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Number representation and arithmetic on
digital computers

Section 3.2 in Darve & Wootters (2021)
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Number representation on computers
▶ Computers store numbers with finite memory, leading to limitations:

- Representation errors: Most real numbers cannot be exactly represented.
- Rounding errors: Arithmetic operations result in quantities which cannot be

exactly represented either.
- Overflow/Underflow: Numbers may exceed their representable range.

▶ These limitations introduce challenges in numerical computations, such as
maintaining
- Accuracy: How close is the computed result to the true value?

Affected by accumulation of representation and rounding errors,
and by algorithmic choices.

- Stability: Does the method prevent error growth for small input changes?
Specific to both the problem and the algorithm together.

▶ Error analysis helps understand these challenges by focusing on
- Perturbation: effect of small input changes on the true solution of a problem.
- Propagation: cumulative effects of rounding errors through calculations.

▶ Understanding these concepts is essential to prevent unwanted behaviors
when using numerical methods.
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Bit representation of integers
▶ Digital computers represent integers using a fixed number b of bits, e.g., 8,

16, 32, or 64 bits.
▶ For every unsigned integers x ranging from 0 to 2b − 1,

∃ ! (d0, . . . , db−1) ∈ {0, 1}b s.t. x =

b−1∑
i=0

di2
i.

We say that x is represented as db−1 . . . d0.
Attempting to represent integers out of the range from 0 to 2b − 1, leads
to underflow or overflow.
Example: integers from 0 to 7 can be represented as follows using 3 bits:

integer binary representation decomposition
0 000 0× 1 + 0× 2 + 0× 4
1 001 1× 1 + 0× 2 + 0× 4
2 010 0× 1 + 1× 2 + 0× 4
3 011 1× 1 + 1× 2 + 0× 4
4 100 0× 1 + 0× 2 + 1× 4
5 101 1× 1 + 0× 2 + 1× 4
6 110 0× 1 + 1× 2 + 1× 4
7 111 1× 1 + 1× 2 + 1× 4
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Bit representation of integers, cont’d
▶ Different systems exist in order to encode signed integers with bits.

In particular, we consider the two’s complement representation:
For every integer x ranging from −2b−1 to 2b−1,

∃ ! (d0, . . . , db−1) ∈ {0, 1}b s.t. x = −db−12
b−1 +

b−2∑
i=0

di2
i.

Example: integers from -4 to 3 can be represented as follows using 3 bits:
integer binary representation decomposition

0 000 −0× 4 + 0× 1 + 0× 2
1 001 −0× 4 + 1× 1 + 0× 2
2 010 −0× 4 + 0× 1 + 1× 2
3 011 −0× 4 + 1× 1 + 1× 2
-4 100 −1× 4 + 0× 1 + 0× 2
-3 101 −1× 4 + 1× 1 + 0× 2
-2 110 −1× 4 + 0× 1 + 1× 2
-1 111 −1× 4 + 1× 1 + 1× 2

Clearly, the most significant bit db−1 represents the sign (0 for +, 1 for -).
Arithmetic operations on two’s complement numbers follow the same rules
as unsigned arithmetic.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 03 Summer 2025 3 / 21



Bit representation of floating-point numbers
▶ Floating-point numbers are used to represent a wide range of real

numbers, including fractions and very large or small numbers.
▶ A floating-point number x is given by x = (−1)s×m× 2e−2b−p−1

where
- s is the sign bit (0 for +, 1 for -).
- m = 1 +

∑p−1
i=1 qi2

−i ∈ [1, 2) is the significand (or mantissa), encoded by
p− 1 fraction bits, where p is the precision of the numerical system.

- e− 2b−p−1 is the exponent represented by b− p bits with e =
∑b−p−1

i=0 di2
i.

The associated bits are stored in the form s db−p−1 . . . d0 q1 . . . qp−1 .

