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Projection methods for linear systems
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General framework of projection methods for linear systems
▶ Let Km be a proper m-dimensional subspace of Rn, i.e., Km ⊂ Rn,

typically with m≪ n.
We then seek for a x̃ ∈ Km which approximates the solution x of Ax = b.
A typical way to form the approximation x̃ ∈ Km is to impose m
independent orthogonality conditions on the residual r := b−Ax̃
with respect to a m-dimensional constraint subspace Lm ⊂ Rn:

r = b−Ax̃ ⊥ Lm . (1)

If Km = Lm, then Eq. (1) is referred to as the Galerkin condition, and x̃
is formed by orthogonal projection.
More generally, we have Lm ̸= Km, in which case Eq. (1) is referred to as
the Petrov-Galerkin condition. Then, the process of forming x̃ is an
oblique projection.
A projection technique onto the approximation/search space Km along the
constraint subspace Lm is summarized as:

Find x̃ ∈ Km such that b−Ax̃ ⊥ Lm .
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General framework of projection methods for linear systems,
cont’d
▶ The projection techniques presented in this lecture are iterative.

That is, as a pair (Km,Lm) ⊂ Rn × Rn of m-dimensional search and
constraint subspaces is used to form an approximate solution x̃ of Ax = b,
the next iteration consists of expanding those subspaces, leading to
a pair (Km+1,Lm+1) which is then used to form a subsequent
approximate solution.
A projection technique is deployed with an initial iterate x0 ∈ Rn.
Subsequent iterates are then formed leveraging x0 by searching in the
affine subspace x0+Km. The projection technique is then summarized as

Find x̃ ∈ x0 +Km such that b−Ax̃ ⊥ Lm .

If we write x̃ := x0 + x̂ with x̂ ∈ Km, then the projection technique is
reformulated as

Find x̂ ∈ Km such that r0 −Ax̂ ⊥ Lm

where r0 := b−Ax0.
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Matrix form of projection techniques for linear systems
▶ Let the columns of Vm := [v1, . . . , vm] and Wm := [w1, . . . , wm] form

bases of the search and constraints spaces, respectively, i.e.,

range(Vm) = Km and range(Wm) = Lm.

Once equipped with such bases, one can recast the projection defined as
finding x̃ ∈ x0 +Km such that b−Ax̃ ⊥ Lm into

Find ỹ ∈ Rm such that x̃ := x0 + Vmỹ and b−Ax̃ ⊥ range(Wm).

Taking the dot product as inner product, this leads up to the following
matrix form:

Find ỹ ∈ Rm such that x̃ := x0 + Vmỹ and W T
m(r0 −AVmỹ) = 0.

If W T
mAVm is not singular, we then have

ỹ = (W T
mAVm)−1W T

mr0

so that
x̃ = x0 + Vm(W T

mAVm)−1W T
mr0 .
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Matrix form of projection techniques for linear systems,
cont’d1

▶ A proper projection technique to approximate the solution of a linear
system in x0 + range(Vm) along range(Wm) requires that W T

mAVm is not
singular.
It can be shown that W T

mAVm is not singular if and only if no vector of
the subspace AK is orthogonal to the constraints subspace Lm, i.e.,
AKm ∩ L⊥

m = {0}.
Saad (2003) states the following theorem:

Theorem (Non-singularity of W T
mAVm)

If A, Km and Lm satisfy either of the two following conditions:
- A is symmetric positive definite and Lm = Km, or
- A is non-singular and Lm = AKm.
Then the W T

mAVm matrix is non-singular for any full-rank Vm and Wm.

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 4 / 102



Matrix form of projection techniques for linear systems,
cont’d2
▶ In practical implementations of projection techniques to build approximate

solutions to linear systems, we need to consider:
- How to choose the search and constraints subspaces Km and Lm at a

given iteration m.
- If an approximation is not good enough, how to expand those subspaces

to Km+1 and Lm+1.
Of particular interest for the definition of projection techniques are the
so-called Krylov subspaces:

Km(A, r0) := span{r0, Ar0, . . . , Am−1r0} ⊆ Fn

which form a nested sequence:

K1(A, r0) ⊆ K2(A, r0) ⊆ · · · ⊆ Km(A, r0) ⊆ . . . .

A Krylov subspace method is a projection technique based on the
subspace Km(A, r0). Different choices of a constraints subspace lead to
different kinds of Krylov subspace methods.
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Matrix form of projection techniques for linear systems,
cont’d3

▶ The choice of the constraint subspace Lm is often made so that the
approximation in Km possesses some optimality properties, such as
minimizing the residual norm or the norm of the forward error.
Some widely used Krylov subspace methods are proposed based on the
choices

Lm = Km(A, r0), Lm = AKm(A, r0) and Lm = Km(AT , r0).
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Methods for general linear systems
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Full orthogonalization method (FOM)
▶ The full orthogonalization method (FOM), proposed by Saad (1981), is an

orthogonal projection in a Krylov subspace Km(A, r0), with
constraints subspace Lm = Km, i.e., it reads

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ Km(A, r0) .

Assuming that the columns of Vm := [v1, . . . , vm] form a basis of the
Krylov subspace Km(A, r0), the iterate formed by FOM is then given by

xm := x0 + Vm(V T
mAVm)−1V T

m r0.

We saw in lecture 11 that, if the columns of Vm form an othonormal basis
of Km(A, r0) as obtained by Arnoldi, we then have

V T
mAVm = Hm

where Hm is an upper-Hessenberg matrix.
Moreover, we have v1 := r0/β, where β := ∥r0∥2, so that

V T
m r0 = [v1, . . . , vm]T v1β = βe

(m)
1 where e

(m)
1 := Im[:, 1].

Saad, Y. (1981). Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of computation,
37(155), 105-126.
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Full orthogonalization method (FOM), cont’d1
Consequently, we have

xm := x0 + Vmỹ where Hmỹ = βe
(m)
1 .

In most cases, the dimension m of the Krylov subspace Km(A, r0) is much
smaller n, so that one can solve for ỹ such that Hmỹ = βe

(m)
1 using a

direct method or, since Hm is Hessenberg, possibly also using a QR
factorization.

▶ Let xm ∈ x0 +Km(A, r0) be an iterate formed by FOM. Then, we have

rm := b−Axm

= b−A(x0 + Vmỹ) where Hmỹ = βe
(m)
1

= r0 −AVmỹ

where we recall the Arnoldi relation AVm = VmHm + hm+1,mvm+1e
(m)
m

T ,
so that

rm = r0 − VmHmy − hm+1,m(e(m)
m

T ỹ)vm+1

= r0 − βv1 − hm+1,m(e(m)
m

T ỹ)vm+1.
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Full orthogonalization method (FOM), cont’d2

But, remember that we have r0 = βv1, so that we obtain

rm = −hm+1,m(e(m)
m

T ỹ)vm+1 .

One can then promptly evaluate the residual norm ∥rm∥2, without having
to form the iterate xm, nor to evaluate an additional matrix-vector
product. Indeed, we have

∥rm∥2 = |hm+1,m||e(m)
m

T ỹ| .

▶ In practice, FOM is seldom used for the purpose of solving linear systems.
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Full orthogonalization method (FOM), cont’d3
▶ Implementations of the FOM method are defined by specifying a procedure

to construct an orthonormal basis of the Krylov subspace Km(A, r0).
This can be done using any variant of the Arnoldi algorithm, e.g.,

Algorithm 1 MGS-based FOM: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: β := ∥r0∥2
3: v1 := r0/β
4: for j = 1, 2 . . . do
5: w := Avj
6: for i = 1, . . . , j do
7: hij := wT vi
8: w := w − hijvi
9: hj+1,j := ∥w∥2

10: Solve for ỹ such that Hj ỹ = βe
(j)
1

11: if hj+1,j |e(j)j
T ỹ| < ε∥b∥2 then

12: Stop ▷ Stop if ∥rj∥2 < ε∥b∥2
13: vj+1 := w/hj+1,j

14: xj := x0 + Vj ỹ
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Generalized minimal residual (GMRES) method
▶ The generalized minimal residual (GMRES) method, proposed by Saad and

Schultz (1986), is an oblique projection in a Krylov subspace Km, with
constraints subspace Lm = AKm, i.e., it reads

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ AKm(A, r0) . (2)

Assuming that the columns of Vm := [v1, . . . , vm] form a basis of the
Krylov subspace Km(A, r0), the GMRES iterate is given by

xm := x0 + Vm((AVm)TAVm)−1(AVm)T r0.

However, it is more common and practical to derive the GMRES iterate
based on its optimality property:

Theorem (Optimality of GMRES iterates)
The iterate xm is the solution of Pb. 2 if and only it minimizes the residual
norm ∥b−Ax∥2 over the affine subspace x0 +Km(A, r0), i.e., if and only if

∥b−Axm∥2 = min
x∈x0+Km(A,r0)

∥b−Ax∥2.

Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.
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Generalized minimal residual (GMRES) method, cont’d1

▶ Consequently, the GMRES iterate xm ∈ x0 +Km(A, r0) is given by
xm := x0 + Vmỹ , where

ỹ := arg min
y∈Rm

∥b−A(x0 + Vmy)∥2

= arg min
y∈Rm

∥r0 −AVmy∥2

in which, we recall that r0 = βv1, where β := ∥r0∥2, and, as the Arnoldi
relation reads AVm = Vm+1Hm in which Hm := V T

m+1AVm, we obtain:

ỹ = arg min
y∈Rm

∥βv1 − Vm+1Hmy∥2

= arg min
y∈Rm

∥Vm+1(βe
(m+1)
1 −Hmy)∥2

= arg min
y∈Rm

∥βe(m+1)
1 −Hmy∥2 where e(m+1)

1 := Im+1[:, 1].
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Generalized minimal residual (GMRES) method, cont’d2

▶ The least-squares problem miny∈Rm ∥βe(m+1)
1 −Hmy∥2 is solved using the

QR decomposition of the Hessenberg matrix, which can be done efficiently
provided that the dimension m of the approximation and constraints
subspaces is not too large.
Let Qm+1 ∈ R(m+1)×(m+1) be the orthogonal matrix s.t.
Hm = QT

m+1Rm, where Rm ∈ R(m+1)×m is an upper-triangular matrix.
Then, the least-squares problem is recast into

min
y∈Rm

∥βe(m+1)
1 −Hmy∥2 = min

y∈Rm
∥βe(m+1)

1 −QT
m+1Rmy∥2

= min
y∈Rm

∥βQm+1e
(m+1)
1 −Rmy∥2

= min
y∈Rm

∥∥∥∥βq1 − [ Rm

01×m

]
y

∥∥∥∥
2

where q1 := Qm+1e
(m+1)
1 = Qm+1[1 : m+1, 1] and Rm = Rm[1 :m, 1:m].
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Generalized minimal residual (GMRES) method, cont’d3
So that the least-squares problem is solved by solving the following
triangular system:

Rmỹ = βq1[1 : m] .

▶ Then, the residual rm := b−Axm is s.t. rm = Vm+1(βe
(m+1)
1 −Hmỹ) and

∥rm∥2 = ∥βe(m+1)
1 −Hmỹ∥2

=

∥∥∥∥βq1 − [ Rm

01×m

]
ỹ

∥∥∥∥
2

=

∥∥∥∥βq1 − [βq1[1 : m]
0

]∥∥∥∥
2

=

∥∥∥∥[ 0m×1

βq1[m+ 1]

]∥∥∥∥
2

so that ∥rm∥2 = β|q1[m+ 1]| .

