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Introduction
▶ The rate of convergence of Krylov subspace methods applied to

solving Ax = b is strongly influenced by the eigenvalues distribution of
the matrix A and, in the case of non-symmetric matrices, by the
eigenvectors as well.
If the matrix A is ill-conditioned, or has unfavorable spectral properties,
then, Krylov subspace methods applied to solving Ax = b are likely to
converge very slowly.

▶ Preconditioning, which consists of transforming an intractable problem
into a more efficiently solvable form, is an essential component to improve
the efficiency and robustness of Krylov subspace iteration methods.
For the iterative solve of Ax = b with A ∈ Rn×n, a preconditioner, which
we denote by M , is, in its general form, a map

x ∈ Rn 7→ M−1x ∈ Rn

which can be efficiently evaluated, and such that M is a good
approximation of A, in some sense. The map must not be linear.
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Introduction, cont’d1
▶ In agreement with this loose definition of preconditioning, a preconditioner

can consist of
- A factorization of M which allows for efficient solve of Mz = x,
- A (sparse) matrix M−1 which allows for efficient matrix-vector product
x 7→ M−1x evaluation,

- An efficient matrix-free linear map x 7→ M−1x,
- An iterative linear solver applied to Mz = x.

▶ We denote three different ways to apply a preconditioner M to a linear
system Ax = b:
- Left-preconditioning, which applies the preconditioner from the left:

M−1Ax = M−1b .

- Right-preconditioning, which applies the preconditioner from the right:

AM−1u = b with x = M−1u .

- Split-preconditioning, which, for a given factorization M = MLMR,
applies the preconditioner from both side:

M−1
L AM−1

R u = M−1
L b with x = M−1

R u .

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 2 / 55



Introduction, cont’d2
▶ Here, we assume that both A and M are non-singular.

The left-preconditioned M−1A, right-preconditioned AM−1 and
split-preconditioned M−1

L AM−1
R coefficient matrices are similar.

Thus, they share the same eigenvalue distribution although they do
have distinct eigenvector sets. As a result,
- If both A and M are SPD, then the convergence behavior of CG

applied to a preconditioned system is the same irrespective of the
type of preconditioning, i.e., left, right, or split.

- For non-normal matrices A and M , the Krylov subspace solver may
behave very differently from one type of preconditioning to
another, as the convergence behavior depends on the eigenvector set.

Indeed, the behavior of a Krylov subspace linear iterative solver depends on
both the eigenvalue distribution, and the conditioning of eigenvectors of
the preconditioned coefficient matrix.
A valid strategy for the design of a preconditioner is to make the
preconditioned coefficient matrix as close to normal as possible, in the
limit of which, eigenvectors are ideally conditioned.
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Preconditioned conjugate gradient (PCG) method
▶ The symmetry of the coefficient matrix, i.e., AT = A, an essential feature

in the definition and derivation of the CG method, is not preserved,
neither through left-preconditioning, nor through
right-preconditioning, i.e.,

(M−1A)T ̸= M−1A and (AM−1)T ̸= AM−1

even if the preconditioner, M , is symmetric.
▶ A priori, preserving the symmetry of the coefficient matrix is essential for

the defintion and derivation of a preconditioned conjugate gradient
(PCG) method.
However, since our definition and derivation of the CG algorithm in lecture
13 relies on an abstract definition of the inner product, it is sufficient to
find an inner product with respect to which the preconditioned
coefficient matrix is self-adjoint.
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Preconditioned conjugate gradient (PCG) method, cont’d1
▶ The M -inner product is such that:

(x, y)M := (Mx, y) = (x,MT y) ∀ x, y ∈ Rn

where (·, ·) is the dot product.
Then, the symmetry of M and A implies that M−1A is self-adjoint
for the M-inner product. That is:

(M−1Ax, y)M =(MM−1Ax, y)

= (Ax, y)

= (x,AT y)

= (x,Ay)

= (x,MM−1Ay)

= (MTx,M−1Ay)

= (Mx,M−1Ay)

so that (M−1Ax, y)M = (x,M−1Ay)M .
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Preconditioned conjugate gradient (PCG) method, cont’d2

▶ We can then rewrite the CG algorithm for the left-preconditioned system
M−1Ax = M−1b using an M -inner product:

Algorithm 1 CG: (x0, ε) 7→ xj
1: r0 := b−Ax0

2: p1 := r0
3: for j = 1, 2 . . . do
4: αj := (rj−1,rj−1)/(Apj ,pj)
5: xj := xj−1 + αjpj
6: rj := rj−1 − αjApj
7: if ∥rj∥2 < ε∥b∥2 then Stop
8: βj := (rj ,rj)/(rj−1,rj−1)
9: pj+1 := rj + βjpj
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Preconditioned conjugate gradient (PCG) method, cont’d2

▶ We can then rewrite the CG algorithm for the left-preconditioned system
M−1Ax = M−1b using an M -inner product:

Algorithm 2 PCG: (x0, ε) 7→ xj

1: z0 := M−1b−M−1Ax0 ▷ rj 7→ zj
2: p1 := z0
3: for j = 1, 2 . . . do
4: αj := (zj−1,zj−1)M/(M−1Apj ,pj)M
5: xj := xj−1 + αjpj
6: zj := zj−1 − αjM

−1Apj
7: if ∥M−1zj∥2 < ε∥b∥2 then Stop ▷ Keep criterion as ∥b−Axj∥ < ε∥b∥2
8: βj := (zj ,zj)M/(zj−1,zj−1)M
9: pj+1 := zj + βjpj
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Preconditioned conjugate gradient (PCG) method, cont’d2

▶ We can then rewrite the CG algorithm for the left-preconditioned system
M−1Ax = M−1b using an M -inner product:

Algorithm 2 PCG: (x0, ε) 7→ xj
1: r0 := b−Ax0 ▷ Introduce rj := Mzj
2: z0 := M−1r0
3: p1 := z0
4: for j = 1, 2 . . . do
5: αj := (zj−1,zj−1)M/(M−1Apj ,pj)M
6: xj := xj−1 + αjpj ▷ (zj−1, zj−1)M = (MM−1rj−1, zj−1) = (rj−1, zj−1)
7: rj := rj−1 − αjApj ▷ (M−1Apj , pj)M = (MM−1Apj , pj) = (Apj , pj)
8: zj := M−1rj
9: if ∥rj∥2 < ε∥b∥2 then Stop

10: βj := (zj ,zj)M/(zj−1,zj−1)M
11: pj+1 := zj + βjpj
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Preconditioned conjugate gradient (PCG) method, cont’d2