▶ Example: Half precision (1 sign bit, 5 exponent bits, 10 fraction bits)
- Then, the floating-point number fl(π), which best approximates π = 3.1416...,

is represented as 0100001001001000 so that

s = 0
e =1× 24

=16

m =1 + 1×2−1+ 1×2−4+ 1×2−7

=1 + 0.5 + 0.0625 + 0.0078125

=1.5703125

and fl(π) = (−1)0 × 1.5703125× 216−24−1

= 1.5703125× 2 = 3.140625.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 03 Summer 2025 4 / 21



Bit repsentation of floating-point numbers, cont’d
▶ Most real numbers cannot be exactly represented due to the finite number

of bits used for the mantissa. The machine epsilon and the unit roundoff
are often used to characterize the rounding error of a numerical system.

Definition (Machine epsilon & unit roundoff)
- The (interval) machine epsilon, often denoted by ϵmach, is the distance between

1 and the next floating-point number.
- The unit roundoff u is half the machine precision, i.e., u = ϵmach/2.

▶ Common floating-point formats:
- Half precision (16 bits): 1 sign bit, 5 exponent bits, 10 significand bits

and unit roundoff u = 2−11 ≈ 4.88× 10−4.
- Single precision (32 bits): 1 sign bit, 8 exponent bits, 23 significand bits

and unit roundoff u = 2−24 ≈ 5.96× 10−8.
- Double precision (64 bits): 1 sign bit, 11 exponent bits, 52 significand bits

and unit roundoff u = 2−53 ≈ 1.11× 10−16.
▶ The distribution of floating-point numbers is not uniform within the

range of a numerical system.
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Floating-point conversion and arithmetic
▶ For every number x within the range of a floating-point number system, it

can be shown that the associated rounding fl(x) is such that

fl(x) = (1 + δ)x for some δ s.t. |δ| ≤ u.

▶ When performing arithmetic operations between floating-point numbers, i.e.,
fl(x) ◦ fl(y) with ◦ ∈ {+,−,×,÷}, the result is not necessarily a
floating-point number, so that further rounding applies.
Floating-point number systems follow the standard model of arithmetic,
which states they must satisfy

fl(fl(x) ◦ fl(y)) = (1 + δ)(fl(x) ◦ fl(y)) for some δ s.t. |δ| ≤ u.

▶ Properties of floating-point arithmetic:
- Not associative, e.g., fl(fl(x) + fl(y)) + fl(z) ̸= fl(x) + fl(fl(y) + fl(z)).
- Not distributive, e.g.,

fl(x)× fl(fl(y) + fl(z)) ̸= fl(fl(x)× fl(y)) + fl(fl(x)× fl(z)).
- Subtraction of nearly equal numbers can lead to catastrophic cancellation.
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Principles of error analysis
Section 3.3 in Darve & Wootters (2021)
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Forward error
▶ Error analysis is crucial for understanding the accuracy and stability of

numerical algorithms.
▶ Let f be a function and f̃ be its computed approximation for an input x.
▶ The forward error ∥f(x)− f̃(x)∥ measures the distance between the

true value f(x) and the computed approximation f̃(x).

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied
Mathematics.

▶ The relative forward error is given by ∥f(x)− f̃(x)∥/∥f(x)∥.
▶ In practice, we often do not know f(x), which makes the forward error

difficult to evaluate.
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Backward error
▶ For an approximation y := f̃(x) of a true quantity f(x) for some input x,

the backward error η(x, y) is the smallest perturbation to the input
whose exact map equates the approximation, i.e.,

η(x, y) = min
x̃

{∥x− x̃∥ s.t. f(x̃) = y}.

This can be represented as

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied
Mathematics.

▶ The relative backward error is given by η(x, y)/∥x∥.
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Sensitivity of a problem
▶ Sensitivity measures how much the output of a function changes relative

to small changes in the input:

sensitivity =
forward error

backward error
=

∥f(x)− f(x̃)∥
∥x− x̃∥

.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied
Mathematics.