Thus, one needs not to assemble the iterate xm, nor to perform an
additional matrix-vector product in order to monitor convergence.
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Generalized minimal residual (GMRES) method, cont’d4
▶ Just like with FOM, the workhorse of GMRES is the orthogonalization of

Krylov basis vectors. In particular, this is most frequently implemented on
the basis of the MGS procedure:

Algorithm 2 MGS-based GMRES: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: β := ∥r0∥2
3: v1 := r0/β
4: for j = 1, 2 . . . do
5: w := Avj
6: for i = 1, . . . , j do
7: hij := wT vi
8: w := w − hijvi
9: hj+1,j := ∥w∥2

10: Solve for ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥

11: if ∥βe(j+1)
1 −Hj ỹ∥ < ε∥b∥2 then

12: Stop ▷ Stop if ∥rj∥2 < ε∥b∥2
13: vj+1 := w/hj+1,j

14: xj := x0 + Vj ỹ

Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
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Generalized minimal residual (GMRES) method, cont’d5

▶ Remember that the least-squares problem miny∈Rm ∥βe(m+1)
1 −Hmy∥2 is

recast into the linear system Rmỹ = βq1[1 :m] where Rm := Rm[1 :m, 1:m],
in which the QR decomposition QT

m+1Rm = Hm is needed.
Suppose that we have obtained the QR decomposition of the matrix Hj−1,
and we are interested in getting the decomposition of Hj with the least
amount of work possible. Clearly, we have

Hj =

[
Hj−1 h1:j,j
01×j−1 hj+1,j

]
.

We saw in Lecture 07 that Givens rotations can be used to turn an upper
Hessenberg matrix into triangular form. In particular, for Hj−1, we have

Rj−1 =

[
Rj−1

01×(j−1)

]
= G

(j)
j−1G

(j)
j−2 . . . G

(j)
1 Hj−1 = QjHj−1
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Generalized minimal residual (GMRES) method, cont’d6
where the Givens rotation matrices G(j)

1 , . . . , G
(j)
j−1 ∈ Rj×j are given by

G
(j)
i =



1
. . .

1
ci si
−si ci

1
. . .

1


i-th row

(i+ 1)-th row

in which the scalars si and ci are set so as to zero the (i+ 1, i)-entry of
the Hessenberg matrix G(j)

i is applied to.
Clearly, we have

G
(j+1)
i =

[
G

(j)
i 0j×1

01×j 1

]
for i = 1, . . . , j − 1.
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Generalized minimal residual (GMRES) method, cont’d7
so that

Rj =G
(j+1)
j . . . G

(j+1)
1 Hj

=G
(j+1)
j

[
G

(j)
j−1 . . . G

(j)
1 Hj−1 G

(j)
j−1 . . . G

(j)
1 h1:j,j

01×(j−1) hj+1,j

]

=G
(j+1)
j

[
Rj−1 G

(j)
j−1 . . . G

(j)
1 h1:j,j

01×(j−1) hj+1,j

]

=

 Rj−1 G
(j+1)
j [1 : j, 1 : j + 1]

[
G

(j)
j−1 . . . G

(j)
1 h1:j,j

hj+1,j

]
01×(j−1) 0

 .
Therefore, while performing the j-th iteration of GMRES, one is equipped
with Rj−1 and Hj . In order to assemble Rj , there only remains to apply

the Givens rotations G(j+1)
1 , . . . , G

(j+1)
j to the last column of Hj , i.e.,

Rj [1 : j + 1, j] = G
(j+1)
j . . . G

(j+1)
1 h1:j+1,j .
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Generalized minimal residual (GMRES) method, cont’d8
▶ We saw that the least-squares problem minx∈x0+Kj(A,r0) ∥b−Ax∥2 can be

recast in the linear system Rj ỹ = gj [1 : j] where gj := βQj+1e
(j+1)
1 so

that

gj := βG
(j+1)
j . . . G

(j+1)
1 e

(j+1)
1 =


γ1
...

γj−1

cjγj
−sjγj

 where

γ1...
γj

 = gj−1

with g0 = β, and in which the scalars si and ci are given by

sj =
hj+1,j√(

h
(j−1)
jj

)2
+ h2j+1,j

and cj =
h
(j−1)
jj√(

h
(j−1)
jj

)2
+ h2j+1,j

.

where H(j)
j := Rj .
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Generalized minimal residual (GMRES) method, cont’d9
▶ In practice, the R1, . . . , Rm and g1, . . . , gm are often computed in-place,

stored in pre-allocated Hm and gm. This yields the following algorithm

Algorithm 3 Practical GMRES: (x0,m, ε) 7→ xj

1: // Allocate H ∈ R(m+1)×m, g ∈ Rm+1 and V ∈ Rn×(m+1)

2: r0 := b−Ax0; β := ∥r0∥2; g := [β, 0, . . . , 0]T ; v1 := r0/β
3: for j = 1, 2 . . . do
4: Compute h1:j+1,j and vj+1

5: for i = 1, . . . , j − 1 do
6: // Apply G

(j+1)
i to h1:j+1,j .

7:
[

hij

hi+1,j

]
:=

[
ci si
−si ci

] [
hij

hi+1,j

]
where

{
si := hi+1,i/(h

2
ii + h2

i+1,i)
1/2

ci := hii/(h
2
ii + h2

i+1,i)
1/2

8: // Apply G
(j+1)
j to g[1 : j + 1] and h1:j+1,j

9:
[

g[j]

g[j + 1]

]
:=

[
cj sj
−sj cj

] [
g[j]

0

]
where

{
sj := hj+1,j/(h

2
jj + h2

j+1,j)
1/2

cj := hjj/(h
2
jj + h2

j+1,j)
1/2

10: hjj := cjhjj + sjhj+1,j ; hj+1,j := 0
11: if |g[j + 1]| < ε∥b∥2 then
12: Stop ▷ Stop if ∥rj∥2 < ε∥b∥2
13: xj := x0 + Vj ỹ where ỹ is solution of triangular system H[1 : j, 1 : j]ỹ = g[1 : j]
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Methods for symmetric linear systems
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Conjugate gradient (CG) method
▶ Here, we assume that the matrix A is SPD. Similarly to FOM, the CG

method (Hestenes and Stiefel, 1952) is an orthogonal projection in the
Krylov subspace Km(A, r0). That is, CG iterates are formed as follows:

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ Km(A, r0) .

Once again, assuming that the columns of Vm := [v1, . . . , vm] form a basis
of Km(A, r0), the CG iterate is given by

xm := x0 + Vm(V T
mAVm)−1V T

m r0.

We saw in Lecture 11 that, if the columns of Vm form an orthonormal
basis of Km(A, r0) as obtained by the Lanczos method, we then have

V T
mAVm = Tm

where Tm is a tridiagonal matrix.
Moreover, we have v1 := r0/β, where β := ∥r0∥2, so that

V T
m r0 = [v1, . . . , vm]T v1β = βe

(m)
1 where e(m)

1 := Im[:, 1].

Hestenes M. R. & Stiefel E. L. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49, 409–436.
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Conjugate gradient (CG) method, cont’d1

Consequently, we have

xm := x0 + Vmỹ where Tmỹ = βe
(m)
1 .

As formulated above, each CG iterate xm requires to solve a linear system
for ỹ with the tridiagonal matrix Tm.
As A is SPD, so is Tm. Thus, one can make use of the LU decomposition
of Tm in order to solve Tmỹ = βe

(m)
1 .

Let xm+1 denote the CG iterate in x0 +Km+1(A, r0), i.e.,

xm+1 := x0 + Vm+1ỹ where Tm+1ỹ = βe
(m+1)
1 .

In what follows, we present the steps enumerated by Bai and Pan (2021)
in order to construct the CG iterate xm+1 given xm.

Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 22 / 102



Conjugate gradient (CG) method, cont’d2
Let the tridiagonal matrices Tm and Tm+1 admit LU decompositions of the
form LmUm and Lm+1Um+1, respectively, in which we have

Lℓ =


1
γ1 1

. . . . . .
γℓ−1 1

 and Uℓ =


η1 β1

η2
. . .
. . . βℓ−1

ηℓ

 for ℓ = m,m+ 1.

That is, Lm and Um are the m-th leading principal sub-matrices of Lm+1

and Um+1.
More precisely, we have

η1 := α1

γi := βi/ηi for i=1,. . . ,m
ηi+1 := αi+1 − γiβi for i=1,. . . ,m

where αj := Tjj = vTj Avj and βj := Tj+1,j := vTj+1Avj = vTj Avj+1

denote the diagonal and off-diagonal components of Tm, respectively.
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Conjugate gradient (CG) method, cont’d3

Given those LU factorizations, the CG iterate xm ∈ x0 +Km(A, r0) may
be recast into

xm := x0 + Pmz
(m)

where Pm := VmU
−1
m ∈ Rn×m and z(m) := βL−1

m e
(m)
1 ∈ Rm. Then, we

have

Pm+1 := Vm+1U
−1
m+1 = [Vm vm+1]

[
U−1
m ∗m×1

01×m 1/ηm+1

]
= [VmU

−1
m pm+1]

= [Pm pm+1].

And, from Vm+1 = Pm+1Um+1, we get

vm+1 = βmpm + ηm+1pm+1 =⇒ pm+1 = (vm+1 − βmpm)/ηm+1

for m = 1, 2, . . . , while p1 = v1/η1 .
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Conjugate gradient (CG) method, cont’d4
Then, as we denote z(m+1) := [z(m)T zm+1]

T = [z1, . . . , zm, zm+1]
T , we

see that

Lm+1z
(m+1) =βe

(m+1)
1[

Lmz
(m)

γmzm + zm+1

]
=

[
βe

(m)
1

0

]
so that zm+1 = −γmzm for m = 1, 2, . . . while z1 = β . Therefore, we
get

xm+1 :=x0 + Pm+1z
(m+1)

=x0 + [Pm pm+1]

[
z(m)

zm+1

]
=x0 + Pmz

(m) + zm+1pm+1

so that

xm+1 := xm + zm+1pm+1 for m = 0, 1, 2, . . . .
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Conjugate gradient (CG) method, cont’d5
▶ Then, alongside an implementation of Lanczos procedure which generates

a set of orthonormal basis vectors v1, v2, . . . , vm+1 spanning the subspace
Km(A, r0) with the tridiagonal components α1, . . . , αm+1 and β1, . . . , βm,
one can generate the sequence x1, x2, . . . , xm+1 of CG iterates as follows:

r0 := b−Ax0

β := ∥r0∥2; z1 := β

v1 := r0/β; α1 := vT1 Av1; η1 := α1; p1 := v1/η1

for j = 1, . . . ,m

xj := xj−1 + zjpj

Compute αj+1, βj and vj+1 by Lanczos iteration
γj := βj/ηj

ηj+1 := αj+1 − γjβj

zj+1 := −γjzj
pj+1 := (vj+1 − βjpj)/ηj+1
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Conjugate gradient (CG) method, cont’d6
▶ We will find it useful to consider generic inner products (·, ·) in place of

the usual dot product. Two important results prove to be useful in deriving
the CG algorithm. First, there is the conjugacy of the p vectors:

Theorem (A-orthogonality of p vectors)
Assuming A is SPD, the vectors p1, . . . , pm+1 built as described on the
previous slides are A-orthogonal (or conjugate). That is,

(pi, pj)A := (Api, pj) = 0 if i ̸= j.

