a left Krylov
constraints subspace L, := K,,(AT, 7o) and iterates given by
Find z,, € 29 + K1, (A, ro) such that b — Az, L ICm(AT,fO).
» From a two-sided Lanczos procedure, we get V,,, W,, € R™*™ such that
range(V;n) = Kin(A,70) and range(W,,) = Kn(AT, 7o)
so that z,, € xg + K, (A, 79) implies that there exists g € R™ such that
Tm = o + Ving. Along with the Petrov-Galerkin condition, this yields
Wb — Az + Vinf})) =0
Wlry—WLAV,G=0
BWLvy — T, =0
so that the bi-orthonormality of the bases implies T}, = Begm).

Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations, Journal of Research of the National
Bureau of Standards, 49, 33-53.

Fletcher, R. (1976). Conjugate gradient methods for indefinite systems, in “Proceeding of the Dundee Conference on
Numerical Analysis 1975", G. A. Watson (Editor), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 506, pp.
73-89.
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Bi-conjugate gradient (BiCG) method, cont'd;

» Analogously to the CG method, we can introduce an LU decomposition
with no pivoting of the tridiagonal T;,, to derive the BiCG iteration.
This leads to the following algorithm:

Algorithm 9 BiCG: (zg,¢) — z;

1 rg:= b— AfEO

2: Pick 7 such that (rg,7) # 0 > E.g., 79 := 10
3: p1:=70; P1:="To

4: for j=1,2... do

aj = (rj-1,7j-1)/(Ap;, ;)

Tji=Tj—1+a;p;

’I’j = 7’]',1 — ajApj

if ||7j]]2 < ¢]|b]|2 then Stop

’I:j = ’I:j_l — OszTﬁj

10 B = (rj,75)/(rj—1,7j-1)

1L pjp1 =715+ Bip;

12: Djt1 :=Tj + ﬁj]aj

©eNT

Clearly, if A is SPD and 7y = rg, then the BICG iterates are the same as

those from CG.
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Bi-conjugate gradient (BiCG) method, cont'd;
» Six vectors need be allocated for a practical implementation:

Algorithm 10 Practical BiCG: (zg,¢) — z;

1. Allocate memory for z,p,p, w,r,7 € R"

2: r:=b— Axg

3: Pick 7 such that (r,7) # 0 >Eg, =7
4: p:=nr; 7 —13

5 forj=1,2... do

6: w:= Ap
7= (ni)/(w,p)
8 B:=1/(r7)

9: =+ ap

10: rI=r—aoaw

11:  if ||r]|2 < £|b]|2 then Stop
122 w:=ATp

13: =7 —aw

14 B:=0-(r7)

15 p:=r+0p

16: p:=7+08p
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Bi-conjugate gradient (BiCG) method, cont'ds
» In addition to Az = b, a dual system
ATz =b
can be solved by BiCG iteration upon setting 7o := b — AT % for some
initial iterate Zg, in which the dual iterate, given by

f]’ = jj_l + Oéjﬁj
is such that
53]' € xg + ]Cj(AT,fo) with ’Fj = 5 - AT.fj 1 IC]'(A,T()).

» Similarly as for CG, we assumed that 7); admits an LU decomposition
without pivoting. However, for a general matrix A, this may not be true.
We have also assumed that Tj is not singular which also is not guaranteed.

» Analogously to what we did for the CG method, one can show that the

residuals and their duals are orthogonal, while the search directions and
their duals are A-orthogonal. That is

(TZ',T‘J') =0 and (Apz-,pj):O fOI’ ’L;éj
) 1



Quasi-minimal residual (QMR) method

» The BiCG method is notoriously unstable (Gutknecht & Strakos, 2000)
and it often displays irregular convergence behaviors, i.e., no monotone
decrease of residual norm, unlike GMRES.

» The QMR method (Freund & Nachtigal, 1991) can be viewed as an
extension of the GMRES method in the sense that it builds iterates as

Find z,, € 2o + K (A, 70)

such that |[|ry]l2 == ||b — Azp|2 = min |b — Az||2
x€xo+Km (A,r0)
with the important difference that the basis of K,,,(A, ) is produced by
bi-orthogonalization.
For a given Vj,,11 such that range(V,,,) = K, (4, ro), similarly as with
GMRES, we have

T i=b— Ay =10 — AVp§ = Bv1 — Vins 1 T8 = Vinr1 (Be — Td).