▶ The relative sensitivity is given by
∥f(x)− f(x̃)∥/∥f(x)∥

∥x− x̃∥/∥x∥
.
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Conditioning of a problem
▶ The (relative) condition number κ(x) of a problem x 7→ f(x) bounds the

relative sensitivity for small perturbations in the input data:

κ(x) = lim
ε→0

sup
∥δx∥≤ε

∥f(x+ δx)− f(x)∥/∥f(x)∥
∥δx∥/∥x∥

.

▶ A fundamental result of numerical analysis states

relative
forward error

≲ condition
number

× relative
backward error

also written as
∥f(x)− y∥
∥f(x)∥

≲ κ(x)
η(x, y)

∥x∥
for any approximation y of f(x).

▶ A problem x 7→ f(x) with a large condition number κ(x) is ill-conditioned.
▶ The approximation f̃(x) of an ill-conditioned problem can have a

large forward error, even if f̃(x) has a small backward error.
▶ The condition number is problem-dependent, i.e., it is specifically defined

for linear system solving, least-squares solving, eigenvalue solving, ...
▶ The condition number does not depend on the algorithm.
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Backward stability of an algorithm
▶ In practice, we develop algorithms of the form x 7→ f̃(x) to approximate

the solution of the problem x 7→ f(x), and that minimize the associated
backward error η(x, f̃(x)).

▶ In particular, an algorithm is backward stable if the associated backward
error remains small, i.e.,

η(x, f̃(x))

∥x∥
= O(u)

irrespective of x, where u is, typically, the unit roundoff of the
floating-point number system.

▶ For well-conditioned problems, a backward stable algorithm ensures
small forward errors.

▶ But, for ill-conditioned problems, even backward stable algorithms
may produce large forward errors.
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Analysis of linear systems
Section 3.3 in Darve & Wootters (2021)
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Perturbation of linear systems
▶ Consider the problem of solving for x such that Ax = b for some invertible

matrix A and non-zero vector b.
▶ Let us assume x̃ := x+ δx is the true solution of a non-singular perturbed

problem (A+ δA)x̃ = b+ δb. Then, the following remainder is obtained
(A+ δA)(x+ δx) = b+ δb

− Ax = b

Aδx+ δAx+ δAδx = δb

Multiplying the remainder by A−1, we get

δx+A−1δAx+A−1δAδx = A−1δb.

Then, assuming the matrix norm is consistent with the vector norm:

∥δx∥ ≤ ∥A−1∥ · ∥δA∥ · ∥x∥+ ∥A−1∥ · ∥δA∥ · ∥δx∥+ ∥A−1∥ · ∥δb∥.
Dividing by ∥x∥, and neglecting the 2nd order term ∥δA∥ · ∥δx∥, we get

∥δx∥
∥x∥

≲ ∥A−1∥ · ∥δA∥+ ∥A−1∥ · ∥δb∥
∥x∥

.
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Perturbation of linear systems, cont’d
We can then factor by ∥A−1∥ · ∥A∥, which leads to

∥δx∥
∥x∥

≲ ∥A−1∥ · ∥A∥ ·
(
∥δA∥
∥A∥

+
∥δb∥

∥A∥ · ∥x∥

)
.

But since Ax = b implies ∥b∥ ≤ ∥A∥ · ∥x∥, we obtain

∥δx∥
∥x∥

≲ ∥A−1∥ · ∥A∥ ·
(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
.

where the relative forward error ∥δx∥/∥x∥ is measured by ∥A−1∥ · ∥A∥ as
a multiple of the relative input perturbations ∥δA∥/∥A∥ and ∥δb∥/∥b∥.

▶ Therefore, the condition number of the linear system solving problem
A 7→ x := A−1b is given by κ(A) = ∥A−1∥ · ∥A∥.

▶ When using the 2-norm, we have κ(A) = σmax(A)/σmin(A), in which
σmax(A) and σmin(A) are the maximal and minimal singular values of A,
respectively.
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Backward errors of linear systems
▶ Let x̃ be an approximation of the solution x of the linear system Ax = b,

and define the associate residual r := b−Ax̃.
▶ Then, we are interested in the backward error ηA,b(x) defined as

ηA,b(x̃) = min{ε s.t. (A+ δA)x̃ = b+ δb, ∥δA∥ ≤ ε∥A∥, ∥δb∥ ≤ ε∥b∥}.