Second, there is the orthogonality of residual vectors:

Theorem (Orthogonality of residual vectors)
Let rj := b−Axj where xj is the CG iterate in x0 +Km(A, r0). Then,

rj = ρjvj+1, where ρ0 := β and ρj := −βje(j)j
T ỹ s.t. Tj ỹ = βe

(j)
1

so that, by virtue of orthogonality of the Krylov basis vectors v1, . . . , vm+1,
the CG residual vectors r0, . . . , rm are orthogonal, i.e., (ri, rj) = 0 if i ̸= j.
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Conjugate gradient (CG) method, cont’d7
▶ Now, let us define the search direction p̃j+1 := ρjηj+1pj+1 so that, using

the fact that rj = ρjvj+1, we get
pj+1 := (vj+1 − βjpj)/ηj+1

ρjηj+1pj+1 := ρjvj+1 − ρjβjpj

p̃j+1 := rj − ρjβjpj

p̃j+1 := rj + τj p̃j

where τj := −ρjβj/(ρj−1ηj). These search directions are A-orthogonal.
Then, from xj := xj−1 + zjpj , we get

xj := xj−1 + ξj p̃j where ξj := zj/(ρj−1ηj).

Also, the CG residual vector rj can be reformulated as follows:

rj := b−Axj = b−A(xj−1 + ξj p̃j) = b−Axj−1 − ξjAp̃j

so that rj := rj−1 − ξjAp̃j .
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Conjugate gradient (CG) method, cont’d8
▶ Now, we are only left with finding alternative expressions for τj and ξj

which do not explicitly depend on the tridiagonal form Tj and its LU
decomposition.
- First, using the stated orthogonality of CG residuals, we get

(rj , rj−1) = 0

(rj−1 − ξjAp̃j , rj−1) = 0

(rj−1, rj−1)− ξj(Ap̃j , rj−1) = 0

for which using the conjugacy of search directions as well as
p̃j+1 := rj + τj p̃j leads to

(Ap̃j , rj−1) = (Ap̃j , p̃j − τj−1p̃j−1)

= (Ap̃j , p̃j)− τj−1(Ap̃j , p̃j−1)

= (Ap̃j , p̃j)

so that ξj = (rj−1, rj−1)/(Ap̃j , p̃j) .
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Conjugate gradient (CG) method, cont’d9

- Second, in order to find an alternative expression for τj , we start as
follows from the statement of conjugacy of search directions:

(Ap̃j , p̃j+1) = 0

(Ap̃j , rj + τj p̃j) = 0

(Ap̃j , rj) + τj(Ap̃j , p̃j) = 0

so that τj = −(Ap̃j , rj)/(Ap̃j , p̃j). Then, using rj := rj−1 − ξjAp̃j as
well as the orthogonality of CG residuals, we get

τj = − (Ap̃j , rj)

(Ap̃j , p̃j)
=

1

ξj

(rj − rj−1, rj)

(Ap̃j , p̃j)
=

(Ap̃j , p̃j)

(rj−1, rj−1)

(rj , rj)

(Ap̃j , p̃j)

so that τj = (rj , rj)/(rj−1, rj−1) .
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Conjugate gradient (CG) method, cont’d10

▶ Piecing together all the expressions for the update of ξj , xj , rj , τj and
p̃j+1, we get the following iteration for the CG method:

r0 := b−Ax0

p̃1 := r0

for j = 1, . . . ,m

ξj := (rj−1, rj−1)/(Ap̃j , p̃j)

xj := xj−1 + ξj p̃j

rj := rj−1 − ξjAp̃j

τj := (rj , rj)/(rj−1, rj−1)

p̃j+1 := rj + τj p̃j
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Conjugate gradient (CG) method, cont’d11
▶ In order to reflect the most commonly encountered formulations of the CG

method, the following changes of variables are operated

ξj 7→ αj , τj 7→ βj and p̃j 7→ pj

where αj and βj are not to be confused with the components of the
tridiagonal form of A.
This leads to the following algorithm:

Algorithm 4 CG: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: p1 := r0
3: for j = 1, 2 . . . do
4: αj := (rj−1, rj−1)/(Apj , pj)
5: xj := xj−1 + αjpj
6: rj := rj−1 − αjApj
7: if ∥rj∥2 < ε∥b∥2 then
8: Stop
9: βj := (rj , rj)/(rj−1, rj−1)

10: pj+1 := rj + βjpj
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Conjugate gradient (CG) method, cont’d12
▶ Note that the CG method can be implemented allocating storage only for

the iterate x, the search direction p, the matrix-vector product Ap and the
residual r. Doing so leads to the following practical implementation:

Algorithm 5 Practical CG: (x0, ε) 7→ xj
1: Allocate memory for x, p, w, r ∈ Rn

2: r := b−Ax0
3: p := r
4: for j = 1, 2 . . . do
5: w := Ap
6: α := (r, r)/(w, p)
7: β := 1/(r, r)
8: x := x+ αp
9: r := r − αw

10: if ∥r∥2 < ε∥b∥2 then
11: Stop
12: β := β · (r, r)
13: p := r + βp
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Conjugate gradient (CG) method, cont’d13
▶ An essential property of the CG method is that of optimality, namely

Theorem (Optimality of CG iterates)
Let A be SPD and xj ∈ x0 +Kj(A, r0) denote the CG iterate approximating
the solution of Ax = b. Then, xj minimizes the A-norm of the error over
the search space, i.e.,

∥x− xj∥A = min
y∈x0+Kj(A,r0)

∥x− y∥A where ∥x∥A := (Ax, x)1/2.

Another important results on the CG method is about its convergence:

Theorem (Upper bound on the relative change of A-norm of the error)
Let A be SPD with smallest and largest eigenvalues given by λmin and λmax,
respectively. Then, it holds that

∥xj − x∥A
∥x0 − x∥A

≤

(√
κ2(A)− 1√
κ2(A) + 1

)j

where κ2(A) = λmax/λmin is the spectral condition number of A.
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Conjugate gradient (CG) method, cont’d14
▶ An alternative presentation of the CG method to that of orthogonal

projection in a Krylov subspace is frequent in the field of
optimization.
- That is, considering an SPD matrix A ∈ Rn×n and a vector b ∈ Rn, the

quadratic function

f : Rn → R
x 7→ xTAx− xT b

has ∇f(x) = Ax− b and ∇2f(x) = A for 1st and 2nd derivatives.
- Since the Hessian ∇2f of f is SPD, the critical point x∗ such that
∇f(x∗) = 0 ( =⇒ Ax∗ = b), is a minimizer of the function f(x).

- An iterative procedure started with x0 and aimed at finding x∗ is
devised upon setting a set of search directions p0, p1, p2, . . . , in the
span of which subsequent approximations x1, x2, . . . of x∗ are formed:

xj :=

j∑
i=0

αipi.
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Conjugate gradient (CG) method, cont’d15

- The search directions are chosen to be A-orthogonal, or conjugate,
i.e., such that (Api, pj) = 0 for i ̸= j.

- The initial search direction is chosen as the opposite of the gradient
of f at x0, i.e., p0 := −∇f(x0) = b−Ax0 =: r0.

- Subsequent search directions p1, p2, . . . being A-orthogonal with respect
to p0 ∝ ∇f(x0), they are conjugate to the gradient ∇f(x0), hence
the name conjugate gradient given to the method.
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Minimal residual (MINRES) method
▶ The optimality property of the CG method is reliant on the assumption

of positive definiteness of A. Furthermore, in cases A is not positive
definite, the CG method may break down (Paige et al., 1995).
For cases where A is symmetric but indefinite (still non-singular), then,
the minimal residual (MINRES) method (Paige and Saunders, 1975) is
introduced as an oblique projection in a Krylov subspace Km(A, r0),
with constraints subspace Lm := AKm, i.e., similarly as GMRES, it reads

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ AKm(A, r0) , (3)

the difference with GMRES being that A is symmetric.
Assuming that the columns of Vm := [v1, . . . , vm] form a basis of the
Krylov subspace Km(A, r0), the MINRES iterate is then given as follows
from the Petrov-Galerkin condition:

xm := x0 + Vm((AVm)TAVm)−1(AVm)T r0.

Paige, C. C., Parlett, B. N., & Van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov
subspaces. Numerical linear algebra with applications, 2(2), 115-133.
Paige, C. C. & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12, 617–629.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 37 / 102



Minimal residual (MINRES) method, cont’d1
▶ However, similarly as for GMRES, it is more common and practical to

derive the GMRES iterate based on the following optimality property:

Theorem (Optimality of MINRES iterates)
The iterate xm is the solution of Pb. (3) if and only if it minimizes the
residual norm ∥b−Ax∥2 over the affine subspace x0 +Km(A, r0), i.e., iff

∥b−Axm∥2 = min
x∈x0+Km(A,r0)

∥b−Ax∥2.

Consequently, the MINRES iterate xm ∈ x0 +Km(A, r0) is given by
xm := x0 + Vmỹ , where

ỹ := arg min
y∈Rm

∥r0 −AVmy∥2

in which, we recall that r0 = βv1, where β := ∥r0∥2 and, as the Lanczos
relation reads AVm = Vm+1Tm in which Tm := V T

m+1AVm, we obtain

ỹ = arg min
y∈Rm

∥βe(m+1)
1 − Tmy∥.
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Minimal residual (MINRES) method, cont’d2
▶ Just as with GMRES, the least-squares problem miny∈Rm ∥βe(m+1)

1 −Tmy∥2
can be solved using the QR decomposition of the tridiagonal matrix.
Let Qm+1 ∈ R(m+1)×(m+1) be the orthogonal matrix s.t. Tm = QT

m+1Rm,
where Rm ∈ R(m+1)×m is an upper-triangular matrix.
Since Tm is tridiagonal, the upper-triangular matrix Rm is banded with a
bandwidth of 3, i.e., we have

Rm =



τ
(1)
1 τ

(2)
1 τ

(3)
1

0 τ
(1)
2 τ

(2)
2 τ

(3)
2

...
. . . . . . . . . . . .

...
. . . τ

(1)
m−2 τ

(2)
m−2 τ

(3)
m−2

...
. . . τ

(1)
m−1 τ

(2)
m−1

...
. . . τ

(1)
m

0 . . . . . . . . . . . . 0


=

[
Rm

01×m

]

where Rm := Rm[1 :m, 1:m].
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Minimal residual (MINRES) method, cont’d3

The least-squares problem is recast into

min
y∈Rm

∥βe(m+1)
1 − Tmy∥2 = min

y∈Rm

∥∥∥∥βq1 − [ Rm

01×m

]
y

∥∥∥∥
2

where q1 := Qm+1e
(m+1)
1 = Qm+1[1 : m+ 1, 1].

Then, as we let gm := βq1 ∈ Rm+1 with g0 := β, the least-squares
problem is solved by solving the following triangular system:

Rmỹ = gm[1 : m] .

Then, the residual rm := b−Axm is s.t. rm = Vm+1(βe
(m+1)
1 − Tmỹ) and

∥rm∥2 = β|q1[m+ 1]| = |gm[m+ 1]| .

Thus, one needs not to assemble the iterate xm, nor to perform an
additional matrix-vector product in order to monitor convergence.
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Minimal residual (MINRES) method, cont’d4
Suppose that we have obtained the QR decomposition of the matrix Tj−1,
and we are interested in getting the decomposition of Tj with the least
amount of work possible. Clearly, we have

Tj =

[
Tj−1 t1:j,j
01×j−1 βj

]
where t1:j,j =

0(j−2)×1

βj−1

αj

 .
We saw in Lecture 07 that Givens rotations can be used to turn an upper
Hessenberg matrix into triangular form. In particular, for Tj−1, we have

Rj−1 =

[
Rj−1

01×(j−1)

]
= G

(j)
j−1G

(j)
j−2 . . . G

(j)
1 Tj−1 = QjTj−1

where the Givens rotation matrix G(j)
i ∈ Rj×j zeroes the (i+ 1, i)-entry of

the tridiagonal matrix it is applied to. Also, we have

G
(j+1)
i =

[
G

(j)
i 0j×1

01×j 1

]
for i = 1, . . . , j − 1.
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Minimal residual (MINRES) method, cont’d5

As we had for GMRES, we have that Rj can be formed through minimal
update of Rj−1, i.e.,

Rj =

 Rj−1 G
(j+1)
j [1 : j, 1 : j + 1]

[
G

(j)
j−1 . . . G

(j)
1 t1:j,j

βj

]
01×(j−1) 0

 .
Therefore, while performing the j-th iteration of MINRES, one is equipped
with Rj−1 and Tj . In order to assemble Rj , there only remains to apply

the Givens rotations G(j+1)
1 , . . . , G

(j+1)
j to the last column of Tj , i.e.,

Rj [1 : j + 1, j] = G
(j+1)
j . . . G

(j+1)
1 t1:j+1,j .