▶ We can then rewrite the CG algorithm for the left-preconditioned system
M−1Ax = M−1b using an M -inner product:

Algorithm 2 PCG: (x0, ε) 7→ xj
1: r0 := b−Ax0

2: z0 := M−1r0
3: p1 := z0
4: for j = 1, 2 . . . do
5: αj := (rj−1, zj−1)/(Apj , pj)
6: xj := xj−1 + αjpj
7: rj := rj−1 − αjApj
8: zj := M−1rj
9: if ∥rj∥2 < ε∥b∥2 then Stop

10: βj := (rj , zj)/(rj−1, zj−1)
11: pj+1 := zj + βjpj

The resulting PCG algorithm requires one preconditioner application
rj 7→ M−1rj =: zj per iteration, to the non-preconditioned residual.
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Preconditioned conjugate gradient (PCG) method, cont’d3
▶ An alternative derivation of the PCG algorithm is possible through

split-preconditioning.
▶ Since M is SPD, it admits a Cholesky decomposition M = LLT which is

used as follows to split-precondition the linear system Ax = b:

L−1AL−Tu = L−1b with x = L−Tu

where the preconditioned coefficient matrix L−1AL−T is SPD.
Consequently, the CG algorithm can be applied to the split-preconditioned
linear system in order to generate a sequence of iterates u1, u2, . . . , with
an initial guess u0, to approximate u.
From such a sequence, some associated iterates x0, x1, x2, . . . can be
constructed as xj := L−Tuj for j = 0, 1, 2, . . . to approximate the
solution x of the original system.

▶ In what follows, we show that such a sequence of iterates x1, x2, . . . can
be formed, for any initial guess x0, without requiring actual knowledge of
the Cholesky factor L.
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Preconditioned conjugate gradient (PCG) method, cont’d4

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
We obtain the following algorithm:

Algorithm 3 CG: (u0, ε) 7→ uj

1: r̃0 := L−1b− L−1AL−Tu0

2: p̃1 := r̃0
3: for j = 1, 2 . . . do
4: αj := (r̃j−1, r̃j−1)/(L

−1AL−T p̃j , p̃j)
5: uj := uj−1 + αj p̃j
6: r̃j := r̃j−1 − αjL

−1AL−T p̃j
7: if Convergence is achieved then Stop
8: βj := (r̃j , r̃j)/(r̃j−1, r̃j−1)
9: p̃j+1 := r̃j + βj p̃j
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Preconditioned conjugate gradient (PCG) method, cont’d4

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
Instead of the iterate uj , we compute xj := L−Tuj :

Algorithm 3 CG: (u0, ε) 7→ uj

1: r̃0 := L−1b− L−1AL−Tu0

2: p̃1 := r̃0
3: for j = 1, 2 . . . do
4: αj := (r̃j−1, r̃j−1)/(L

−1AL−T p̃j , p̃j)
5: L−Tuj := L−Tuj−1 + αjL

−T p̃j
6: r̃j := r̃j−1 − αjL

−1AL−T p̃j
7: if Convergence is achieved then Stop
8: βj := (r̃j , r̃j)/(r̃j−1, r̃j−1)
9: p̃j+1 := r̃j + βj p̃j
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Preconditioned conjugate gradient (PCG) method, cont’d5

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
Instead of the iterate uj , we compute xj := L−Tuj :

Algorithm 4 PCG: (x0, ε) 7→ xj

1: r̃0 := L−1b− L−1Ax0

2: p̃1 := r̃0
3: for j = 1, 2 . . . do
4: αj := (r̃j−1, r̃j−1)/(L

−1AL−T p̃j , p̃j)
5: xj := xj−1 + αjL

−T p̃j
6: r̃j := r̃j−1 − αjL

−1AL−T p̃j
7: if ∥b−Axj∥2 < ε∥b∥2 then Stop
8: βj := (r̃j , r̃j)/(r̃j−1, r̃j−1)
9: p̃j+1 := r̃j + βj p̃j
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Preconditioned conjugate gradient (PCG) method, cont’d5

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
We introduce the non-preconditioned residual rj := Lr̃j :

Algorithm 4 PCG: (x0, ε) 7→ xj
1: Lr̃0 := b−Ax0

2: p̃1 := L−1Lr̃0
3: for j = 1, 2 . . . do
4: αj := (Lr̃j−1,M

−1Lr̃j−1)/(L
−1AL−T p̃j , p̃j)

5: xj := xj−1 + αjL
−T p̃j

6: Lr̃j := Lr̃j−1 − αjL
−1AL−T p̃j

7: if ∥b−Axj∥2 < ε∥b∥2 then Stop
8: βj := (Lr̃j ,M

−1Lr̃j)/(Lr̃j−1,M
−1Lr̃j−1)

9: p̃j+1 := L−1Lr̃j + βj p̃j
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Preconditioned conjugate gradient (PCG) method, cont’d5

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
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Preconditioned conjugate gradient (PCG) method, cont’d5

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
Consider the transformed search direction pj := L−T p̃j :

Algorithm 4 PCG: (x0, ε) 7→ xj
1: r0 := b−Ax0

2: L−T p̃1 := L−TL−1r0
3: for j = 1, 2 . . . do
4: αj := (rj−1,M

−1rj−1)/(AL−T p̃j , L
−T p̃j)

5: xj := xj−1 + αjL
−T p̃j

6: rj := rj−1 − αjL
−1AL−T p̃j

7: if ∥rj∥2 < ε∥b∥2 then Stop
8: βj := (rj ,M

−1rj)/(rj−1,M
−1rj−1)

9: L−T p̃j+1 := L−TL−1rj + βjL
−T p̃j
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Preconditioned conjugate gradient (PCG) method, cont’d5

▶ We apply the CG algorithm to form iterates denoted by uj and approximate
the solution of the split-preconditioned system L−1AL−Tu = L−1b.
We denote the associated search directions by p̃j .
Finally, let zj := M−1rj :
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Preconditioned conjugate gradient (PCG) method, cont’d6

▶ As previously mentioned, we now see that left- and split-preconditioning
CG are equivalent methods.