Gutknecht, M. H. & Strakos, Z. (2000). Accuracy of two three-term and three two-term recurrences for Krylov space
solvers, SIAM Journal on Matrix Analysis and Applications, 22, 213-229.

Freund, R. W. & Nachtigal, N. M. (1991). QMR: A quasi-minimal residual method for non-Hermitian linear systems,
SIAM Journal: Numer. Math. 60, pp. 315-339.
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Quasi-minimal residual (QMR) method, cont'd;

The main difference with a basis produced by Arnoldi is that V;,, 11 is not
orthogonal. Thus, we are left with

rmlla = Vit (e = T 12

Although we have

—+1 -
Irmll2 < | Vingallz - 1186 = Tl

Like in GMRES, we still form the iterate by minimizing Hﬁe(mH —Twyll2,
which here, is referred to as the quasi-residual norm, hence the name of

quasi-minimal residual method.

» Because of the tridiagonal structure of 7},,, minimizing the quasi-residual
norm is a bit simpler than minimizing the residual norm in GMRES.

In particular, updating the QR factorization of the tridiagonal requires only
up to three applications of Givens rotations.
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Quasi-minimal residual (QMR) method, cont'd

» The least-squares problem min, cp; Hﬂegﬁl) — Tjy||2 is, once again, solved

by making use of a QR decomposition of T;. We have
R; i+1 +1 i+1) ~(G+1) ~(G+1
and g; := ﬁQjHeng), so that the least-squares problem is recast in a
banded triangular linear system:
R;y = gj[1 : J]
where R; has a bandwidth of three. R; and g; are updated as follows,
with minimal effort, given R;_1 and gj_1:

Rion GYVL:ij1:j+1] '
J

G;'J—)IG;J—)QtlijJ]

R; =

O1xj-1 0

so that updating R; boils down to computing
RilL:j+1.4) = 67 G0 a7
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Quasi-minimal residual (QMR) method, cont'ds

and g; is updated as follows:

il

S
I

95 V-1
€V

with
tit1,j

L5575

S5 1=

in which 7;\9) .= R;.

S e,

gs!
where S =gi-1
Vi
U=
and ¢; := I+l

\/ (t%_l))Q i,

> Finally, given R;y = g;[1 : j], we obtain

A (J+1) T jx1
T' — j+1(/86 Czjjy) - V7+1 |:g__][]+]-]

0. .
} so that ||r]l2 = |&[]+1]|~

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 73 /102



Quasi-minimal residual (QMR) method, cont'd,

» Finally, the QMR iteration is given as follows:
Algorithm 11 QMR: (zg,€) — x;
// Allocate T € R(™ D™ and g € R™H!
ro 1= b — Axo; B := [|roll2; g := 8,0, ... L0175 vy i= 10/
Pick 7o such that (ro,70) # 0 > E.g., 7o : =10
wy == B7o/(ro,70)
forj=1,2... do
Get vj4+1 and t1.541,; from iteration of two-sided Lanczos
// Apply G5 to g .
if 7 > 2 then
-tj72,j- L (¢ 5] -tj72,j- h = tjfl,jf2/(t?—2,j—2 +t?—1,j72)1/2
= where ) ; 1/2
ci=tjoj-2/(tj 2,2 +tj 1, 2)

© oNoaRWwN =

[ti—1.5] —s cf [tj-1,5]

-

10:  // Apply ('Ejﬁl to ti1.

11: if 7 > 1 then

12 [ty _[e  s] [tig] where {S tig—1/ (11 + 60"
' c:=1;

tig 7 L=s el [ty Jovgo1 /(B 2, )P
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Quasi-minimal residual (QMR) method, cont'ds

» Finally, the QMR iteration is given as follows:
Algorithm 11 QMR: (zg,€) — x;
12: // Apply G_,E-Hl) tog[l:j+1] and t1;41,5

Lg[j] } — {C 8] {g[i]} where 48 =t/ (5 + 40,)'

gli +1] —s ¢/ [0 =t/ (t5; + 1)