But, since t1:j−2,j = 0(j−2)×1, this simplifies to

Rj [1 : j + 1, j] = G
(j+1)
j G

(j+1)
j−1 G

(j+1)
j−2 t1:j+1,j when j > 2 .
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Minimal residual (MINRES) method, cont’d6
▶ We recall that the MINRES iterate is given by xj := x0 + Vj ỹ, where

Rj ỹ = gj [1 : j],

so that, for j = 1, . . . ,m, we have xj = x0 + Pjgj [1 : j], in which
Pj = [p1, . . . , pj ] := VjR

−1
j . But since Rj has a bandwidth of 3, we get

p1 = v1/τ
(1)
1 , p2 = (v2 − τ

(2)
1 p1)/τ

(1)
2

pj =(vj − τ
(2)
j−1pj−1 − τ

(3)
j−2pj−2)/τ

(1)
j for j = 3, 4, . . . ,m

so that the columns of Pj are an accessible by-product of the MINRES
iteration. Finally, since gj [1 : j − 1] = gj−1[1 : j − 1], we have

xj = x0 + Pjgj [1 : j] =x0 + [Pj−1 pj ]

[
gj [1 : j − 1]

gj [j]

]
=x0 + Pj−1gj−1[1 : j − 1] + gj [j]pj

so that xj = xj−1 + gj [j]pj .
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Minimal residual (MINRES) method, cont’d7
▶ In practice, the R1, . . . , Rm and g1, . . . , gm can be computed in-place,

stored in pre-allocated Tm and gm. This yields the following algorithm

Algorithm 6 MINRES: (x0,m, ε) 7→ xj

1: // Allocate T ∈ R(m+1)×m, g ∈ Rm+1

2: r0 := b−Ax0; β := ∥r0∥2; v1 := r0/β; g := [β, 0, . . . , 0]T

3: for j = 1, 2 . . . do
4: // Perform Lanczos iteration
5: wj := Avj − βj−1vj−1 where β0 := 0 and v0 := 0
6: αj := (wj , vj); wj := wj − αjvj ; βj := ∥wj∥2
7: // Apply G

(j+1)
j−2 to t1:j+1,j .

8: if j > 2 then

9:
[
tj−2,j

tj−1,j

]
:=

[
c s
−s c

] [
tj−2,j

tj−1,j

]
where

{
s := tj−1,j−2/(t

2
j−2,j−2 + t2j−1,j−2)

1/2

c := tj−2,j−2/(t
2
j−2,j−2 + t2j−1,j−2)

1/2

10: // Apply G
(j+1)
j−1 to t1:j+1,j .

11: if j > 1 then

12:
[
tj−1,j

tjj

]
:=

[
c s
−s c

] [
tj−1,j

tjj

]
where

{
s := tj,j−1/(t

2
j−1,j−1 + t2j,j−1)

1/2

c := tj−1,j−1/(t
2
j−1,j−1 + t2j,j−1)

1/2
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Minimal residual (MINRES) method, cont’d8
▶ In practice, the R1, . . . , Rm and g1, . . . , gm can be computed in-place,

stored in pre-allocated Tm and gm. This yields the following algorithm

Algorithm 6 cont’d MINRES: (x0,m, ε) 7→ xj

12: // Apply G
(j+1)
j to g[1 : j + 1] and t1:j+1,j

13:
[

g[j]

g[j + 1]

]
:=

[
c s
−s c

] [
g[j]

0

]
where

{
s := tj+1,j/(t

2
jj + t2j+1,j)

1/2

c := tjj/(t
2
jj + t2j+1,j)

1/2

14: tjj := ctjj + stj+1,j ; tj+1,j := 0

15: pj := (vj − τ
(2)
j−1pj−1 − τ

(3)
j−2pj−2)/τ

(1)
j where p0 := 0 and p−1 := 0

16: xj := xj−1 + g[j]pj
17: if |g[j + 1]| < ε∥b∥2 then Stop ▷ Stop if ∥rj∥2 < ε∥b∥2
18: vj+1 := wj/βj
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SYMMLQ method
▶ The SYMMLQ method (Paige and Saunders, 1975) is an orthogonal

projection in a Krylov subspace Km(A, r0) where A is symmetric,
possibly indefinite. Thus, equivalently to the CG method, it sums up to

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ Km(A, r0) .

Assuming that the columns of Vm := [v1, . . . , vm] form a basis of the
Krylov subspace Km(A, r0), the SYMMLQ iterate is given by

xm := x0 + VmT
−1
m V T

m r0

where Tm := V T
mAVm is the tridiagonal matrix of a Lanczos procedure.

The main difference with CG stems from the assumed factorization of Tm.
While CG assumes that Tm admits an LU factorization without pivoting
(not guaranteed to exist for an indefinite A), the SYMMLQ method relies
on a LQ decomposition of Tm (guaranteed to exist for all non-singular A).
That is, we search for the lower-triangular L̃m ∈ Rm×m and an orthogonal
Qm ∈ Rm×m such that Tm = L̃mQm.

Paige C. C. & Saunders M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12, 617–629.
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SYMMLQ method, cont’d1

▶ Given an LQ decomposition of the tridiagonal matrix Tj , the SYMMLQ
iterate can be recast into

xj = x0 + P̃j z̃
(j) where L̃j z̃

(j) = βe
(j)
1 and P̃j := VjQ

T
j .

Since Tj is tridiagonal, it is also Hessenberg, and its LQ decomposition can
be constructed through the application of Givens rotations:

L̃j = TjG
(j)
1 . . . G

(j)
j−1 so that Qj =

(
G

(j)
1 . . . G

(j)
j−1

)T
.

Since Tj is tridiagonal, L̃j is banded with a bandwidth of 3.

Let Q̃j+1 :=

[
Qj 0j×1

01×j 1

]
. Then, we have

G
(j+1)
j

T Q̃j+1 = G
(j+1)
j

T

[
G

(j)
j−1

T . . . G
(j)
1

T 0j×1

01×j 1

]
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SYMMLQ method, cont’d2

G
(j+1)
j

T Q̃j+1 =G
(j+1)
j

T

[
G

(j)
j−1

T 0j×1

01×j 1

]
. . .

[
G

(j)
1

T 0j×1

01×j 1

]
=G

(j+1)
j

TG
(j+1)
j−1

T . . . G
(j+1)
1

T

so that G(j+1)
j

T Q̃j+1 = Qj+1. Then, we have

Tj+1Q
T
j+1 =Tj+1Q̃

T
j+1G

(j+1)
j

=

[
Tj t1:j,j+1

tj+1,1:j αj+1

] [
QT

j 0j×1

01×j 1

]
G

(j+1)
j

=

[
TjQ

T
j t1:j,j+1

tj+1,1:jQ
T
j αj+1

]
G

(j+1)
j

where
tj+1,1:jQ

T
j = [01×(j−1) βj ]G

(j+1)
1 . . . G

(j+1)
j−1

= [01×(j−1) βj ]G
(j+1)
j−1

= [01×(j−2) −sj−1βj cjβj ].
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SYMMLQ method, cont’d3
We can see that the application of G(j+1)

j to the right of Tj+1Q̃j+1:
- zeroes the only non-zero component over the diagonal in the last

column of Tj+1Q̃j+1;
- modifies the (j + 1, j)-entry of Tj+1Q̃j+1;
- modifies the (j, j)-entry of (Tj+1Q

T
j+1)[1 : j, 1 : j] = TjQ

T
j = L̃j .

Consequently, the components of L̃j can be denoted as follows:

L̃j =



ℓ
(1)
1 0 . . . . . . . . . 0

ℓ
(2)
2 ℓ

(1)
2

. . .
...

ℓ
(3)
3 ℓ

(2)
3 ℓ

(1)
3

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . . ℓ

(3)
j−1 ℓ

(2)
j−1 ℓ

(1)
j−1 0

0 . . . 0 ℓ
(3)
j ℓ

(2)
j ℓ̃

(1)
j


where the ˜ over L̃j marks the difference with Lj := L̃j+1[1 : j, 1 : j].
That is, only the (j, j)-entry differ between L̃j and Lj .
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SYMMLQ method, cont’d4
▶ Let us introduce z(j) ∈ Rj such that

Ljz
(j) = βe

(j)
1 ,

which differs only in its last entry from z̃(j), which we previously
introduced as the solution of L̃j z̃

(j) = βe
(j)
1 .

That is, we have

z(j) =

[
z(j−1)

zj

]
and z̃(j) =

[
z(j−1)

z̃j

]
where z(j−1) is the solution of Lj−1z

(j−1) = βe
(j−1)
1 .

Given that Lj and L̃j are both lower-triangular and differ from each other
only in their (j, j)-entry, we have

z̃j = ℓ
(1)
j zj/ℓ̃

(1)
j

where ℓ(1)j = Lj [j, j] and ℓ̃(1)j = L̃j [j, j].
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SYMMLQ method, cont’d5
▶ It follows from Ljz

(j) = βe
(j)
1 that

z1 = β/ℓ
(1)
1 ,

z2 = −ℓ(2)2 z1/ℓ
(1)
2 ,

zj = −
(
ℓ
(3)
j zj−2 + ℓ

(2)
j zj−1

)
/ℓ

(1)
j for j = 3, 4, . . . ,m.

Given P̃j = VjQ
T
j and P̃j+1 = Vj+1Q

T
j+1, we introduce

Pj−1 := P̃j [1 : n, 1 : j − 1] and Pj := P̃j+1[1 : n, 1 : j],

and we write P̃j = [Pj−1 p̃j ] and P̃j+1 = [Pj p̃j+1]. Then, we have

P̃j+1 = Vj+1Q
T
j+1 = [Vj vj+1]

[
QT

j 0j×1

01×j 1

]
G

(j+1)
j = [VjQ

T
j vj+1]G

(j+1)
j

so that

P̃j+1 = [P̃j vj+1]G
(j+1)
j = [Pj−1 p̃j vj+1]G

(j+1)
j .
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SYMMLQ method, cont’d6
Therefore, we have

P̃j+1[1 : n, 1 : j] = [Pj−1 (cj p̃j − sjvj+1)]

so that Pj = [Pj+1 pj ], where
p̃1 = v1

pj = cj p̃j − sjvj+1

p̃j+1 = sj p̃j + cjvj+1 for j = 1, 2, . . . ,m.

▶ Consider the iterate given by x̃j := x0 + Pjz
(j), then we have

x̃j = x0 + [Pj−1 pj ]

[
z(j−1)

zj

]
= x0 + Pj−1z

(j−1) + zjpj = x̃j−1 + zjpj .