▶ Analogously, the right-preconditioned coefficient matrix AM−1 is
self-adjoint with respect to the M−1-inner product, which can be leveraged
into another derivation on an equivalent form of the PCG algorithm.
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Preconditioned GMRES method
▶ For the GMRES method, left-, right- and split-preconditioning exhibit

fundamental differences.
▶ GMRES applied to the left-preconditioned system M−1Ax = M−1x yields:

Algorithm 5 Left-preconditioned GMRES: (x0, ε) 7→ xj

1: z0 := M−1b−M−1Ax0

2: β := ∥z0∥2
3: v1 := z0/β
4: for j = 1, 2 . . . do
5: w := M−1Avj
6: w := Π(j)w ▷ Π(j) is a projector onto span{v1, . . . , vj}⊥
7: Compute h1:j+1,j

8: Solve for ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥ ▷ Still using Givens rotations

9: if ∥βe(j+1)
1 −Hj ỹ∥2 < ε∥M−1b∥2 then Stop

10: vj+1 := w/hj+1,j

11: xj := x0 + Vj ỹ

The residual zj = Vj+1(βe
(j+1)
1 −Hj ỹ) with norm ∥zj∥2 = ∥βe(j+1)

1 −Hj ỹ∥2
is that of the left-preconditioned system, i.e., zj = M−1b−M−1Axj .
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Preconditioned GMRES method, cont’d1
▶ Besides evaluating zj 7→ Mzj , which is not even always possible, there

is no practical way to access the non-preconditioned residual
b−Axj and its norm.
Consequently, convergence has to be monitored in terms of the norm
of the preconditioned residual, i.e., ∥zj∥2 < ε∥M−1b∥2.

▶ The basis v1, . . . , vj generated by left-preconditioned GMRES spans
the Krylov subspace of M−1A generated by z0 := M−1(b−Ax0), i.e.,

span{v1, . . . , vj} = Kj(M
−1A, z0)

and the computed Hessenberg matrix Hj is the projection of M−1A in this
subspace, i.e.,

Hj = V T
j+1M

−1AVj .

▶ The iterates of left-preconditioned GMRES iterations are given by

Find xj ∈ x0 +Kj(M
−1A, z0) s.t. xj = arg min

x∈x0+Kj(M−1A,z0)
∥M−1(b−Ax)∥2.
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Preconditioned GMRES method, cont’d2

▶ A right-preconditioned variant is obtained by applying GMRES to
AM−1u = b, from which an iterate is formed through xj := M−1uj :

Algorithm 6 Right-preconditioned GMRES: (x0, ε) 7→ xj
1: r0 := b−Ax0

2: β := ∥r0∥2
3: v1 := r0/β
4: for j = 1, 2 . . . do
5: w := AM−1vj
6: w := Π(j)w ▷ Π(j) is a projector onto span{v1, . . . , vj}⊥
7: Compute h1:j+1,j

8: Solve for ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥ ▷ Still using Givens rotations

9: if ∥βe(j+1)
1 −Hj ỹ∥2 < ε∥b∥2 then Stop

10: vj+1 := w/hj+1,j

11: xj := x0 +M−1Vj ỹ

The residual rj = Vj+1(βe
(j+1)
1 −Hj ỹ) with norm ∥rj∥2 = ∥βe(j+1)

1 −Hj ỹ∥2
is that of the non-preconditioned system, i.e., rj = b−Axj .
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Preconditioned GMRES method, cont’d3

▶ The basis v1, . . . , vj generated by right-preconditioned GMRES spans
the Krylov subspace of AM−1 generated by r0 := b−Ax0, i.e.,

span{v1, . . . , vj} = Kj(AM
−1, r0)

and the computed Hessenberg matrix Hj is the projection of AM−1 in this
subspace, i.e.,

Hj = V T
j+1AM

−1Vj .

▶ The iterates of right-preconditioned GMRES iterations are given by

Find xj ∈ x0 +M−1Kj(AM
−1, r0) s.t. arg min

x∈x0+M−1Kj(AM−1,r0)
∥b−Ax∥2.
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Preconditioned GMRES method, cont’d4

▶ A split-preconditioned variant is obtained by combining both left- and
right-preconditioning, this yields

Algorithm 7 Split-preconditioned GMRES: (x0, ε) 7→ xj

1: z0 := M−1
L b−M−1

L Ax0

2: β := ∥z0∥2
3: v1 := z0/β
4: for j = 1, 2 . . . do
5: w := M−1

L AM−1
R vj

6: w := Π(j)w ▷ Π(j) is a projector onto span{v1, . . . , vj}⊥
7: Compute h1:j+1,j

8: Solve for ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥ ▷ Still using Givens rotations

9: if ∥βe(j+1)
1 −Hj ỹ∥2 < ε∥M−1

L b∥2 then Stop
10: vj+1 := w/hj+1,j

11: xj := x0 +M−1
R Vj ỹ

The residual zj = Vj+1(βe
(j+1)
1 −Hj ỹ) with norm ∥zj∥2 = ∥βe(j+1)

1 −Hj ỹ∥2
is that of the left-preconditioned system, i.e., zj = M−1

L b−M−1
L Axj .
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Preconditioned GMRES method, cont’d5
▶ Just like for the split-preconditioned variant, besides evaluating

zj 7→ MLzj , which is not even always possible, there is no practical
way to access the non-preconditioned residual b−Axj and its norm.
Consequently, convergence has to be monitored in terms of the norm
of the left-preconditioned residual, i.e., ∥zj∥2 < ε∥M−1

L b∥2.
▶ The basis v1, . . . , vj generated by split-preconditioned GMRES spans

the Krylov subspace of M−1
L AM−1

R generated by z0 := M−1
L (b−Ax0), i.e.,

span{v1, . . . , vj} = Kj(M
−1
L AM−1

R , z0)

and the computed Hessenberg matrix Hj is the projection of M−1
L AM−1

R

in this subspace, i.e.,
Hj = V T

j+1M
−1
L AM−1

R Vj .

▶ The iterates of split-preconditioned GMRES iterations are given by

Find xj ∈ x0 +M−1
R Kj(M

−1
L AM−1

R , z0)

s.t. xj = arg min
x∈x0+M−1

R Kj(M
−1
L AM−1

R ,z0)
∥M−1

L (b−Ax)∥2.
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Preconditioned GMRES method, cont’d6
▶ In summary, each variant of preconditioned of the GMRES method grants

access to a different form of residual:
- Left-preconditioning: M−1(b−Axj),
- Right-preconditioning: b−Axj ,
- Split-preconditioning: M−1

L (b−Axj).
▶ Monitoring convergence through the norm of these different forms of

residuals affects the stopping criterion.
▶ In the case of the left- and split-preconditioned variants, the iteration

may stop either prematurely or, with delay.
This phenomenon is more likely to happen when M (for
left-preconditioning) or ML (for split-preconditioning) is very
ill-conditioned.
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Preconditioned GMRES method, cont’d7

▶ The search space of the left- and right-preconditioned variants are related
as follows:

M−1Kj(AM
−1, r0) =M−1span{r0, AM−1r0, . . . , (AM

−1)j−1r0}
= span{M−1r0,M

−1AM−1r0, . . . ,M
−1(AM−1)j−1r0}

= span{M−1r0, (M
−1A)M−1r0, . . . , (M

−1A)j−1M−1r0}
= span{z0, (M−1A)z0, . . . , (M

−1A)j−1z0}
=Kj(M

−1A, z0).

