
Numerical Linear Algebra
for Computational Science and Information Engineering

Lecture 05
Sparse Data Structures and Basic Linear Algebra Subprograms

Nicolas Venkovic
nicolas.venkovic@tum.de

Group of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Summer 2025



Outline
1 Basic linear algebra subprograms (BLAS) 1

2 Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021) 10

3 Sparse BLAS
Section 9.1 in Darve & Wootters (2021) 28

4 Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021) 29

5 Homework problem 32

6 Practice session 33

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Basic linear algebra subprograms (BLAS)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Basic linear algebra subprograms (BLAS)
▶ What is BLAS?

- Originated in the 1970s, as a set of low-level routines for common
linear algebra operations, first written in Fortran.

- Became a standard for the specification of linear algebra subroutines.
▶ Why use BLAS?

- Performance: algorithmic optimizations, multi-threading, vectorization,
loop unrolling, cache and register blocking, instruction pipelining, ...

- Portability: Consistent interface across different platforms.
▶ Over time, different BLAS libraries have been developed, in different

languages, for different hardware:
- Intel oneAPI MKL: Proprietary, highly optimized for Intel architectures,

GPU support through SYCL, comprehensive.
- OpenBLAS: Open source, multi-architecture support, some GPU

support, derived from GotoBLAS, community-driven.
- BLIS: Open source, research-oriented (UT Austin).
- ATLAS: Open source, empirical auto-tuning during build.
- GPU only: Nvidia cuBLAS, AMD rocBLAS, ...
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 1 / 34



Common BLAS subroutines
BLAS routines are organized into levels, and follow a naming convention
for most standard operations.
▶ Level 1 (vector operations, typically O(n) ops.):

- Dot product (DDOT, SDOT, ...): xT y

- Vector addition (DAXPY, SAXPY, ...): y ← αx+ y

- Vector norms (DNRM2, SNRM2, ...): ∥x∥2
▶ Level 2 (matrix-vector operations, typically O(n2) ops.):

- Matrix-vector multiply (DGEMV, SGEMV): y ← αAx+ βy

- Rank-1 update (DGER, SGER): A← αxyT +A

- Triangular solve (DTRSV, STRSV): x← T−1x
▶ Level 3 (matrix operations, typically O(n3) ops.):

- Matrix-matrix multiply (DGEMM, SGEMM, ...): C ← αAB + βC

- Rank-k update (DSYRK, SSYRK, ...): C ← αAAT + βC

The first letter in the name of a subroutine represents the data type:
D: double precision real S: single precision real
C: single precision complex Z: double precision complex

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 2 / 34



Common BLAS subroutines, cont’d

University of Tennessee, Oak Ridge National Laboratory, Numerical Algorithms Group Ltd. (1997). Basic linear algebra
subprograms – A quick reference guide. (https://www.netlib.org/blas)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 3 / 34

https://www.netlib.org/blas


BLAS in practice
▶ BLAS interfaces tend to be mathematically opaque.
▶ Using the Intel oneAPI MKL C interface:

- The Julia code Ax = A*x; AtAx = A'Ax becomes:

- Documentation:
https://www.intel.com/content/www/us/en/docs/onemkl/
developer-reference-dpcpp/2024-2/blas-routines.html

▶ For interfaces to other implementations, see
- OpenBLAS: https://github.com/OpenMathLib/OpenBLAS
- ATLAS: https://github.com/flame/blis
- BLIS: http://math-atlas.sourceforge.net/

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 4 / 34

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/blas-routines.html
https://github.com/OpenMathLib/OpenBLAS
https://github.com/flame/blis
http://math-atlas.sourceforge.net/


BLAS in practice, cont’d
▶ The cost of enhanced portability often comes in the form of building

challenges.
- E.g., MKL and OpenBLAS offer support for various CPU vendors and GPUs.

▶ For Intel oneAPI MKL, there is a dedicated web tool to help with the
linking configuration:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 5 / 34

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html


Linear algebra package (LAPACK)
▶ What is LAPACK?

- Set of Fortran 90 routines to solve linear systems, eigenvalue
problems, and SVDs with dense but small to moderately sized as
well as structured sparse (banded, tridiagonal, ...) matrices:

- Successor to LINPACK (1979, for linear systems and least squares pbs.)
and EISPACK (1976, for eigenvalue problems).

- Developed and maintained by an international team of researchers.
▶ Key characteristics:

- Optimized for performance, portability and numerical stability.
- Relies heavily on BLAS, especially Level 2 and 3.
- Performance depends critically on the BLAS implementation used.
- Handles higher-level algorithms and delegates operations to BLAS.