The new iterate xj+1 := x0 + P̃j+1z̃
(j+1) can then be recast as follows:

xj = x0 + [Pj p̃j+1]

[
z(j)

z̃j+1

]
= x0 + Pjz

(j) + z̃j+1p̃j+1 = x̃j + z̃j+1p̃j+1

so that xj+1 can be formed effciently from x̃j .
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SYMMLQ method, cont’d7
▶ We recall that, as an orthogonal projection in the Krylov subspace

range(Vj), the SYMMLQ iterate is equivalently given by

xj = x0 + Vj ỹ where Tj ỹ = βe
(j)
1 .

But since A, and thus Tj are symmetric, we have

T T
j ỹ =βe

(j)
1

(L̃jQj)
T ỹ =βe

(j)
1

QT
j L̃

T
j ỹ =βe

(j)
1

L̃T
j ỹ =βQje

(j)
1 .

By comparing the last entries on both sides of L̃T
j ỹ = βQje

(j)
1 , we have

e
(j)
j

T L̃T
j ỹ =βe

(j)
j

TQje
(j)
1

ℓ̃
(1)
j (e

(j)
j ỹ) =βe

(j)
j

T (G
(j)
1 . . . G

(j)
j−1)

T e
(j)
1

=β(G
(j)
1 . . . G

(j)
j−1e

(j)
j )T e

(j)
1
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SYMMLQ method, cont’d8

so that

ℓ̃
(1)
j (e

(j)
j ỹ) = βs1s2 . . . sj−1. (4)

Also, by construction of G(j+1)
j , it can be shown that sj ℓ̃

(1)
j + cjβj = 0.

Then, recalling the Lanczos relation, i.e., AVj = VjTj + βjvj+1e
(j)
j

T , the
SYMMLQ residual rj := b−Axj is recast as follows:

rj= r0 −AVj ỹ =r0 − (VjTj + βjvj+1e
(j)
j

T )ỹ =βv1 − VjTj ỹ − βj(e
(j)
j

T ỹ)vj+1

where Tj ỹ = βe
(j)
1 , so that

rj = βv1 − βVje
(j)
1 − βj(e

(j)
j

T ỹ)vj+1 = −βj(e(j)j
T ỹ)vj+1

in which we use Eq. (4) to obtain

rj = −
(
βs1 . . . sj−1/ℓ̃

(1)
j

)
vj+1 = (βs1 . . . sj/cj) vj+1.
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SYMMLQ method, cont’d9

Then, as we have

∥rj−1∥2 = |βs1 . . . sj−1/cj−1| and ∥rj∥2 = |βs1 . . . sj/cj |

so that

∥rj∥2 =
∣∣∣∣cj−1sj

cj

∣∣∣∣ ∥rj−1∥2.

Thus, the convergence of SYMMLQ can be monitored without forming the
iterate xj , or even solve the tridiagonal system for ỹ, neither forming rj
nor computing its vector norm.
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SYMMLQ method, cont’d10
▶ Now we are equipped to put the SYMMLQ algorithm together:
Algorithm 7 SYMMLQ: (x0,m, ε) 7→ xj

1: // Allocate T ∈ R(m+1)×m, g ∈ Rm+1

2: r0 := b−Ax0; β := ∥r0∥2; v1 := r0/β; g := [β, 0, . . . , 0]T ; x̃0 := x0

3: for j = 1, 2 . . . do
4: // Perform Lanczos iteration
5: wj := Avj − βj−1vj−1 where β0 := 0 and v0 := 0
6: αj := (wj , vj); wj := wj − αjvj ; βj := ∥wj∥2
7: if j = 1 then ℓ̃

(1)
j := αj

8: // Apply G
(j)
j−2 to the last row of Tj

9: if j > 2 then
[
ℓ
(3)
j βj−1

]
:=

[
0 βj−1

] [ c s
−s c

]
where

{
s := sj−2

c := cj−2

10: // Apply G
(j)
j−1 to the last 2 columns of TjQ̃j

11: if j > 1 then

12: ℓ
(1)
j−1 :=

√(
ℓ̃
(1)
j−1

)2

+ β2
j−1

13:
[
ℓ
(2)
j ℓ̃

(1)
j

]
:=

[
βj−1 αj

] [ c s
−s c

]
where

{
s := sj−1

c := cj−1

Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
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SYMMLQ method, cont’d11
▶ Now we are equipped to put the SYMMLQ algorithm together:
Algorithm 7 cont’d SYMMLQ: (x0,m, ε) 7→ xj
14: // Compute zj−1

15: if j = 2 then z1 := β/ℓ
(1)
1

16: if j = 3 then z2 := −ℓ
(2)
2 z1/ℓ

(1)
2

17: if j > 3 then zj−1 := −
(
ℓ
(3)
j−1zj−3 + ℓ

(2)
j−1zj−2

)
/ℓ

(1)
j−1

18: if j = 1 then p̃1 := v1
19: if j > 1 then
20: pj−1 := cj−1p̃j−1 − sj−1vj
21: p̃j := sj−1p̃j−1 + cj−1vj
22: g[j] := x̃j−2 + zj−1pj−1

23: g[j] := (cj−2sj−1/cj−1)g[j − 1] where c0 := 1
24: if |g[j]| > ε∥b∥2 then

25: xj−1 := x̃j−2 +
(
ℓ
(1)
j−1/ℓ̃

(1)
j−1

)
p̃j−1

26: Stop
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More methods for non-symmetric linear
systems
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Bi-orthogonalization process
▶ The bi-orthogonalization process is an extension of the Lanczos

procedure to non-symmetric matrices.
It is sometimes called the two-sided Lanczos procedure.

▶ This procedure generates a pair of bi-orthogonal bases in the columns of
Vj = [v1, . . . , vj ] ∈ Rn×j and Wj = [w1, . . . , wj ] ∈ Rn×j for Krylov
subspaces of A and AT , respectively, i.e., that is, we have

range(Vj) = Kj(A, r0) and range(Wj) = Kj(A
T , r̃0)

such that V T
j Wj =W T

j Vj = Ij where r̃0 is an auxiliary vector used to
generate the left Krylov subspace Kj(A

T , r̃0) with (r0, r̃0) ̸= 0.
▶ During the bi-orthogonalization process, instead of forming vj+1 by

orthonormalizing Avj against vj and vj−1, it is done by orthonormalizing
against wj and wj−1.
Simultaneously, wj+1 is obtained by orthonormalizing ATwj against vj
and vj−1.
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Bi-orthogonalization process, cont’d1

▶ The resulting procedure is given by the following algorithm:

Algorithm 8 Bi-Orthogonalization: (r0, r̃0,m) 7→ (Vm,Wm)

1: // r0 and r̃0 must be such that (r,r̃0) ̸= 0
2: β := ∥r0∥2; v1 := r0/β; w1 := βr̃0/(r̃0, r0); β0 := 0; γ0 := 0
3: for j = 1, 2, . . . ,m do
4: vj+1 := Avj − βj−1vj−1 where v0 := 0
5: wj+1 := ATwj − γj−1wj−1 where w0 := 0
6: αj := (vj , wj+1)
7: vj+1 := vj+1 − αjvj
8: wj+1 := wj+1 − αjwj

9: γj :=
√
|(vj+1, wj+1)|

10: βj := (vj+1, wj+1)/γj
11: vj+1 := vj+1/γj
12: wj+1 := wj+1/βj
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Bi-orthogonalization process, cont’d2
▶ We obtain the following three-term recurrences from the last algorithm:{

γjvj+1 = Avj − αjvj − βj−1vj−1,

βjwj+1 = ATwj − αjwj − γj−1wj−1 for j = 2, . . . ,m
.

▶ We can show that the bases stored in the columns of Vm and Wm are
orthonormal.

- For that, we first note that (v1, w1) = (r0/β, βr̃0/(r̃0, r0)) = 1.
- Then, for j = 1, we have

(vj+1, wj+1) = (Av1 − α1v1, A
Tw1 − α1w1)/(β1γ1)

=
(
(Av1, A

Tw1)− α1(v1, A
Tw1)

)
/(β1γ1)

−
(
α1(Av1, w1)− α2

1(v1, w1)
)
/(β1γ1)

=
(
(Av1, A

Tw1)− α2
1 − α1(Av1, w1) + α2

1

)
/(β1γ1)

= (Av1, A
Tw1 − α1w1)/(β1γ1)

where β1 = (Av1 − α1v1, A
Tw1 − α1w1)/γ1 = (Av1, A

Tw1 − α1w1)/γ1
so that (vj+1, wj+1) = 1.
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Bi-orthogonalization process, cont’d3
- For j = 2, . . . ,m, we have

(vj+1, wj+1) = (γjvj+1, βjwj+1)/(γjβj)

= (Avj − αjvj − βj−1vj−1, A
Twj − αjwj − γj−1wj−1)/(γjβj)

where βj = (Avj − αjvj − βj−1vj−1, A
Twj − αjwj − γj−1wj−1)/γj so

that (v1, w1) = · · · = (vm+1, wm+1) = 1.
▶ There remains to show (vi, wj) = 0 if i ̸= j. Let us proceed by induction

and show that, for an integer j with 2 ≤ j ≤ m+ 1, we have

(vi, wj) = (vj , wi) = 0 for i = 1, . . . , j − 1 (5)

- For j = 2, we have

(v1, w2) = (v1, A
Tw1 − α1w1)/β1 =

(
(v1, A

Tw1)− α1(v1, w1)
)
/β1

=(α1 − α1)/β1 = 0

and
(v2, w1) = (Av1 − α1v1, w1)/γ1 =((Av1, w1)− α1(v1, w1)) /γ1

=
(
(v1, A

Tw1)− α1

)
/γ1= (α1 − α1)/γ1 = 0.
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Bi-orthogonalization process, cont’d4
- Suppose that Eq: (5) holds for j, then we need to show that

(vi, wj+1) = (vj+1, wi) = 0 for i = 1, . . . , j.

First, we have
αj = (vj , A

Twj − γj−1wj−1) = (vj , A
Twj)− γj−1(vj , wj−1) = (vj , A

Twj).

We also have
(vj , wj+1) = (vj , A

Twj − αjwj − γj−1wj−1)/βj

=
(
(vj , A

Twj)− αj(vj , wj)
)
/βj

=(αj − αj)/βj = 0.

as well as
(vj−1, wj+1) = (vj−1, A

Twj − αjwj − γj−1wj−1)/βj

=
(
(vj−1, A

Twj)− γj−1(vj−1, wj−1)
)
/βj

= ((Avj−1, wj)− γj−1) /βj

= ((γj−1vj + αj−1vj−1 + βj−2vj−2, wj)− γj−1) /βj

=(γj−1 − γj−1)/βj = 0.
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Bi-orthogonalization process, cont’d5

- and, for i = 1, . . . , j − 2, we get

(vi, wj+1) = (vi, A
Twj − αjwj − γj−1wj−1)/βj

=(vi, A
Twj)/βj

=(Avi, wj)/βj

=(γivi+1 + αivi + βi−1vi−1, wj)/βj = 0.

- We have shown that (vi, wj+1) = 0 for i = 1, . . . , j.
Similarly, we can show that (vj+1, wi) = 0 for i = 1, . . . , j, after what the
bi-orthonormality of the bases is proven.

▶ In the case of the dot product, the stated orthonormality implies

V T
mWm =W T

mVm = Im .
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Bi-orthogonalization process, cont’d6

▶ The three-term recurrence formulae can be cast into matrix form as
follows:

AVm =Vm+1Tm

=VmTm + γmvm+1e
(m)
m

T

ATWm =Wm+1T̃
T
m

=WmT
T
m + βmwm+1e

(m)
m

T

where the tridiagonal matrices Tm ∈ R(m+1)×m and T̃ T
m ∈ R(m+1)×m are

given by

Tm =


α1 β1

γ1
. . . . . .
. . . . . . βm−1

γm−1 αm

γm

 and T̃ T
m =


α1 γ1

β1
. . . . . .
. . . . . . γm−1

βm−1 αm

βm


with Tm := Tm[1 : m, 1 : m] = T̃m[1 : m, 1 : m].
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Bi-orthogonalization process, cont’d7

▶ Combining the matrix form of the first three-term recurrence formula with
the statement of bi-orthonormality, we obtain:

AVm =VmTm + γmvm+1e
(m)
m

T

W T
mAVm =W T

mVmTm + γmW
T
mvm+1e

(m)
m

T

W T
mAVm =Tm

where, as for a regular Lanczos procedure, Tm is tridiagonal, although this
time not symmetric.