Thus, the left- and right-preconditioned GMRES iterates are in the same
Krylov subspace.
The only difference is that the left-preconditioned variant minimizes the
left-preconditioned residual, while the right-preconditioned variant
minimizes the actual residual, but both over the same subspace.
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Other methods
▶ All the linear iterative solvers we presented in class can be

preconditioned.
This is the case for both stationary and Krylov-based solvers:
- See Jacobi (1845) for a preconditioned Jacobi iteration.
- See Algo. 4P in Greenbaum (1997) for a preconditioned MINRES.

▶ We already saw that the concept of preconditioning can be extended to
eigenvalue problems. E.g., preconditioning plays an important role in:
- LOBPCG (Lecture 10),
- Jacobi-Davidson method (Lecture 12).

▶ Most problems which are solved approximately by an iterative method
can be preconditioned. E.g.,
- Least-squares problems (Lecture 7),
- Matrix function evaluation (Lecture 18),
- ...

Jacobi, C. G. J. (1845). Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkom- menden
lineären Gleichungen. Astronomische Nachrichten, 22(20):297–306.
Greenbaum, A. (1997). Iterative methods for solving linear systems. Society for Industrial and Applied Mathematics.
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Flexible variants
▶ Until now, we have assumed x 7→ M−1x is a linear map, that is, M is

constant, i.e., it does not vary depending on what it’s applied to.
Formally, this reads M−1(αx+ y) = αM−1x+M−1y for all α ∈ R and
x, y ∈ Rn.

▶ As an alternative, we mentioned that preconditioning is sometimes
achieved by applying an iterative solver, or any other procedure that
can approximate the solution of Mz = x.
Typically, such procedures are not linear maps, in a way, that is, M is not
constant, it varies, i.e., we have x 7→ M−1(x)x.

▶ The preconditioned variants of iterative linear solvers we presented until
now cannot accommodate for such varying preconditioners.
Instead, flexible variants of those solvers need be deployed to allow for the
use of such varying preconditioners while still guaranteeing convergence.
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Flexible GMRES
▶ A flexible variant of the right-preconditioned GMRES method was

proposed by Saad (1993). We present this method here.
▶ The right-preconditioned GMRES iterates are given by

xj = x0 +M−1Vj ỹ = x0 +

j∑
i=1

ỹiM
−1vi where ỹ =:

ỹ1...
ỹj


so that xj − x0 =

∑j
i=1 ỹiM

−1vi, i.e., xj − x0 is a linear combination
of the preconditioned Krylov basis vectors M−1v1 through M−1vj .
If M is a fixed precodnitioner, then we have

j∑
i=1

ỹiM
−1vi = M−1

j∑
i=1

ỹivi,

so that the vectors M−1v1, . . . ,M
−1vj need not be stored to form xj .

Standard implementations store v1, . . . , vj , then form
∑j

i=1 ỹivi, and,
eventually, apply the preconditioner to the resulting vector, i.e., M−1(Vj ỹ).

Saad, Y. (1993). A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing, 14,
461–469.
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Flexible GMRES, cont’d1

▶ Now, let us consider the case of a varying preconditioner, so that the
mapping x 7→ M−1(x)x is not linear, i.e., M−1(x) is not fixed.
Then, the right-preconditioned GMRES iterate is given by

xj = x0 +

j∑
i=1

ỹiM
−1
i vi = x0 + Zj ỹ where ỹ =:

ỹ1...
ỹj


in which ỹ is computed as before, and Z= [z1, . . . , zj ], where zi := M−1

i vi
for i = 1, . . . , j.
In this case, the preconditioner cannot be factored out, and the vectors
z1 := M−1

1 v1, . . . , zj := M−1
j vj must all be stored to form xj .
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Flexible GMRES, cont’d2
▶ Thus, a natural modification of the right-preconditioned GMRES algorithm

to allow for the use of varying preconditioners is as follows:
Algorithm 8 Flexible (right-preconditioned) GMRES: (x0, ε) 7→ xj
1: r0 := b−Ax0

2: β := ∥r0∥2
3: v1 := r0/β
4: for j = 1, 2 . . . do
5: zj := M−1vj
6: w := Azj
7: w := Π(j)w ▷ Π(j) is a projector onto span{v1, . . . , vj}⊥
8: Compute h1:j+1,j

9: Solve for ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥ ▷ Still using Givens rotations

10: if ∥βe(j+1)
1 −Hj ỹ∥2 < ε∥b∥2 then Stop

11: vj+1 := w/hj+1,j

12: xj := x0 + Zj ỹ

The main difference with the standard right-preconditioned GMRES is that
Zj must be stored in addition to Vj .
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Flexible GMRES, cont’d3

▶ Clearly, the flexible GMRES (FGMRES) method is equivalent to the
standard right-preconditioned variant when the preconditioned is constant,
i.e., when M1 = · · · = Mj = M .

▶ In practice, the choice of the z1, . . . , zj vectors is important, to the point
that, a "poor selection" of those vectors can go as far as causing the
procedure to breakdown.

▶ In the standard right-preconditioned variant, the Arnoldi relation is given by

AM−1Vj = Vj+1Hj .

This relation does not hold anymore with FGMRES. Instead, we have

AZj = Vj+1Hj .

It follows from our definition of the iterate in FGMRES that

xj ∈ x0 + span{z1, . . . , zj}.
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Flexible GMRES, cont’d4
▶ Analogously to the case of the standard right-preconditioned variant, the

FGMRES residual is recast as follows using the Arnoldi relation:

rj := b−Axj = b−Ax0 −AZj ỹ

= r0 − Vj+1Hj ỹ

=Vj+1(βe
(j+1)
1 −Hj ỹ)

where ỹ = argminy∈Rj ∥βe(j+1)
1 −Hjy∥2.