14: tij i =c-tj; +5-tjr1,5; tjr1,;:=0

5. pj:=(v; — ﬁ)lpj_l - T;i)ij_z)/T;I) where pg :=0and p_; :=0

16:  xj:=x;-1+glilp;

17: if |g[j + 1]| < £[|b]|2 then Stop > Stop if [|r;]l2 < e|b]|2

1

w

The QMR usually exhibits a much smoother convergence behavior than
BiCG.
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Transpose-free methods
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Matrix polynomials
> Let A € R™ "™, and consider the scalar polynomial of degree m given by
Pm :C—C
t = ag + art + ast® + - + amt™.
That is, a,,, # 0. An associated matrix polynomial is then given by
D . Ran N Ran
m
A agl, + a1 A+ CL2A2 + - FanA™.
Theorem (Eigenvalues of matrix polynomials)

Let p: C — C be a scalar polynomial, and 6 € C be an eigenvalue of
A € R™ "™ with an associated eigenvector y € C™. Then, p(0) is an
eigenvalue of p(A), and y is an associated eigenvector, i.e., p(A)y = p(6)y.

Theorem (Cayley-Hamilton theorem)

Let P4(t) := det(A,, — tI,) denote the (scalar) characteristic polynomial of
A € R™*™, then P4(A) = Opxn-

v
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Matrix polynomials, cont'd
» The Cayley-Hamilton theorem guarantees that, for any matrix A € R"*",
there is a polynomial p of degree no greater than n such that p(A) = 0.

A polynomial whose value is zero at the matrix is called the annihilating
polynomial.

» Since p(A) = 0 implies ap(A) = 0 for all & € C, we may always normalize
a polynomial so that its highest-order term is 1. Such polynomials are
called monic polynomials.

Theorem (Minimum polynomial of a matrix)

- For a matrix A € R™"*™, there exists a unique monic polynomial g4 of
minimum degree, no greater than n, that annihilates the matrix A, i.e.,

QA(A> = Onxn-

- The unique monic polynomial g4 of minimum degree that annihilates the
matrix A is called the minimal polynomial of A.

» Similar matrices have the same minimal polynomial.
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Krylov subspaces and matrix polynomials

» All Krylov subspace methods introduced for the solving of linear systems
construct iterates of the form x,, € xg + K,,,(A, o) where, we recall that

K (A, ro) = span{rg, Arg, ..., Amflrg}

so that, for every such iterate x,,, there exists a polynomial p,,,_1 of
degree m — 1 such that

Tm = X0 +pm71(A)TO‘
Moreover, for the residual associated to such iterates, we have
Tm i=b— Az =19 — Apm—1(A)ro

so that there exists a polynomial of degree no greater than m, which we
denote by ¢,,, such that

Tm = @m(A)ro.

We refer to ¢,, as the residual polynomial.
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Conjugate gradient squared (CGS) method

» While both the BiCG and QMR methods offer alternatives to solve
non-symmetric linear systems on the basis of short-recurrence relations,
they do both require to be able to compute  — ATz,

The CGS method (Sonneveld, 1989) was introduced as a means to to
approximate the solution of non-symmetric linear systems, on the basis on
short-recurrence relations, without the need to be able to evaluate = — Ax.

» The CGS method is derived from the perspective of BiCG iterates, that is,
xj € xo+ Kj(A,79) such that rj:=b— Az; L K;(AT, %)

for which we saw that, there exists a residual polynomial ¢; of degree no
greater than j, and such that

’l“j = ng(A)’l“().

Without loss of generality, we assume ¢;(0) = 1.

Sonneveld, P. (1989). CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM Journal on Scientific
and Statistical Computing, 10 , 36-52.
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Conjugate gradient squared (CGS) method, cont'd;

» Furthermore, there exists another polynomial 1; of degree no greater than
J such that the BiCG search direction p;;1 is given by

pj+1 = ¥;(A)ro.

» The BiCG dual vectors 7; and p;1 being updated after the same schemes
as those of the vectors r; and p;1, respectively, except with AT instead
of A, we then have

7:]' = QO(AT)fO and ﬁjJrl = ¢j(AT)fQ for j = 1, 2, s, M.