▶ In general, neither {v1, . . . , vm} nor {w1, . . . , wm} are orthogonal by
themselves, i.e., V T

mVm ̸= Im and W T
mWm ̸= Im.

▶ The bi-orthogonalization procedure is similar to Arnoldi in that they both
apply to non-symmetric matrices.
The advantage of the bi-orthogonalization method is that relies on short
recurrences, unlike Arnoldi, which requires full orthogonalization against all
previously formed vectors.
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Bi-conjugate gradient (BiCG) method
▶ The BiCG method (Lanczos, 1952; Fletcher, 1976) is an oblique

projection method in a Krylov subspace Km(A, r0), with a left Krylov
constraints subspace Lm := Km(AT , r̃0) and iterates given by

Find xm ∈ x0 +Km(A, r0) such that b−Axm ⊥ Km(AT , r̃0).

▶ From a two-sided Lanczos procedure, we get Vm,Wm ∈ Rn×m such that

range(Vm) = Km(A, r0) and range(Wm) = Km(AT , r̃0)

so that xm ∈ x0 +Km(A, r0) implies that there exists ỹ ∈ Rm such that
xm = x0 + Vmỹ. Along with the Petrov-Galerkin condition, this yields

W T
m(b−A(x0 + Vmỹ)) = 0

W T
mr0 −W T

mAVmỹ =0

βW T
mv1 − Tmỹ =0

so that the bi-orthonormality of the bases implies Tmỹ = βe
(m)
1 .

Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations, Journal of Research of the National
Bureau of Standards, 49, 33–53.
Fletcher, R. (1976). Conjugate gradient methods for indefinite systems, in “Proceeding of the Dundee Conference on
Numerical Analysis 1975”, G. A. Watson (Editor), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 506, pp.
73–89.
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Bi-conjugate gradient (BiCG) method, cont’d1
▶ Analogously to the CG method, we can introduce an LU decomposition

with no pivoting of the tridiagonal Tm to derive the BiCG iteration.
This leads to the following algorithm:

Algorithm 9 BiCG: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: Pick r̃0 such that (r0, r̃0) ̸= 0 ▷ E.g., r̃0 := r0
3: p1 := r0; p̃1 := r̃0
4: for j = 1, 2 . . . do
5: αj := (rj−1, r̃j−1)/(Apj , p̃j)
6: xj := xj−1 + αjpj
7: rj := rj−1 − αjApj
8: if ∥rj∥2 < ε∥b∥2 then Stop
9: r̃j := r̃j−1 − αjA

T p̃j
10: βj := (rj , r̃j)/(rj−1, r̃j−1)
11: pj+1 := rj + βjpj
12: p̃j+1 := r̃j + βj p̃j

Clearly, if A is SPD and r̃0 = r0, then the BICG iterates are the same as
those from CG.
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Bi-conjugate gradient (BiCG) method, cont’d2
▶ Six vectors need be allocated for a practical implementation:

Algorithm 10 Practical BiCG: (x0, ε) 7→ xj
1: Allocate memory for x, p, p̃, w, r, r̃ ∈ Rn

2: r := b−Ax0
3: Pick r̃ such that (r, r̃) ̸= 0 ▷ E.g., r̃ := r
4: p := r; r̃ := p̃
5: for j = 1, 2 . . . do
6: w := Ap
7: α := (r, r̃)/(w, p̃)
8: β := 1/(r, r̃)
9: x := x+ αp

10: r := r − αw
11: if ∥r∥2 < ε∥b∥2 then Stop
12: w := AT p̃
13: r̃ := r̃ − αw
14: β := β · (r, r̃)
15: p := r + βp
16: p̃ := r̃ + βp̃
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Bi-conjugate gradient (BiCG) method, cont’d3
▶ In addition to Ax = b, a dual system

AT x̃ = b̃

can be solved by BiCG iteration upon setting r̃0 := b̃−AT x̃0 for some
initial iterate x̃0, in which the dual iterate, given by

x̃j := x̃j−1 + αj p̃j

is such that

x̃j ∈ x̃0 +Kj(A
T , r̃0) with r̃j := b̃−AT x̃j ⊥ Kj(A, r0).

▶ Similarly as for CG, we assumed that Tj admits an LU decomposition
without pivoting. However, for a general matrix A, this may not be true.
We have also assumed that Tj is not singular which also is not guaranteed.

▶ Analogously to what we did for the CG method, one can show that the
residuals and their duals are orthogonal, while the search directions and
their duals are A-orthogonal. That is

(ri, r̃j) = 0 and (Api, p̃j) = 0 for i ̸= j.
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Quasi-minimal residual (QMR) method
▶ The BiCG method is notoriously unstable (Gutknecht & Strakoš, 2000)

and it often displays irregular convergence behaviors, i.e., no monotone
decrease of residual norm, unlike GMRES.

▶ The QMR method (Freund & Nachtigal, 1991) can be viewed as an
extension of the GMRES method in the sense that it builds iterates as

Find xm ∈ x0 +Km(A, r0)

such that ∥rm∥2 := ∥b−Axm∥2 = min
x∈x0+Km(A,r0)

∥b−Ax∥2

with the important difference that the basis of Km(A, r0) is produced by
bi-orthogonalization.
For a given Vm+1 such that range(Vm) = Km(A, r0), similarly as with
GMRES, we have

rm := b−Axm = r0 −AVmỹ = βv1 − Vm+1Tmỹ = Vm+1(βe
m+1
1 − Tmỹ).

Gutknecht, M. H. & Strakoš, Z. (2000). Accuracy of two three-term and three two-term recurrences for Krylov space
solvers, SIAM Journal on Matrix Analysis and Applications, 22, 213–229.
Freund, R. W. & Nachtigal, N. M. (1991). QMR: A quasi-minimal residual method for non-Hermitian linear systems,
SIAM Journal: Numer. Math. 60, pp. 315–339.
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Quasi-minimal residual (QMR) method, cont’d1

The main difference with a basis produced by Arnoldi is that Vm+1 is not
orthogonal. Thus, we are left with

∥rm∥2 = ∥Vm+1(βe
(m+1)
1 − Tmỹ)∥2

Although we have

∥rm∥2 ≤ ∥Vm+1∥2 · ∥βe(m+1)
1 − Tmỹ∥2

Like in GMRES, we still form the iterate by minimizing ∥βe(m+1)
1 − Tmy∥2,

which here, is referred to as the quasi-residual norm, hence the name of
quasi-minimal residual method.

▶ Because of the tridiagonal structure of Tm, minimizing the quasi-residual
norm is a bit simpler than minimizing the residual norm in GMRES.
In particular, updating the QR factorization of the tridiagonal requires only
up to three applications of Givens rotations.
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Quasi-minimal residual (QMR) method, cont’d2
▶ The least-squares problem miny∈Rj ∥βe(j+1)

1 − Tjy∥2 is, once again, solved
by making use of a QR decomposition of Tj . We have

Rj =

[
Rj

01×j

]
= G

(j+1)
j . . . G

(j+1)
1 Tj = G

(j+1)
j G

(j+1)
j−1 G

(j+1)
j−2 Tj = Qj+1Tj

and gj := βQj+1e
(j+1)
1 , so that the least-squares problem is recast in a

banded triangular linear system:
Rj ỹ = gj [1 : j]

where Rj has a bandwidth of three. Rj and gj are updated as follows,
with minimal effort, given Rj−1 and gj−1:

Rj =

 Rj−1 G
(j+1)
j [1 : j, 1 : j + 1]

[
G

(j)
j−1G

(j)
j−2t1:j,j
βj

]
01×j−1 0


so that updating Rj boils down to computing

Rj [1 : j + 1, j] = G
(j+1)
j G

(j+1)
j−1 G

(j+1)
j−2 t1:j+1,j .
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Quasi-minimal residual (QMR) method, cont’d3
and gj is updated as follows:

gj =


γ1
...

γj−1

cjγj
−sjγj

 where

γ1...
γj

 := gj−1

with
sj :=

tj+1,j√(
t
(j−1)
jj

)2
+ t2j+1,j

and cj :=
t
(j−1)
j+1,j√(

t
(j−1)
jj

)2
+ t2j+1,j

in which Tj(j) := Rj .
▶ Finally, given Rj ỹ = gj [1 : j], we obtain

rj = Vj+1(βe
(j+1)
1 − Tj ỹ) = Vj+1

[
0j×1

gj [j + 1]

]
so that ∥rj∥2 = |gj [j + 1]|.
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Quasi-minimal residual (QMR) method, cont’d4

▶ Finally, the QMR iteration is given as follows:

Algorithm 11 QMR: (x0, ε) 7→ xj

1: // Allocate T ∈ R(m+1)×m and g ∈ Rm+1

2: r0 := b−Ax0; β := ∥r0∥2; g := [β, 0, . . . , 0]T ; v1 := r0/β
3: Pick r̃0 such that (r0, r̃0) ̸= 0 ▷ E.g., r̃0 := r0
4: w1 := βr̃0/(r0, r̃0)
5: for j = 1, 2 . . . do
6: Get vj+1 and t1:j+1,j from iteration of two-sided Lanczos
7: // Apply G

(j+1)
j−2 to t1:j+1,j .

8: if j > 2 then

9:
[
tj−2,j

tj−1,j

]
:=

[
c s
−s c

] [
tj−2,j

tj−1,j

]
where

{
s := tj−1,j−2/(t

2
j−2,j−2 + t2j−1,j−2)

1/2

c := tj−2,j−2/(t
2
j−2,j−2 + t2j−1,j−2)

1/2

10: // Apply G
(j+1)
j−1 to t1:j+1,j .

11: if j > 1 then

12:
[
tj−1,j

tjj

]
:=

[
c s
−s c

] [
tj−1,j

tjj

]
where

{
s := tj,j−1/(t

2
j−1,j−1 + t2j,j−1)

1/2

c := tj−1,j−1/(t
2
j−1,j−1 + t2j,j−1)

1/2
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Quasi-minimal residual (QMR) method, cont’d5

▶ Finally, the QMR iteration is given as follows:

Algorithm 11 QMR: (x0, ε) 7→ xj

12: // Apply G
(j+1)
j to g[1 : j + 1] and t1:j+1,j

13:
[

g[j]

g[j + 1]

]
:=

[
c s
−s c

] [
g[j]

0

]
where

{
s := tj+1,j/(t

2
jj + t2j+1,j)

1/2

c := tjj/(t
2
jj + t2j+1,j)

1/2

14: tjj := c · tjj + s · tj+1,j ; tj+1,j := 0

15: pj := (vj − τ
(2)
j−1pj−1 − τ

(3)
j−2pj−2)/τ

(1)
j where p0 := 0 and p−1 := 0

16: xj := xj−1 + g[j]pj
17: if |g[j + 1]| < ε∥b∥2 then Stop ▷ Stop if ∥rj∥2 < ε∥b∥2

The QMR usually exhibits a much smoother convergence behavior than
BiCG.
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Transpose-free methods
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Matrix polynomials
▶ Let A ∈ Rn×n, and consider the scalar polynomial of degree m given by

pm :C → C
t 7→ a0 + a1t+ a2t

2 + · · ·+ amt
m.