That is, the FGMRES iterate still minimizes the non-preconditioned
residual b−Axj . The difference is that it does it over a different subspace:

Theorem (Optimality of FGMRES iterates)
Let xj be the FGMRES iterate after j iterations started with an initial guess
x0. Then,

xj = arg min
x∈x0+range(Zj)

∥b−Ax∥2.
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Flexible GMRES, cont’d5
▶ The search space of FGMRES, that is

(x0+)span{z1, . . . , zj}

is, in general, not Krylov anymore.
Besides the extra memory requirement to store Zj , FGMRES requires no
additional computation with respect to the standard
right-preconditioned variant.
Actually, FGMRES even removes the need for a final preconditioner
application to construct the last iterate.

▶ As mentioned earlier, the varying preconditioner applications, denoted by

v1 7→ M−1
1 v1, . . . , vj 7→ M−1

1 vj ,

can consist of any approximation procedure, that is, for example, any of
the previously presented iterative solvers, i.e., stationary and Krylov-based.
It is also possible to combine several approximation procedures with
complementary effects, alternating from one iteration to another.
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Preconditioners
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Introduction
▶ The first documented effort to precondition a linear system was by

Jacobi (1845), where the Jacobi iterative method was invented, and for
which a preconditioner was introduced so as to accelerate the convergence
of the Jacobi iteration.

▶ A good preconditioner accelerates convergence, i.e., it reduces the
iteration count to reach convergence, while only entailing a limited
additional computational cost per solver iteration.
Finding a good preconditioner can be difficult.
The performance of preconditioners is highly problem-dependent, and
an optimal general-purpose preconditioner is unlikely to exist.
Preconditioner design is sometimes described as a combination of art
and science, often relies on heuristics with limited theoretical insight,
and significant input from domain expert knowledge.
In practice, preconditioner design is often the source of significant
efforts, especially when multiple linear systems need be solved with one, or
multiple similar coefficient matrices.

Jacobi, C. G. J. (1845). Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkom- menden
lineären Gleichungen. Astronomische Nachrichten, 22(20):297–306.
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Stationary iterative methods as preconditioners
▶ In Lecture 8, we saw that stationary, i.e., basic, iterative methods are

induced by splittings A = M −N of the coefficient matrix, where M is
non-singular.
Then, we know that the solution A−1b of Ax = b is a fixed-point of

x 7→ M−1Nx+M−1b

so that a stationary iteration is given by

xj+1 = M−1Nxj +M−1b.

This iteration attempts to solve

(In −M−1N)x = M−1b,

in which using the splitting leads to

(In −M−1(M −A))x = M−1b

(In − In +M−1A)x = M−1b

so that we iterate to solve the left-preconditioned linear system:

M−1Ax = M−1b.
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Stationary iterative methods as preconditioners, cont’d1

▶ Any splitting M −N of the coefficient matrix A with a non-singular M
leads to a preconditioner M :

Definition (Jacobi preconditioner)
- The Jacobi iteration induces a so-called Jacobi preconditioner with
M := DA, where DA denotes the diagonal part of A.

- Applying the Jacobi preconditioner to the coefficient matrix, i.e., the
map A 7→ D−1

A A is equivalent to scaling all rows of A to make the
diagonal entries equal to one. This is also known as diagonal scaling.

Definition (Gauss-Seidel preconditioner)
- The Gauss-Seidel iteration induces a Gauss-Seidel preconditioner with
M := DA − LA, which is the lower-triangular part of A.

- Applying the Gauss-Seidel preconditioner, i.e., evaluating x 7→ M−1x,
amounts to complete a triangular solve, i.e., a forward substitution.
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Stationary iterative methods as preconditioners, cont’d2
Definition (Successive over-relaxation (SOR) preconditioner)
- The successive over-relaxation (SOR) iteration induces a SOR

preconditioner with M := DA − ωLA, which is also a lower-triangular
matrix, and where ω is a relaxation parameter such that 0 < ω < 2.

- Applying the SOR preconditioner, i.e., evaluating x 7→ M−1x, also
amounts to complete a triangular solve, i.e., a forward substitution.

▶ There exist more matrix splittings leading to stationary methods and
associated preconditioners than what we covered in Lecture 8. E.g.,
- Symmetric Gauss-Seidel (SGS) splitting (Saad, 2003),
- Symmetric successive over-relaxation (SSOR) splitting (Saad, 2003),
- Hermitian and skew-Hermitian (HSS) splitting (Bai & Pan, 2021),
- Normal and skew-Hermitian (NSS) splitting (Bai & Pan, 2021),
- Positive-definite and skew-Hermitian (PSS) splitting (Bai & Pan,’21),
- Richardson splitting (Ciaramella & Gander, 2022).

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.
Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
Ciaramella, G. & Gander, M. J., (2022). Iterative methods and preconditioners for systems of linear equations. Society
for Industrial and Applied Mathematics.
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Incomplete factorizations
▶ A common type of preconditioner, denoted by MLMR, and referred to as

incomplete factorization, decomposes the coefficient matrix as follows:

A = MLMR + E

where ML and MR are known, at least in the sense that one can
efficiently evaluate

x 7→ (MLMR)
−1x ,

and the error term denoted by E is sufficiently small in some sense.
Several types of incomplete factorizations exist, e.g.,
- Incomplete LU: ML and MR are sparse lower- and upper-triangular.
- Incomplete Cholesky: ML is sparse lower-triangular, and MR = MT

L .
- Incomplete QR: ML is general sparse, and MR is sparse upper-triangular.
- Incomplete Givens: ML is general sparse, and MR is sparse

upper-triangular. Both ML and MR are obtained using Givens rotations.
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Incomplete LU (ILU) factorizations
▶ The incomplete LU (ILU) factorization was first introduced by Buleev

(1960) and, independently, by Varga (1960).
▶ Given a sparse matrix A ∈ Rn×n, we denote its sparsity pattern as

S(A) ⊂ {(i, j), i, j ∈ {1, 2, . . . , n}}
such that (i, j) ∈ S(A) iff aij ̸= 0.

▶ Fill-ins are usually unavoidable when constructing the LU factorization
of a sparse matrix by Gaussian elimination.
That is, the triangular factors L and U of a "complete" LU factorization,
i.e., A = LU , are usually much less sparse than the matrix A.