▶ To find ηA,b(x), we first rearrange the perturbed system as follows:

(A+ δA)x̃ = b+ δb

δAx̃ = b−Ax̃+ δb

δAx̃ = r + δb.

Then, considering a matrix norm consistent with the vector norm, we have

∥δA∥ · ∥x̃∥ ≥∥r + δb∥ ≥ ∥r∥ − ∥δb∥.

Applying the prescribed bounds ∥δA∥ ≤ ε∥A∥ and ∥δb∥ ≤ ε∥b∥, we get

ε∥A∥ · ∥x̃∥ ≥ ∥r∥ − ε∥b∥
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Backward errors of linear systems, cont’d1

which we re-order as

ε ≥ ∥r∥
∥A∥ · ∥x̃∥+ ∥b∥

and whose minimum, i.e., the backward error ηA,b(x̃), is

ηA,b(x̃) =
∥r∥

∥A∥ · ∥x̃∥+ ∥b∥
.

When using 2-norms, the bound is attained for

δA =
∥A∥2

∥x̃∥2 · (∥A∥2 · ∥x̃∥2 + ∥b∥2)
rx̃T and δb = − ∥b∥2

∥A∥2 · ∥x̃∥2 + ∥b∥2
r.

▶ Note that rx̃T is a matrix of rank 1, so that the approximate solution x̃ to
the linear system Ax = b is the exact solution to a linear system whose
matrix is a rank-1 perturbation of A.

▶ ηA,b(x̃) is sometimes referred to as the normwise relative backward
error, so as to be distinguished from other definitions of backward error.
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Backward errors of linear systems, cont’d2
▶ In practice, evaluating ηA,b(x̃) can be challenging due to the need of ∥A∥.
▶ Then, the backward error ηb(x̃) is considered, where only b is perturbed:

ηb(x̃) = min{ε s.t. Ax̃ = b+ δb, ∥δb∥ ≤ ε∥b∥}.

Since we then have ∥δb∥ = ∥Ax̃− b∥ = ∥r∥, the backward error is

ηb(x̃) =
∥r∥
∥b∥

.

▶ Note that ηb(x̃) ≥ ηA,b(x̃) for all A, b and x̃, so that the design of a
stopping criteria on the basis of ηb(x̃) is conservative, and good practice.

▶ Some implementations of iterative linear solvers monitor the convergence
of iterates x0, . . . , xk through ∥rk∥/∥r0∥. But, if x0 ̸= 0 and ∥r0∥ ≫ ∥b∥,
we have

ηb(xk) =
∥rk∥
∥b∥

=
∥rk∥
∥r0∥

∥r0∥
∥b∥

so that, even if ∥rk∥/∥r0∥ ≤ ε, we actually have ηb(xk) ≫ ε.
Thus, this practice is not recommended, especially for ill-conditioned
systems with poor non-zero initial guess.
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Analysis of eigenvalue problems
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Backward error of an eigenpair
▶ Let (λ̃, ũ) be an approximation of the eigenpair (λ, u) such that Au = λu.
▶ Then, the associated normwise backward error ηA(λ̃, ũ) is given as

ηA(λ̃, ũ) = min{ε s.t. (A+ δA)ũ = λ̃ũ, ∥δA∥ ≤ ε∥A∥}.

To find ηA(λ̃, ũ), we reorder the perturbed eigenvalue problem as

(A+ δA)ũ = λ̃ũ

δAũ = λ̃ũ−Aũ.

Assuming consistent matrix and vector norms, we obtain

ε∥A∥∥ũ∥ ≥ ∥δA∥∥ũ∥ ≥∥λ̃ũ−Aũ∥

so that ηA(λ̃, ũ) =
∥r∥

∥A∥ · ∥ũ∥
, where r = Aũ− λ̃ũ is the eigen-residual.
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Backward error of an eigenpair, cont’d
▶ When using 2-norms, the minimal norm perturbation is achieved with

δA = − rũH

∥A∥2 · ∥ũ∥22
which, again, is a rank-1 perturbation.