That is, am ̸= 0. An associated matrix polynomial is then given by

pm :Rn×n → Rn×n

A 7→ a0In + a1A+ a2A
2 + · · ·+ amA

m.

Theorem (Eigenvalues of matrix polynomials)
Let p : C → C be a scalar polynomial, and θ ∈ C be an eigenvalue of
A ∈ Rn×n with an associated eigenvector y ∈ Cn. Then, p(θ) is an
eigenvalue of p(A), and y is an associated eigenvector, i.e., p(A)y = p(θ)y.

Theorem (Cayley-Hamilton theorem)
Let PA(t) := det(An − tIn) denote the (scalar) characteristic polynomial of
A ∈ Rn×n, then PA(A) = 0n×n.
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Matrix polynomials, cont’d
▶ The Cayley-Hamilton theorem guarantees that, for any matrix A ∈ Rn×n,

there is a polynomial p of degree no greater than n such that p(A) = 0.
A polynomial whose value is zero at the matrix is called the annihilating
polynomial.

▶ Since p(A) = 0 implies αp(A) = 0 for all α ∈ C, we may always normalize
a polynomial so that its highest-order term is 1. Such polynomials are
called monic polynomials.

Theorem (Minimum polynomial of a matrix)

- For a matrix A ∈ Rn×n, there exists a unique monic polynomial qA of
minimum degree, no greater than n, that annihilates the matrix A, i.e.,
qA(A) = 0n×n.

- The unique monic polynomial qA of minimum degree that annihilates the
matrix A is called the minimal polynomial of A.

▶ Similar matrices have the same minimal polynomial.
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Krylov subspaces and matrix polynomials
▶ All Krylov subspace methods introduced for the solving of linear systems

construct iterates of the form xm ∈ x0 +Km(A, r0) where, we recall that

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}

so that, for every such iterate xm, there exists a polynomial pm−1 of
degree m− 1 such that

xm = x0 + pm−1(A)r0.

Moreover, for the residual associated to such iterates, we have

rm := b−Axm = r0 −Apm−1(A)r0

so that there exists a polynomial of degree no greater than m, which we
denote by φm, such that

rm = φm(A)r0.

We refer to φm as the residual polynomial.
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Conjugate gradient squared (CGS) method
▶ While both the BiCG and QMR methods offer alternatives to solve

non-symmetric linear systems on the basis of short-recurrence relations,
they do both require to be able to compute x 7→ ATx.
The CGS method (Sonneveld, 1989) was introduced as a means to to
approximate the solution of non-symmetric linear systems, on the basis on
short-recurrence relations, without the need to be able to evaluate x 7→ Ax.

▶ The CGS method is derived from the perspective of BiCG iterates, that is,

xj ∈ x0 +Kj(A, r0) such that rj := b−Axj ⊥ Kj(A
T , r̃0)

for which we saw that, there exists a residual polynomial φj of degree no
greater than j, and such that

rj = φj(A)r0.

Without loss of generality, we assume φj(0) = 1.
Sonneveld, P. (1989). CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM Journal on Scientific
and Statistical Computing, 10 , 36–52.
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Conjugate gradient squared (CGS) method, cont’d1
▶ Furthermore, there exists another polynomial ψj of degree no greater than
j such that the BiCG search direction pj+1 is given by

pj+1 = ψj(A)r0.

▶ The BiCG dual vectors r̃j and p̃j+1 being updated after the same schemes
as those of the vectors rj and pj+1, respectively, except with AT instead
of A, we then have

r̃j = φ(AT )r̃0 and p̃j+1 = ψj(A
T )r̃0 for j = 1, 2, . . . ,m.

▶ The diagonal and super-diagonal components of the tridiagonal, αj and βj ,
respectively, formed by the BiCG iteration, can then be recast as follows:

αj =
(rj−1, r̃j−1)

(Apj , p̃j)
=

(φj−1(A)r0, φj−1(A
T )r̃0)

(Aψj−1(A)r0, ψj−1(AT )r̃0)
=

(φ2
j−1(A)r0, r̃0)

(Aψ2
j−1(A)r0, r̃0)

,

βj =
(rj , r̃j)

(rj−1, r̃j−1)
=

(φj(A)r0, φj(A
T )r̃0)

(φj−1(A)r0, φj−1(AT )r̃0)
=

(φ2
j (A)r0, r̃0)

(φ2
j−1(A)r0, r̃0)

which indicates that it is possible to compute xj+1 and rj+1 without any
evaluation of x 7→ ATx.
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Conjugate gradient squared (CGS) method, cont’d2
▶ The problem we are left with is to find update formulae for

φ2
j (A)r0 and ψ2

j (A)r0 .

▶ The update formula for the BiCG residual is recast into
rj = rj−1 − αjApj

φj(A)r0 =φj−1(A)r0 − αjAψj−1(A)r0

which, as it holds irrespective of r0, leads to
φj(A) = φj−1(A)− αjAψj−1(A) where φ0(A) = ψ0(A) = In. (6)

Irrespective of the polynomial p, we have Ap(A) = p(A)A, so that
φ2
j (A) = φ2

j−1(A) + α2
jA

2ψ2
j−1(A)− 2αjAφj−1(A)ψj−1(A). (7)

▶ Similarly, from the update formula for the BiCG search direction, we get
pj+1 = rj + βjpj

ψj(A)r0 =φj(A)r0 + βjψj−1(A)r0

ψj(A) =φj(A) + βjψj−1(A) (8)

so that we obtain ψ2
j (A) = φ2

j (A) + β2jψ
2
j−1(A) + 2βjφj(A)ψj−1(A). (9)
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Conjugate gradient squared (CGS) method, cont’d3

▶ The cross-term of Eq. (7) is developed as follows using Eq. (8):

φj−1(A)ψj−1(A) =φj−1(A)(φj−1(A) + βj−1ψj−2(A))

=φ2
j−1(A) + βj−1φj−1(A)ψj−2(A). (10)

Using Eqs. (6) and (8), we get the following expression for the cross-term
of Eq. (9):

φj(A)ψj−1(A) = (φj−1(A)− αjAψj−1(A))ψj−1(A)

=φj−1(A)ψj−1(A)− αjAψ
2
j−1(A)

=φj−1(A)(φj−1(A) + βj−1ψj−2(A))− αjAψ
2
j−1(A)

=φ2
j−1(A) + βj−1φj−1(A)ψj−2(A)− αjAψ

2
j−1(A) (11)

where β0 := 0.
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Conjugate gradient squared (CGS) method, cont’d4
▶ We are now equipped to develop the update formulae of φ2

j (A) and ψ2
j (A) :

- First, using Eq. (6), ϕ0(A) = ψ0(A) = In and Eq. (8), we obtain:
φ2
1(A) = (φ0(A)− α1Aψ0(A))

2 = (In − α1A)
2

φ1(A)ψ0(A) = φ1(A) = φ0(A)− α1Aψ0(A) = In − α1A

ψ2
1(A) = (φ1(A) + β1ψ0(A))

2 = (φ1(A) + β1In)
2

.

- Then using Eqs. (7) with Eq. (10), Eq. (11), and Eq. (9), respectively,
for j = 2, 3, . . . ,m, we get:
φ2
j (A) = φ2

j−1(A) + α2
jA

2ψ2
j−1(A)

−2αjA
(
φ2
j−1(A) + βj−1φj−1(A)ψj−2(A)

)
φj(A)ψj−1(A) = φ2

j−1(A) + βj−1φj−1(A)ψj−2(A)− αjAψ
2
j−1(A)

ψ2
j (A) = φ2

j (A) + β2jψ
2
j−1(A) + 2βjφj(A)ψj−1(A)

.
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Conjugate gradient squared (CGS) method, cont’d5
▶ Let us define

r̂j := φ2
j (A)r0, p̂j+1 := ψ2

j (A)r0 and q̂j := φj(A)ψj−1(A)r0.

Using the update formulae from the last slide, we get

r̂j =φ2
j−1(A)r0 + α2

jA
2ψ2

j−1(A)r0

− 2αjA
(
φ2
j−1(A) + βj−1φj−1(A)ψj−2(A)

)
r0

= r̂j−1 + α2
jA

2p̂j − 2αjA (r̂j−1 + βj−1p̂j−1)

= r̂j−1 + αjA (αjAp̂j − 2r̂j−1 − 2βj−1p̂j−1) .

As well as, q̂j =φj(A)ψj−1(A)r0

=φ2
j−1(A)r0 + βj−1φj−1(A)ψj−2(A)r0 − αjAψ

2
j−1(A)r0

= r̂j−1 + βj−1q̂j−1 − αjAp̂j .

and p̂j+1 =φ2
j (A)r0 + β2jψ

2
j−1(A)r0 + 2βjφj(A)ψj−1(A)r0

= r̂j + β2j p̂j + 2βj q̂j .
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Conjugate gradient squared (CGS) method, cont’d6
▶ Still using the update formulae for φ2

j (A) and ψ2
j (A), we get:

αj =
(φ2

j−1(A)r0, r̃0)

(Aψ2
j−1(A)r0, r̃0)

=
(r̂j−1, r̃0)

(Ap̂j , r̃0)

as well as

βj =
(φ2

j (A)r0, r̃0)

(φ2
j−1(A)r0, r̃0)

=
(r̂j , r̃0)

(r̂j−1, r̃0)
.

▶ For the sake of brevity, let uj := r̂j + βj q̂j , so that we have:

q̂j = uj−1 − αjAp̂j ,

r̂j = r̂j−1 + αjA(αjAp̂j − 2uj−1)

= r̂j−1 + αjA(uj−1 − q̂j − 2uj−1)

= r̂j−1 − αjA(q̂j + uj−1),

p̂j+1 = uj + β2j p̂j + βj q̂j .
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Conjugate gradient squared (CGS) method, cont’d7
▶ If the BiCG method converges, then ∥rj∥2 = ∥φj(A)r0∥2 tends to zero.

Then, one might expect that ∥r̂j∥2 = ∥φ2
j (A)r0∥2 tends faster to zero.

Hence, in an attempt to accelerate convergence, the CGS iterate xj is
defined so as to yield

b−Axj = r̂j .

Given our update formula for r̂j , we get:

b−Axj = r̂j−1 − αjA(q̂j + uj−1)

Axj = b− r̂j−1 + αjA(q̂j + uj−1)

Axj = b− (b−Axj−1) + αjA(q̂j + uj−1)

Axj =Axj−1 + αjA(q̂j + uj−1)

so that

xj = xj−1 + αj(q̂j + uj−1) .
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Conjugate gradient squared (CGS) method, cont’d8
▶ Eventually, we obtain the following algorithm:
Algorithm 12 CGS: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: Pick r̃0 such that (r0, r̃0) ̸= 0 ▷ E.g., r̃0 = r0
3: p̂1 := r0; r̂0 := r0; u0 := r0
4: for j = 1, 2 . . . do
5: αj := (r̂j−1, r̃0)/(Ap̂j , r̃0)
6: q̂j := uj−1 − αjAp̂j
7: xj := xj−1 + αj(q̂j + uj−1)
8: r̂j := r̂j−1 − αjA(q̂j + uj−1)
9: if ∥r̂j∥2 < ε∥b∥2 then Stop

10: βj := (r̂j , r̃0)/(r̂j−1, r̃0)
11: uj := r̂j + βj q̂j
12: p̂j+1 := uj + β2

j p̂j + βj q̂j

- A CGS iteration entails two matrix-vector products, which is similar to
BiCG, the difference being that CGS does not need to evaluate x 7→ ATx.