▶ An ILU factorization is obtained by dropping some of these fill-ins.
Following prescribed sparsity patterns, we obtain

A = LU − E

where E is the error induced by the dropped fill-ins.
Buleev, N. I. (1960). A numerical method for solving two-dimensional diffusion equations. Atomic Energy, 6, 222–224.
(In Russian).
Buleev, N. I. (1960). A numerical method for solving two- and three-dimensional diffusion equations. Matematicheskii
Sbornik, 51, 227–238. (In Russian).
Varga, R. S. (1960). Factorization and normalized iterative methods. In Boundary Problems in Differential Equations,
Langer, R. E. (Editor), University Wisconsin Press, Madison, 1960, pp. 121–142.nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 32 / 55



Incomplete LU (ILU) factorizations, cont’d1
▶ Different ILU preconditioners M = LU are obtained depending on the

dropping strategy and induced sparsity S(M).
In practice, fill-ins can be dropped based on different criteria, such as
position, value, or combination of these factors.
For a given sparsity pattern S := S(L) ∪ S(U), an ILU factorization is
computed as follows, in-place, within A:

Algorithm 9 General ILU factorization: S 7→ (L,U)

1: for k = 1, . . . , n− 1 do
2: for i = k + 1, . . . , n and (i, k) ∈ S do
3: aik := aik/akk
4: for j = k + 1, . . . , n and (i, j) ∈ S do
5: aij := aij − aik ∗ akj

▶ In theory, the prescribed sparsity pattern S is arbitrary.
In practice, it is customary to, at least, include all diagonal entries, and
all non-zero entries of A. Such a bare-minimum strategy with no fill-ins
is referred to as the ILU(0) factorization.
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Incomplete LU (ILU) factorizations, cont’d2
▶ In practice, Algo. 9 is not recommended because, at the k-th step, all rows

from k + 1 to n are modified. To circumvent this unfavorable data
movement, an IKJ version of the algorithm is introduced:

Algorithm 10 General ILU factorization: S 7→ (L,U)

1: For (i, j) ̸∈ S, set aij := 0
2: for i = 2, . . . , n do
3: for k = 1, . . . , i− 1 and (i, k) ∈ S do
4: aik := aik/akk
5: for j = k + 1, . . . , n and (i, j) ∈ S do
6: aij := aij − aik ∗ akj

▶ Algos. 9 and 10 are equivalent, but the latter is more cache-friendly.
▶ If S(A) ⊆ S, then Step 1 of Algo. 10 can be skipped.
▶ From the decomposition A = LU − E, we have

aij =

i∑
k=1

ℓikukj − eij
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Incomplete LU (ILU) factorizations, cont’d3

where

ukj =

{
akj −

∑k−1
i=1 ℓkiuij for k ≤ j ≤ n and (k, j) ∈ S,

0 for k ≤ j ≤ n and (k, j) ̸∈ S,

ℓik =

{(
aik −

∑k−1
j=1 ℓijujk

)/
ukk for k < i ≤ n and (i, k) ∈ S,

0 for k < i ≤ n and (i, k) ̸∈ S

for k = 1, . . . , n so that

eij =

{
0 for (i, j) ∈ S,∑i

k=1 ℓikukj for (i, j) ̸∈ S.

▶ Clearly, defining ILU(0) by specifying S(LU) = S(A) does not yield a
unique factorization.
Instead, the ILU(0) factorization is uniquely defined by construction
through Algos. 9 and 10 and such that S(L) ∪ S(U) = S(A).
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Incomplete LU (ILU) factorizations, cont’d4

▶ If the matrix A is SPD, then the approach of Algos. 9 and 10 is
analogously applied to construct incomplete Cholesky (IC) factorizations.
The IC factorization was popularized by the analysis of Meijerink & van
der Vorst (1977).

▶ The ILU(0) and IC(0) factorizations, which are relatively easy to
implement, work well for some problems.
In particular, this is the case for low-order discretizations of
constant-coefficient elliptic PDEs, which often leads to diagonally
dominant matrices.

▶ For more challenging problems, ILU(0)/IC(0) do not approximate A
sufficiently well to constitute good preconditioners.
For such problems, more accurate incomplete factorizations need be
developed, which is done by incorporating some level of fill-ins in the
prescribed sparsity pattern.

Meijerink, J. A. & van der Vorst, H. A. (1977). An iterative solution method for linear systems of which the coefficient
matrix is a symmetric M-matrix, Math. Comp., 31.
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Incomplete LU (ILU) factorizations, cont’d5
▶ A level-of-fill is a non-negative integer attributed to each entry of A

during the construction of an incomplete factorization.
The level-of-fill of aij , which we denote by levij , is initialized as follows:

levij :=

{
0 if i = j or aij ̸= 0,

∞ otherwise.
(1)

When aij is updated by Gaussian elimination, i.e., after

aij := aij − aik ∗ akj ,

the level-of-fill needs be updated too. Different approaches exist:
- A basic updating rule for the level-of-fill is

levij := min{levij , levik + levkj}.

Then, the level-of-fill never increases, and its final value is either 0 (keep
the fill-in), or ∞ (drop the fill-in).
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Incomplete LU (ILU) factorizations, cont’d6

- A more nuanced and practical updating rule is given by

levij := min{levij , levik + levkj + 1}. (2)

Then, if aij changes from zero to non-zero, its level-of-fill changes from
∞ to a finite non-zero integer.

▶ Different ILU preconditioners are defined based on different dropping
strategies using a criterion based on the level-of-fill levij .

▶ The ILU factorization of level p, denoted by ILU(p), defines a sparsity
pattern given by

Sp := {(i, j) such that levij ≤ p, i, j = 1, . . . , n}

where levij is the final value of the level-of-fill after all updates have
been made.
The ILU factorization of level p = 0 is consistent with our previous
definition of ILU(0).
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Incomplete LU (ILU) factorizations, cont’d7
▶ Although different updating rule of the level-of-fill exist, using the update

formula of Eq. (2) with an initialization by Eq. (1), the algorithm used to
construct the ILU(p) factorization is as follows:

Algorithm 11 ILU(p) factorization: p 7→ (L,U)

1: Set initial value of levij with Eq. (1)
2: for i = 2, . . . , n do
3: for k = 1, . . . , i− 1 and levik ≤ p do
4: aik := aik/akk
5: for j = k + 1, . . . , n do
6: aij := aij − aik ∗ akj
7: levij := min{levij , levik + levkj + 1}
8: for j = 1, . . . , n and levij > p do
9: aij := 0

▶ For most problems, ILU(1) provides considerably improved preconditioning
performance compared to ILU(0).

▶ Higher levels ILU(p) are rarely used in practice due to rapid increases of
memory requirement and computational cost.
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Incomplete LU (ILU) factorizations, cont’d8
▶ The ILU(p) algorithms have several drawbacks:

- The amount of fill-ins and computational costs are not predictable
for p > 0.