▶ So, computing an approximation (λ̃, ũ) of the eigenpair (λ, u) such that

∥r∥
∥A∥ · ∥ũ∥

≤ ε

for a small value of ε should ensure the good quality approximation, if the
problem is well-conditioned.
But, what is the conditioning of solving for an eigenpair (λ, u) of A?

▶ In practice, convergence is often monitored with the criterion

∥r∥
|λ̃| · ∥ũ∥

≤ ε

which, for larger eigenvalues of the spectrum, is generally not an issue.
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Perturbation of the eigenvalue problem
▶ Let λ be a simple eigenvalue of A with normalized right-eigenvector u, and

left-eigenvector v, i.e.,

Au = λu , AHv = λv and ∥u∥2 = ∥v∥2 = 1.

▶ We wish to characterize the following perturbed eigenvalue problem:

(A+ δA)(u+ δu) = (u+ δu)(λ+ δλ).

By developing, we get

Au+Aδu+ δAu+ δAδu = uλ+ uδλ+ δuλ+ δuδλ.

Then, getting rid of second-order perturbations, and multiplying by vH :

(vHA= vHλ)

Aδu+ δAu+ δAδu = uδλ+ δuλ+ δuδλ

vHAδu+ vHδAu ≈ vHuδλ+ vHδuλ

vHδuλ+ vHδAu ≈ vHuδλ+ vHδuλ

vHδAu ≈ vHuδλ.
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Perturbation of the eigenvalue problem, cont’d
▶ Eventually, we can write

|δλ| ≲ ∥δA∥2
|vHu|

(Cauchy-Schwartz: |vHδAu| ≤ ∥v∥2 · ∥δAu∥2)

(Consistent norms: ∥δAu∥2 ≤∥δA∥2 · ∥u∥2)

where the forward error |δλ| is measured by the perturbation ∥δA∥2, and
weighted by 1/|vHu|.

▶ This means that solving for the simple eigenvalue λ of A has conditioning
κ(A, λ) = 1/|vHu| such that

|δλ| ≲ κ(A, λ) ∥δA∥2

where u and v are the associated normalized right- and left-eigenvector.
▶ Normal (and thus symmetric) matrices have aligned right- and

left-eigenvectors, which implies κ(λ,A) = 1, i.e., solving for a simple
eigenvalue of a normal matrix is a well-conditioned problem.

▶ For general matrices, if u and v are nearly orthogonal, we have κ(λ,A)≫1,
and solving for the eigenvalue λ is an ill-conditioned problem.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 03 Summer 2025 20 / 21



Homework problems
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Homework problems
Turn in your own solution to Pb. 9:
Pb. 7 Show that the unit roundoff of a (binary) floating-point number system

which uses p − 1 fraction bits, i.e., where p denotes the precision of
the numerical system, is given by u = 2−p.

Pb. 8 Let x, y, z be floating-point numbers such that x + y + z ̸= 0, and
consider the functions given by f : (x, y, z) 7→ x + y + z and f̃ :
(x, y, z) 7→ fl(fl(x+ y) + z). Show that

f̃(x, y, z) = (1 + δ)f(x, y, z) where |δ| ≲
(
1 +

∣∣∣∣ x+ y

x+ y + z

∣∣∣∣)u

in which u is the unit roundoff of the system.
Pb. 9 Show that the perturbations

δA =
∥A∥2 rx̃T

∥x̃∥2 · (∥A∥2 · ∥x̃∥2 + ∥b∥2)
and δb = − ∥b∥2 r

∥A∥2 · ∥x̃∥2 + ∥b∥2
are such that (A + δA)x̃ = b + δb is exactly solved by the
approximation x̃ of A−1b, with residual r = b − Ax̃. Show also
that they attain the minimal 2-norms achievable by such perturbations.
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