» The diagonal and super-diagonal components of the tridiagonal, a; and 3;,

respectively, formed by the BiCG iteration, can then be recast as follows:
(e i) (pm1(A)re, i1 (AT)i0) (91 (A)ro, 7o)

YT ) (A (), b1 (AT)io) (AT (A)ro, 7o)’
g = f) _ (@iAroeiADR) _ (£f(A)ro,7o)
(rj-1,7j-1)  (pj—1(A)ro, pj—1(AT)7o) (31 (A)ro,70)
which indicates that it is possible to compute x;41 and 711 without any
evaluation of z — ATz.
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Conjugate gradient squared (CGS) method, cont'd,

» The problem we are left with is to find update formulae for
@?(A)ro and 1/1]2-(A)r0 )
» The update formula for the BiCG residual is recast into

rj =Tj-1— Ap;
@j(A)ro =pj-1(A)ro — a; A1 (A)ro
which, as it holds irrespective of rg, leads to
©;i(A) = pj-1(A) — ajAp;_1(A) where @o(A) = tho(A) =1In.  (6)
Irrespective of the polynomial p, we have Ap(A) = p(A)A, so that
P3(A) = 971 (A) + af A%P7_1(A) — 20, Ap; 1 (A);-1(4).  (7)
» Similarly, from the update formula for the BiCG search direction, we get
Pj+1 =1 + Bip;
¥j(A)ro =¢;j(A)ro + Bivj-1(A)ro
Vi(A) =¢;(A) + Bjj-1(A) (8)

so that we obtain wjz(A) = @?(A) + 5]21/)]2-_1(A) +2B8p;(A)i—1(A). (9)
81/102



Conjugate gradient squared (CGS) method, cont'ds
» The cross-term of Eq. (7) is developed as follows using Eq. (8):

pj—1(A)Yj-1(A4) = pj—1(A)(pj-1(A) + Bj—19j—2(4))
=05 _1(A) + Bj—10j-1(A)Yj—2(A). (10)

Using Egs. (6) and (8), we get the following expression for the cross-term
of Eq. (9):

i (A)j—1(A) = (9j-1(A) — oy Aty (A))bj1 (A)
=pj—1(A)Yj-1(A) — a; AY? | (A)
= i1 (A)(@j1(A) + Bj—1tbj—2(A)) — a;AY?_(A)
=07 1(A) + Bi 11 (AN -a(A) — a; A7, (A) (11)

where fy := 0.
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Conjugate gradient squared (CGS) method, cont'dy

» We are now equipped to develop the update formulae of go?(A) and wjz(A):
- First, using Eq. (6), ¢o(A) = ¥o(A) = I,, and Eq. (8), we obtain:

@A) = (po(A) — a1 Ayg(A))? = (I, — an A)?
e1(A)o(A) = p1(A) = po(A) — a1 AYo(A) = I,, — A .
YP(A) = (e1(A) + Brpo(A))? = (p1(A) + p1l,)?

- Then using Egs. (7) with Eq. (10), Eq. (11), and Eq. (9), respectively,
for j =2,3,...,m, we get:

P3(A) = @21 (A) + 02422 (A)

20,4 (921 (A) + Bj-15-1 (A -2(A))
pi(A)Yi—1(A) = o7 1 (A) + 53’—1%'—1(14) —a(A) — aj A7 1 (A)
UH(A) = @3(A) + B2 () + 28505 (A1 (A)
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Conjugate gradient squared (CGS) method, cont'ds
> Let us define
T = gp?(A)ro, DPjt1 1= Q[)?(A)To and §; := pj(A)Yj—1(A)ro.
Using the update formulae from the last slide, we get
Ty = ‘P?fl(A)TO + %2'142%2;1(14)7”0
— 205 A (051 (A) + Bj—10j-1(A)hj—2(A)) o
=71+ A% — 205A (Fj_1 + Bj-1Pj-1)
=71+ ;A (ajAp; — 2751 — 2Bj_1Pj—1) -
As well as, ¢; =¢;(A)Y;—1(A)ro
=05 1 (A)ro + Bij—10j-1(A)hj_a(A)ro — a; AY3 1 (A)rg
=7j-1+ Bj—14j-1 — a; Ap;.
and  piy1 =93 (A)ro + B75 1 (A)ro + 2805 (A)j—1(A)rg
=7; + B7p; + 2B;d;-
—