- The cost of updating the levels can be expensive.
- Level-of-fills can be poor indicators of entry sizes for indefinite

matrices, ultimately leading to inaccurate factorizations, that is,
large error matrices E, and degraded convergence behaviors.

nicolas.venkovic@tum.de Numerical Linear Algebra for CS and IE 40 / 55



Incomplete LU (ILU) factorizations, cont’d9
▶ For indefinite or strongly non-diagonally dominant matrices, ILU(p)

may only lead to poor approximations of the coefficient matrix.
This is caused by entries having high values of level-of-fill, despite having a
large magnitude.

▶ An alternative strategy exists where fill-ins are dropped according to
their absolute values rather than their positions.
For this, a drop tolerance τ is introduced and used in the dropping
rule.
That is, only fill-ins that are greater than τ in absolute value are stored and
used, which indicates that the sparsity pattern is determined dynamically.

▶ To remedy the case of badly scaled matrices, it is suggested to use a
relative drop tolerance.
That is, a fill-in is dropped if it is less than the product of τ with the norm
of either the row or the column in which the fill-in is located.
A drawback of this approach is that it is difficult to predict the amount of
storage needed to store the ILU factors.
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Incomplete LU (ILU) factorizations, cont’d10
▶ Saad (1994) proposed the dual threshold ILU factorization, denoted by

ILUT(p, τ) in which the following two dropping strategies are used:
- DS1. The fill-in is dropped if it is less than the relative tolerance

obtained by multiplying τ with the norm of the original row or column.
- DS2. Keep at most the p largest entries in each of the L and U parts

of the row or column, in addition to the diagonal entry, which is always
kept.

In the resulting ILUT(p, τ) procedure, τ is a parameter that helps reducing
the computational cost, while p helps control the memory requirement.
The ILUT(p, τ) algorithm is derived from Gaussian elimination employing
the threshold strategies DS1 and DS2.

Saad, Y. (1994). ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, 1,
387–402.
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Incomplete LU (ILU) factorizations, cont’d11

In the resulting ILUT(p, τ) algorithm, w is a full-length working row vector
with wk being its k-th entry, and ∥ · ∥ is a suitably chosen norm.

Algorithm 12 ILUT(p, τ) factorization: (p, τ) 7→ (L,U)

1: for i = 1, . . . , n do
2: for k = 1, . . . , n do
3: wk := aik ▷ Copy the i-th row of A to w
4: τi := τ∥w∥ ▷ Relative drop tolerance
5: for k = 1, . . . , i− 1 and wk ̸= 0 do
6: wk := wk/akk
7: if |wk| < τi then ▷ Apply DS1 on wk

8: wk := 0
9: else

10: for j = k + 1, . . . , n do
11: wj := wj − wkukj

12: for k = i+ 1, . . . , n and |wk| < τi do ▷ Apply DS1 on w
13: wk := 0
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Incomplete LU (ILU) factorizations, cont’d11

In the resulting ILUT(p, τ) algorithm, w is a full-length working row vector
with wk being its k-th entry, ∥ · ∥ is a suitably chosen norm.

Algorithm 12 cont’d ILUT(p, τ) factorization: (p, τ) 7→ (L,U)

14: ▷ Apply DS2 on w
15: Find the largest p entries of w[1 : i− 1] and drop the others
16: Find the largest p entries of w[i+ 1 : n] and drop the others
17: for k = 1, . . . , i− 1 do
18: ℓik := wk

19: for k = i, . . . , n do
20: uik := wk
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Incomplete QR factorizations
▶ The existence of an ILU factorization is not guaranteed for general

matrices, its computation is prone to breakdown, and instabilities can
occur in the sparse triangular solves.
These drawbacks motivate the consideration of other types of incomplete
factorizations.

▶ Incomplete QR (IQR) factorizations of the form A = QR− E, where Q
is a general matrix, more or less sparse, such that E and QTQ− In are
small in some sense, and R is upper-triangular sparse.
Saad (1988) constructed IQR factorizations using incomplete modified
Gram-Schmidt (IMGS) procedures incorporating dropping rules.
Existence and stability of IQR factorizations obtained by only dropping
entries of the upper-triangular factor were proved by Wang et al. (1997).
As observed by Saad (1988), the incomplete factor Q is only guaranteed
to be non-singular for very low sparsity levels.

Saad, Y. (1988). Preconditioning techniques for nonsymmetric and indefinite linear systems, Journal of Computational
and Applied Mathematics, 24, 89–105.
Wang, X.-G., Gallivan, K. A. & Bramley, R. B. (1997). CIMGS: An incomplete orthogonal factorization preconditioner,
SIAM Journal on Scientific Computing, 18, 516–536.
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Incomplete QR factorizations, cont’d
▶ An alternative to Gram-Schmidt procedures for the construction of

incomplete QR factorizations is the use of Givens rotations.
For this, the incomplete Givens orthogonalization (IGO) was proposed
by Zai et al. (2001). For each column, the IGO method does three things:

(a) Annihilate, using Givens rotations, the non-zero entries located in
the strictly lower-triangular part of A from the bottom up to the
first sub-diagonal;

(b) Update the incomplete orthogonal matrix Q by post-multiplying
by the transpose of the Givens rotation using some dropping rule;

(c) After Steps (a) and (b) have been done for all non-zeros in the current
column, form the corresponding row of the incomplete
upper-triangular matrix R using some dropping rule.

▶ Detailed implementations of the IMGS and IGO methods can be found in
Bai & Pan (2021).

Bai, Z.-Z., Duff, I. S. & Wathen, A. J. (2001). A class of incomplete orthogonal factorization methods. I: Methods and
theories, BIT, 41 53–70.
Bai, Z. Z., & Pan, J. Y. (2021). Matrix analysis and computations. Society for Industrial and Applied Mathematics.
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Sparse approximate inverses (SPAI)
▶ Sparse approximate inverse (SPAI) preconditioning, which consists of

building a sparse matrix M−1 which is close to A−1 in some sense, offers
considerable advantages over incomplete factorizations for parallel
processing.
The main advantages of the SPAI approach are
- Inherently parallel construction, because each column (or row) of
M−1 can be processed independently;

- Autonomous identification of non-zero entries;
- Preconditioner application done by sparse matrix-vector (SpMV)

product, which is also parallelizable.
▶ The inverse of a sparse matrix being generally dense, there is, a priori,

no guarantee that a sparse approximate inverseM−1 will be close toA−1.