- When it converges, CGS often does so about twice as fast as BiCG.
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Conjugate gradient squared (CGS) method, cont’d9

- However, as the residual polynomial is squared, i.e., r̂j = φ2
j (A)r0 where

rj = φj(A)r0, if the residual rj increases in BiCG, then it does so even
more significantly in CGS.
As a result, CGS convergence curves can exhibit important oscillations,
sometimes leading to numerical instability.
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Bi-conjugate gradient stabilized (BiCGSTAB) method
▶ The CGS method, which is based on squaring the BiCG residual

polynomial, i.e., r̂j := φ2
j (A)r0, is prone to substantial build-up of

rounding error, possibly even overflow.
▶ The BiCGSTAB method (van der Vorst, 1992) is a variant of CGS

developed to remedy unwanted oscillations, hence the name of BiCG
stabilized.
BiCGSTAB iterates are defined so as to yield a residual of the form

rj = ϕj(A)φj(A)r0

where φj is, still, the residual polynomial of the BiCG method, and ϕj is a
new j-th degree polynomial introduced to remedy those potentially
spurious oscillations, and defined as follows:

ϕ0(A) = In and ϕj(A) = (In − ωjA)ϕj−1(A) for j = 1, 2, . . .

where ωj is chosen so as to minimize the residual norm.
van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631–644.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d1

Then, the search direction is defined as

pj+1 = ϕj(A)ψj(A)r0 for j = 1, 2, . . .

where the polynomial ψj is the search direction polynomial of CGS.
We thus have the following update formulae:

φj(A) = φj−1(A)− αjAψj−1(A)

ψj(A) = φj(A) + βjψj−1(A)

ϕj(A) = (In − ωjA)ϕj−1(A)

for j = 1, 2, . . . (12)

where φ0(A) = ψ0(A) = ϕ0(A) = In.
▶ We can then develop the following update formula for the polynomial of

the BiCGSTAB residual:

ϕj(A)φj(A) = (In − ωjA)ϕj−1(A) (φj−1(A)− αjAψj−1(A))

= (In − ωjA) (ϕj−1(A)φj−1(A)− αjAϕj−1(A)ψj−1(A)) .
(13)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d2

▶ From rj = ϕj(A)φj(A)r0, Eq. (13) and pj+1 = ϕj(A)ψj(A)r0, we get the
following residual update formula:

rj =(In − ωjA) (ϕj−1(A)φj−1(A)− αjAϕj−1(A)ψj−1(A)) r0

=(In − ωjA) (ϕj−1(A)φj−1(A)r0 − αjAϕj−1(A)ψj−1(A)r0)

= (In − ωjA) (rj−1 − αjApj) .

▶ From pj+1 = ϕj(A)ψj(A)r0, rj = ϕj(A)φj(A)r0 and Eq. (12), we get the
following expression for the update of the search direction:

pj+1 =ϕj(A) (φj(A) + βjψj−1(A)) r0

=ϕj(A)φj(A)r0 + βjϕj(A)ψj−1(A)r0

= rj + βj(In − ωjA)ϕj−1(A)ψj−1(A)r0

= rj + βj(In − ωjA)pj .
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d3
▶ Similarly as for BiCG and CGS, we have

αj =
(φj−1(A)r0, φj−1(A

T )r̃0)

(Aψj−1(A)r0, ψj−1(AT )r̃0)
and βj =

(φj(A)r0, φj(A
T )r̃0)

(φj−1(A)r0, φj−1(AT )r̃0)
.

However, unlike with CGS, we do not intend to compute the squared
polynomials φ2

j (A) and ψ2
j (A). We proceed as follows.

- First, from the update formulae for ϕj and ψj in Eq. (12), we have

φj(A
T ) = −αjA

Tφj−1(A
T ) + φj−1(A

T )− αjβj−1A
Tψj−2(A

T ),

which implies that the highest-order term of φj(A
T ) is the same as that of

−αjA
Tφj−1(A

T ). Thus, proceeding by induction, we find that this term is

(−1)jαjαj−1 · · ·α1(A
T )j .

- Let us then restate the orthogonality of BiCG residuals with their duals as
follows: (

φi(A)r0, φj(A
T )r̃0

)
= 0 for i ̸= j.

As this holds for all j ̸= i, this implies
(
φi(A)r0, (A

T )j r̃0
)
= 0 for i ̸= j.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d4

As a result, the only term of φj(A
T ) which contributes to the non-zero

part of
(
φj(A)r0, φj(A

T )r̃0
)

is the highest-order one. Thus, we have:(
φj(A)r0, φj(A

T )r̃0
)
= (−1)jαjαj−1 · · ·α1

(
φj(A)r0, (A

T )j r̃0
)
. (14)

- Secondly, from the update formula of ϕj in Eq. (12), we have:

ϕj(A
T ) = (In − ωjA)ϕj−1(A

T ) = −ωjA
Tϕj−1(A

T ) + ϕj−1(A
T ),

which indicates that the highest-order term of ϕj(AT ) is the same as that
of −ωjA

Tϕj−1(A
T ). Thus, by induction again, we get that this term is

(−1)jωjωj−1 · · ·ω1(A
T )j .

- As we have previously stated that
(
φi(A)r0, (A

T )j r̃0
)
= 0 for all i ̸= j, we

have that the only term of ϕj(AT ) which contributes to the non-zero part
of
(
φj(A)r0, ϕj(A

T )r̃0
)

is the highest-order one. Therefore, we have:(
φj(A)r0, ϕj(A

T )r̃0
)
= (−1)jωjωj−1 · · ·ω1

(
φj(A)r0, (A

T )j r̃0
)
. (15)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d5

- Now, by combining Eqs. (14) and (15), we obtain(
φj(A)r0, φj(A

T )r̃0
)
=
αjαj−1 · · ·α1

ωjωj−1 · · ·ω1

(
φj(A)r0, ϕj(A

T )r̃0
)
. (16)

Consequently, using Eq. (16), the formula for the βj can be recast as
follows:

βj =
(φj(A)r0, φj(A

T )r̃0)

(φj−1(A)r0, φj−1(AT )r̃0)

=
αj

ωj
·
(
φj(A)r0, ϕj(A

T )r̃0
)

(φj−1(A)r0, ϕj−1(AT )r̃0)

=
αj

ωj
· (ϕj(A)φj(A)r0, r̃0)

(ϕj−1(A)φj−1(A)r0, r̃0)

=
αj

ωj
· (rj , r̃0)

(rj−1, r̃0)
.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d6

- In order to find an adequate formula for αj , we now work on simplifying(
Aψj−1(A)r0, ψj−1(A

T )r̃0
)
.

From the update formula of ψj given in Eq. (12), we get:

ψj(A
T ) = φj(A

T ) + βjψj−1(A
T ),

which indicates that the highest-order term of ψj(A
T ) is the same as that

of φj(A
T ). We recall this term is

(−1)jαjαj−1 · · ·α1(A
T )j .

- We then restate the A-orthogonality of BiCG search directions with their
duals as follows: (

Aψi(A)r0, ψj(A
T )r̃0

)
= 0 for i ̸= j.

As this holds for all j ̸= i, this implies
(
Aψi(A)r0, (A

T )j r̃0
)
= 0 for i ̸= j.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d7
Therefore, the only term of ψj(A

T ) which contributes to the non-zero part
of
(
Aψj(A)r0, ψj(A

T )r̃0
)

is the highest order. Thus, we have:(
Aψj(A)r0, ψj(A

T )r̃0
)
= (−1)αjαj−1 · · ·α1

(
Aψj(A)r0, (A

T )j r̃0
)
. (17)

- Analogously, we can show that(
Aψj(A)r0, ϕj(A

T )r̃0
)
= (−1)ωjωj−1 · · ·ω1

(
Aψj(A)r0, ϕj(A

T )r̃0
)
.

(18)- Then, upon combining Eqs. (17) and (18), we obtain:(
Aψj(A)r0, ψj(A

T )r̃0
)
=
αjαj−1 · · ·α1

ωjωj−1 · · ·ω1

(
Aψj(A)r0, ϕj(A

T )r̃0
)
. (19)

- Finally, an update formula for αj is obtained as follows by combining
Eqs. (14), (15) and (19):

αj =
(φj−1(A)r0, φj−1(A

T )r̃0)

(Aψj−1(A)r0, ψj−1(AT )r̃0)

=
(φj−1(A)r0, ϕj−1(A

T )r̃0)

(Aψj−1(A)r0, ϕj−1(AT )r̃0)
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d8
so that

αj =
(ϕj−1(A)φj−1(A)r0, r̃0)

(Aϕj−1(A)ψj−1(A)r0, r̃0)
=

(rj−1, r̃0)

(Apj−1, r̃0)
.

▶ In summary, we have obtained the following updating formula:{
rj = (In − ωjA)(rj−1 − αjApj) where αj = (rj−1, r̃0)/(Apj , r̃0)

pj+1 = rj + βj(In − ωjA)pj where βj = αj(rj , r̃0)/ (ωj(rj−1, r̃0))

for j = 1, 2 . . . where p1 := r0.
▶ Using the update formulae found for rj and pj+1, we can find the update

formula of the BiCGSTAB iterate as follows:
b−Axj = rj

b−Axj =(In − ωjA)(rj−1 − αjApj)

b−Axj = rj−1 − αjApj − ωjA(rj−1 − αjApj)

Axj = b− rj−1 + αjApj + ωjA(rj−1 − αjApj)

Axj = b− (b−Axj−1) + αjApj + ωjA(rj−1 − αjApj)

so that xj = xj−1 + αjpj + ωj(rj−1 − αjApj) .
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d9

▶ All what remains to do is to define ωj . As previously mentioned, our goal
is to pick ωj so as to minimize the residual norm ∥rj∥2, that is

ωj = argmin
ω∈R

∥(In − ωA)(rj−1 − αjApj)∥2.

For this, let qj := rj−1 − αjApj , so that we aim at finding

min
ω∈R

∥(In − ωA)qj∥2

which yields

ωj =
(qj , Aqj)

(Aqj , Aqj)
.
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Bi-conjugate gradient stabilized (BiCGSTAB) method, cont’d10

▶ Eventually, BiCGSTAB iterations are given as follows:

Algorithm 13 BiCGSTAB: (x0, ε) 7→ xj
1: r0 := b−Ax0
2: Pick r̃0 such that (r0, r̃0) ̸= 0 ▷ E.g., r̃0 = r0
3: p1 := r0
4: for j = 1, 2 . . . do
5: αj := (rj−1, r̃0)/(Apj , r̃0)
6: qj := rj−1 − αjApj
7: ωj := (qj , Aqj)/(Aqj , Aqj)
8: xj := xj−1 + αjpj + ωjqj
9: rj := qj − ωjAqj

10: if ∥r̃j∥2 < ε∥b∥2 then Stop
11: βj := (αj/ωj) · (rj , r̃0)/(rj−1, r̃0)
12: pj+1 := rj + βj(pj − ωjApj)
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Summary
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Flowchart of Krylov subspace-based linear iterative solvers
▶ The following flowchart can be used for practical solver selection:

Is the matrix symmetric?

Is the matrix SPD? Is the number of 
iterations small?

Can we 
compute 
x→ATx ?

Yes No

GMRES

Bi-CGSTAB, 
CGSQMR

MINRES, 
SYMMLQCG

Yes Yes

Yes

No No

No
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Things we did not talk about
▶ Breakdowns.
▶ Convergence theories.
▶ Effects of finite precision.
▶ Preconditioning (Lecture 14).
▶ Restarting strategies (Lecture 15).
▶ Block variants for multiple simultaneously available right-hand sides.
▶ Communication-avoiding variants.
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