Conjugate gradient squared (CGS) method, cont'dg
» Still using the update formulae for 3(A) and 9%(A), we get:

(803—1(14)7“0”:0) (75-1,70)

T (A2 (A)ro, 7o) (Apj.7o)

as well as

(©3(A)ro, 7o) (7,70)

b= (¥5_1(Aro, 7o) (Pj-1,70)

» For the sake of brevity, let u; := #; + 8;¢;, so that we have:

4; = uj—1 — ajApy,

P =71+ OéjA(OtjAﬁj — 2uj_1)
= Fj1+ ajA(uj1 — g — 2uj-1)
= Fj1 — o A(G + uj1),

(Dj+1 = uj + B3D; + Bjd;-
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Conjugate gradient squared (CGS) method, cont'd;

» If the BiCG method converges, then ||7|l2 = ||¢;(A)ro||2 tends to zero.
Then, one might expect that ||7;||2 = HQO?(A)TOHQ tends faster to zero.
Hence, in an attempt to accelerate convergence, the CGS iterate x; is
defined so as to yield

b— A.%'j = fj.
Given our update formula for ;, we get:

b— Azj=7j1 — A(Gj +uj-1)
Axj =b— 711 + ojA(¢; + uj—1)
Azj =b— (b— Azx;_1) + ojA(¢; + uj—1)
Axj =Axj_1 + a;A(Gj + uj—1)

so that

rj = zj-1 + (g +uj-1) |-
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Conjugate gradient squared (CGS) method, cont'dg

» Eventually, we obtain the following algorithm:

Algorithm 12 CGS: (zg,€) — z;

1: rg:=b— Axg

2: Pick 7o such that (rq,7) #0 > E.g.,

3: P1 1= 10; o 1= T0; Uy :=To

4: for j=1,2... do

aj = (7"] 177“0)/(14@,7’0)

qj = uj—1 — a; Ap;

xj = xj-1 + (G + uj-1)
’Fj = fj_l — OéjA(Q}' + Uj_1)
if ||7j]]2 < €|b]|2 then Stop
100 Bj = (F,70)/(Fj-1,T0)
11wy =75 + B4

120 pi1 = uy + 5Dy + Bid;

© NG

- A CGS iteration entails two matrix-vector products, which is similar to
BiCG, the difference being that CGS does not need to evaluate z — ATz,

- When it converges, CGS often does so about twice as fast as BiCG.
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Conjugate gradient squared (CGS) method, cont'dg

- However, as the residual polynomial is squared, i.e., 7; = gojz(A)ro where
r; = @;(A)ro, if the residual 7; increases in BiCG, then it does so even
more significantly in CGS.
As a result, CGS convergence curves can exhibit important oscillations,
sometimes leading to numerical instability.
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Bi-conjugate gradient stabilized (BiCGSTAB) method

» The CGS method, which is based on squaring the BiCG residual
polynomial, i.e., 7j := gp?(A)ro, is prone to substantial build-up of
rounding error, possibly even overflow.

» The BiCGSTAB method (van der Vorst, 1992) is a variant of CGS
developed to remedy unwanted oscillations, hence the name of BiCG
stabilized.

BiCGSTAB iterates are defined so as to yield a residual of the form

rj = ¢j(A)p;(A)ro

where ¢ is, still, the residual polynomial of the BiCG method, and ¢; is a
new j-th degree polynomial introduced to remedy those potentially
spurious oscillations, and defined as follows:

b0(A) = I, and 6;(A) = (I, — w;A)g;1(A) for j=1,2,...

where w; is chosen so as to minimize the residual norm.

van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd;

Then, the search direction is defined as

piv1 = ¢j(A)Yj(A)rg for j=1,2,...

where the polynomial 1; is the search direction polynomial of CGS.
We thus have the following update formulae:

0i(A) = 0j-1(A) — ajAh;_1(A)
¥;i(A) = ¢;(A) + Bjtj-1(A) forj=1,2,... (12)
¢j(A) = (In —w;A)pj-1(A)

where ©g(A) = ¥o(A) = ¢o(A) = In.