But, as the matrix inverse A−1 often contains numerous entries of
small magnitude, SPAI matrices often can reasonably approximate A−1.

▶ An SPAI matrix M−1 can be expressed either as a single matrix, or as the
product of two or more matrices.
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Sparse approximate inverses (SPAI), cont’d1
▶ Designing an SPAI preconditioner amounts to minimize the Frobenius

norm of the residual matrix:

F (M−1) := ∥In −AM−1∥2F .

A matrix M−1 for which the value of F (M−1) is small is an accurate
right-approximate inverse of A.
Alternatively, setting the objective function to

F (M−1) := ∥In −M−1A∥2F and F (M−1
L ,M−1

R ) := ∥In −M−1
L AM−1

R ∥2F
enables the design of left- and split-approximate inverses.

▶ The objective function for the right-approximate inverse can be recast
into

F (M−1) =

n∑
j=1

∥∥∥e(n)j −Am−1
j

∥∥∥2
2

where m−1
j := M−1e

(n)
j

is the j-th column of M−1. This makes the minimization of F (M−1)
embarrassingly parallelizable.
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Sparse approximate inverses (SPAI), cont’d2
▶ To minimize the objective function F , we can use a global iteration where

M−1 is unknown, and which we solve for by a descent-type method.
Using the inner-product (X,Y ) ∈ Rn×n × Rn×n 7→ tr(Y TX), for a given
iterate M−1

i of right-approximate inverse of A ∈ Rn×n, a new iterate is
obtained as follows:

Find M−1
i+1 ∈ M−1

i + span{Gi}
such that Ri+1 := In −AM−1

i+1 ⊥ A span{Gi},

where Gi ∈ Rn×n is a given search direction, and so that

M−1
i+1 = M−1

i + αiGi where αi =
(Ri, AGi)

(AGi, AGi)
=

tr(RT
i AGi)

∥AGi∥2F
.

Since X ∈ Rn×n 7→ ∥X∥F is a norm induced by the inner-product, we can
show that M−1

i+1 is optimal in the sense that:

∥Ri+1∥F = ∥In −AM−1
i+1∥F = min

M−1∈M−1
i +span{Gi}

∥In −AM−1∥F .
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Sparse approximate inverses (SPAI), cont’d3
▶ The simplest choice of search direction is Gi := Ri = In −AM−1

i .
The resulting approach is analogous to the minimal residual method (see
Section 5.3.2 in Saad, 2003), but applied to the system AM−1= In.
Similarly as with the minimal residual method, we have a monotonic
decrease of residual norm, that is, ∥Ri+1∥F ≤ ∥Ri∥F .
In practice, with this approach, the iterate M−1

i tends to become
denser and denser from one iteration to another.
In order to contain the amount of non-zero components in M−1,
numerical droppings are applied, which leads to the following algorithm:

Algorithm 13 Global minimal residual descent
1: Set an initial M−1 ∈ Rn×n

2: while Not converged do
3: C := AM−1

4: G := In − C
5: α := tr(GTAG)/∥C∥2F ▷ G := R =⇒ (R,AG) = (G,AG) = tr(GTAG)
6: M−1 := M−1 + αG
7: Apply numerical droppings to M−1
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Sparse approximate inverses (SPAI), cont’d4
▶ An alternative to the global minimal residual descent is by setting the

search direction to the opposite of the gradient of the residual norm.
One way to reveal this gradient is through Taylor expansion, i.e., the
perturbed objective function reads

F (M−1 + E) = F (M−1) + (∇M−1F,E) + o(∥E∥F )

where E is a small perturbation. Then, as we let R := In −AM−1, we get

F (M−1+E)− F (M−1) = ∥In −A(M−1 + E)∥F − ∥In −AM−1∥F
= ∥R−AE∥F − ∥R∥F
= tr

(
(R−AE)T (R−AE)

)
− tr(RTR)

= tr
(
RRT −RTAE − (AE)TR+ (AE)TAE

)
− tr(RTR)

= − tr(RTAE)− tr((AE)TR) + tr((AE)TAE)

= − (R,AE)− (AE,R) + ∥AE∥2F
= − 2(R,AE) + ∥AE∥2F = −2(ATR,E) + ∥AE∥2F

which indicates that the gradient is given by −2ATR.
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Sparse approximate inverses (SPAI), cont’d5

▶ A steepest descent method is obtained by setting the search direction to
the opposite of the gradient of the residual norm, i.e., Gi := ATRi.
The resulting algorithm is given by:

Algorithm 14 Global steepest descent
1: Set an initial M−1 ∈ Rn×n

2: while Not converged do
3: R := In −AM−1

4: G := ATR
5: α := ∥G∥2F /∥AG∥2F ▷ G := RTA =⇒ (R,AG) = (ATR,ATR) = ∥G∥2F
6: M−1 := M−1 + αG
7: Apply numerical droppings to M−1
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Sparse approximate inverses (SPAI), cont’d6

▶ Remember that the residual norm of a right-approximate inverse can be
decomposed into

F (M−1) = ∥In −AM−1∥F =

n∑
j=1

∥∥∥e(n)j −Am−1
j

∥∥∥2
2

where m−1
j := M−1e

(n)
j

is the j-th column of M−1.
This suggests a column-oriented approach where n independent linear
systems

Am−1
j = e

(n)
j for j = 1, 2, . . . , n

are approximately solved using a sparse iterative solver.
That is, the initial guess is sparse, and the subsequent iterates remain
sparse.
For the case of Arnoldi-based approaches, the Arnolid basis vectors are
also sparse.
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Other preconditioners
▶ Besides what we covered here, there are numerous other types of

preconditioners. Some of these are
- Multigrid methods: Class of iterative solvers that rely on the

application of stationary methods (e.g., Gauss-Seidel, Jacobi, ...) at
different resolution scales, from fine grids to coarser, lower-dimensional
ones, all the way down to the coarsest level, where a more accurate
solve is conducted.

- Domain decomposition methods: Techniques that partition the
computational domain into smaller subdomains, solve subproblems on
each subdomain (possibly in parallel), and combine the solutions using
appropriate interface conditions to reconstruct the global solution.

- Block preconditioners: Methods that exploit the block structure of
matrices by constructing preconditioners based on approximations of
diagonal blocks, Schur complements, or block factorizations, often
leading to more efficient preconditioning for structured problems.

- Hierarchical preconditioners: Matrices based on the approximation of
certain blocks of a matrix by low-rank decompositions.
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