» We can then develop the following update formula for the polynomial of
the BiCGSTAB residual:

9j(A)pi(A) = (In —wjA)9j-1(A) (pj-1(A4) — ;A1 (A))
Pji—1

= (I — wjA) (¢j-1(A)pj—1(A) — ajAg;—1(A)Yj-1(A)).
(13)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd;

» From rj = ¢;(A)p;(A)ro, Eq. (13) and pj11 = ¢;(A)Y;(A)ro, we get the
following residual update formula:

(In —wjA) (¢j—1(A)pj—1(A) — ajAdj—1(A)j—1(A)) ro

(In — w;A) (pj—1(A)pj—1(A)ro — a; Agj—1(A)hj—1(A)ro)
=l —wjA) (rj—1 — a; Apj) .

Ty

» From pj1 = ¢;(A)Yj(A)ro, 1 = ¢;(A)p;(A)rg and Eq. (12), we get the
following expression for the update of the search direction:

pi+1 = 3;(A) (i (A) + Bjbi-1(A)) 1o
=¢;(A)pj(A)ro + Bid;(A)j—1(A)ro
=7+ Bi(In — wjA)pj-1(A)j-1(A)ro
=71j + Bj(In —wjA)p;.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'ds

» Similarly as for BiCG and CGS, we have
o, = @im1(A)ro, 951 (AD)R) 8 = (ps(A)ro, i (A7)

T (A1 (A)ro, i1 (AT)io) T (i1 (A)ro, 01 (AT)F)

However, unlike with CGS, we do not intend to compute the squared
polynomials %(A) and ¢%(A). We proceed as follows.

- First, from the update formulae for ¢; and v; in Eq. (12), we have

(A7) = —a; AT 1 (AT) + 91 (AT) — ;B 1 AT 2 (AT),
which implies that the highest-order term of ¢;(AT) is the same as that of
—a;ATp;_1(AT). Thus, proceeding by induction, we find that this term is
(—1Yajaj1--ar(AT).

- Let us then restate the orthogonality of BiCG residuals with their duals as
follows:

(QDZ'(A)’I’(), ng(AT)fQ) =0 for ¢ 7é j
As this holds for all j # 4, this implies (;(A)ro, (AT)77o) = 0 for i # j.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'dy

As a result, the only term of ¢;(AT) which contributes to the non-zero
part of (¢;j(A)ro, p;(AT)7o) is the highest-order one. Thus, we have:

(15 (Ao, i (AT)70) = (=1Y ajaj1 - a1 (@;(A)ro, (AT)70) . (14)
- Secondly, from the update formula of ¢; in Eq. (12), we have:
(A7) = (In — wjA)9j-1(AT) = —w; AT §;_1(AT) + ¢;-1(AT),

which indicates that the highest-order term of ¢;(A”) is the same as that
of —w;AT¢;_1(AT). Thus, by induction again, we get that this term is

(— 1 wjwj1 - wi (A7)

- As we have previously stated that (p;(A)ro, (A7)77) = 0 for all i # j, we
have that the only term of ¢;(AT) which contributes to the non-zero part
of (¢;(A)ro, ¢;(AT)7o) is the highest-order one. Therefore, we have:

(0i(Aro, ¢ (AT)Fo) = (=1 wjw;1---wi (p(A)ro, (A7) ) . (15)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'ds
- Now, by combining Egs. (14) and (15), we obtain

Q01

L (pj(A)ro, 6;(AT)R0) . (16)

(A)ro, 0 (A7) =
(SOJ( )O 90.7( )0) ijj—l"'wl

Consequently, using Eq. (16), the formula for the /3; can be recast as
follows:

5 — (0 (A)ro, 0 (AT)Fo)

! (‘Pj I(A)TONPJ 1<AT)TO)
_% (‘PJ )0, ; (AT)TO)

wj  (pj—1(A)ro, ¢j—1(AT)70o)

Q- (¢ (A)p;(A)ro, 7o)

wj  (¢j—1(A)pj—1(A)ro, o)

qj (Tj>T0)

wj  (rj-1,70)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'dg
- In order to find an adequate formula for «;, we now work on simplifying
(A1 (A)ro, vj—1(AT)) .
From the update formula of 1; given in Eq. (12), we get:
¥ (AT) = i(AT) + Bjipj -1 (AT),

which indicates that the highest-order term of 1;(AT) is the same as that
of p;(AT). We recall this term is

(1Y ajaj-1-ar(AT).

- We then restate the A-orthogonality of BiCG search directions with their
duals as follows:

(Agi(A)ro, (A7) = 0 for i # j.

As this holds for all j # 4, this implies (Aw;(A)ro, (AT)77) =0 for i # j.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'd;
Therefore, the only term of 1;(AT) which contributes to the non-zero part
of (Ayj(A)rg,v;(AT)7o) is the highest order. Thus, we have:

(A (A)ro, ¥5(AT)7o) = (=Dajojr - on (A (A)ro, (AT) 7o) . (17)

- Analogously, we can show that

(Ag;(A)ro, ¢ (AT)io) = (—Dwjwj1 -+ w1 (Av(A)ro, ¢;(AT)io) -

- Then, upon combining Egs. (17) and (18), we obtain: (18)

- el .
(A (A)ro, v(AT)io) = oy (A Ao, 6;(AT)70) . (19)
- Finally, an update formula for «; is obtained as follows by combining
Egs. (14), (15) and (19):

o, — (@51 (A)ro, 951 (AT)7o)
T (A1 (A)ro, i1 (AT) 7o)
_ (9-1(A)ro, ¢j-1(AT)7o)
(Athj—1(A)ro, ¢j—1(AT)Fo)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'dg

so that (9 (A1 (Ao, Fo)  (rj_1,70)

YT (b (A1 (Ao, 7o) (Apy—1,70)
» In summary, we have obtained the following updating formula:
{Tj = (In —wjA)(rj—1 — ajAp;) where a; = (rj-1,70)/(Apj, o)
pj+1 =1j+ Bj(In —w;jA)p; where B = a;(rj,70)/ (w;(rj-1,70))
for j =1,2... where p; := 7.
» Using the update formulae found for r; and p;j;1, we can find the update
formula of the BICGSTAB iterate as follows:
b—Ax; =r;
b— Axj; = (I, — wjA)(rj—1 — ojApj)
b—Axj =rj 1 — ajAp; — wjA(rj_1 — ajAp;)
Axj =b—rj_1 + ojApj + wjA(rj—1 — ojApj)
Axj =b— (b— Azxj_1) + ajAp; + wjA(rj—1 — a;Apj)
so that | z; = xj_1 + a;p; + w;(rj—1 — jAp;) |
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'dg

» All what remains to do is to define w;. As previously mentioned, our goal
is to pick w; so as to minimize the residual norm ||7;||2, that is

wj = argmin [|(In — wA)(rj-1 — a; Ap;)]l2.
weR
For this, let g; := 7;_1 — a;jApj, so that we aim at finding
in||(I, — wA)q;
min [|(I, — wA)gjll2

which yields

o — 4 40)
7 (Agj, Agj)

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 98 /102



Bi-conjugate gradient stabilized (BiCGSTAB) method, cont'dsg
» Eventually, BICGSTAB iterations are given as follows:

Algorithm 13 BiCGSTAB: (zg,¢) — z;
1: ro = b— Amo

2: Pick 7y such that (rg,79) # 0 > E.g., 79 =10
3. p1i=To

4: for j=1,2... do

Q= (T] 1,T0)/(Apj,7:0)

qj =151 — o Ap;
wj = (g5, Ag;)/(Ag;, Agj)
Tji=Tj-1+ apj + w;g;

rji=q; — wjAg;
10:  if ||7]|2 < €[|b]|2 then Stop
11: - By = (o /wj) - (15, 70)/(rj—1,T0)
12: Pj+1 =T + 5j(pj — ijpj)

© o9
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Summary
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Flowchart of Krylov subspace-based linear iterative solvers

» The following flowchart can be used for practical solver selection:

‘ Is the matrix symmetric? ‘

Yes

Is the matrix SPD? ‘

Yes

No

No

Is the number of
iterations small?

Yei/

&,

CG

MINRES,
SYMMLQ

GMRES

Can we
compute
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Yes

x—A™x ?

nd

QMR

Bi-CGSTAB,
CGS
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Things we did not talk about

Breakdowns.

Convergence theories.

Effects of finite precision.
Preconditioning (Lecture 14).
Restarting strategies (Lecture 15).

Block variants for multiple simultaneously available right-hand sides.

vVvyVvYyVvyYVvyVyvyy

Communication-avoiding variants.
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