▶ Available through various implementations:
- Reference LAPACK: Standard implementation, focus on correctness.
- Intel MKL: Optimized LAPACK routines alongside BLAS.
- GPU only: Nvidia cuSOLVER, AMD rocSOLVER.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 6 / 34



Nomenclature of LAPACK subroutines
LAPACK routines follow a structured naming convention: XYYZZZ
▶ Data types (X):

D: double precision real S: single precision real
C: single precision complex Z: double precision complex

▶ Common matrix types (YY):
GE: general SY: symmetric HG: upper Hessenberg
PO: SPD/HPD TR: triangular BD: bidiagonal

▶ Common computational tasks (ZZZ):
SV: solve linear system TRF: triangular factorization

TRS: solve using factorization CON: estimate conditioning
EV: solve eigenvalue problem

▶ Examples of (driver) subroutines:
- DGESV: linear solve with real general matrix in double precision.
- CPOSV: linear solve with (complex) HPD matrix in single precision.
- ZGEEV: eigensolve with general complex matrix in double precision.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 7 / 34



Structure of LAPACK subroutines
▶ There are three types of LAPACK routines:

- Driver routines: solves a complete problem, e.g.,
linear systems, eigenvalue problems, least-squares problems, ...

- Computational routines: performs an intermediate level task, e.g.,
LU factorization, tridiagonal reduction, ...

- Auxiliary routines: unblocked sub-tasks of block algorithms,
BLAS-like operations, other low level tasks.

▶ Driver routines listed in the online documentation:

https://www.netlib.org/lapack/explore-html/modules.html
▶ Computational routines listed by module:

https://www.netlib.org/lapack/lug/node37.html
▶ Auxiliary routines listed by category:

https://www.netlib.org/lapack/lug/node144.html
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 8 / 34

https://www.netlib.org/lapack/explore-html/modules.html
https://www.netlib.org/lapack/lug/node37.html
https://www.netlib.org/lapack/lug/node144.html


BLAS and LAPACK in Julia
▶ Default implementation:

- Ships with multi-threaded OpenBLAS and reference LAPACK.
- Flexible, i.e., can use other implementations, e.g., MKL, BLIS, ...

▶ Three implementation-independent levels of access (like in Python):
- Interface wrappers via LinearAlgebra.{BLAS,LAPACK}:

BLAS.gemm!, LAPACK.getrf!, ...
most control no extra copies/allocations math-implicit

- Intermediate level functions:
dot(x,y), mul!(C,A,B), lu(A), ...

less control in-place versions available good compromise
- High-level syntax:

A * x, A \ b, A / B, ...
least control extra copies/allocations math-explicit

▶ Key features:
-Matrix type specified by data structure, e.g., Symmetric, Tridiagonal.
-Multiple dispatch: function behavior depends on types of all arguments.
- Operations preserve matrix structure when applicable.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 9 / 34



Sparse matrix data structures
Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Sparse matrices
▶ Sparse matrices are matrices with relatively few non-zero components.
▶ Natural occurrence in scientific applications:

- Discretized differential equations:
o ODEs: chemical reactions, multi-body systems with short-range

interactions, multi-agent systems with local interactions, ...
o PDEs: fluid dynamics, solid mechanics, electromagnetics, ...
o DAEs: circuit simulation, power grid modeling, ...

- Networks and graphs:
o Adjacency, transition and Laplacian matrices of sparse graphs.

- Data science:
o Feature matrices in high-dimensional data.

▶ Important properties:
- Inverses of sparse matrices are generally dense, i.e., not sparse.
- Factorizations of sparse matrices may be reasonably sparse.
- Dense matrices can be approximated by sparse matrices, i.e.,

using sparse approximate inverses (SPAI).
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 10 / 34



Repository of sparse matrices
▶ Researchers and developers often need multiple sparse matrices with

documented characteristics to benchmark NLA algorithms.
▶ In particular, the SuiteSparse Matrix Collection is widely used for this:

https://sparse.tamu.edu/

- Close to 3,000 matrices available.
- Matrices from all sorts of applications.
- Metadata available include: author, application field, rank, condition

number, singular values, definiteness, symmetry and lack thereof, ...
▶ We can generally distinguish between two types of sparse matrices:

- Structured: typically coming from differential equations discretized on
structured grids/meshes.

E.g., sherman5 (computational fluid dynamics problem):

- Unstructured: most other cases.

E.g., bp_1000 (optimization problem):

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 11 / 34

https://sparse.tamu.edu/


Sparse matrix data structures
▶ The use of proper data structures is essential to

limit memory requirements and achieve good performance
when deploying basic linear algebra operations and NLA algorithms with
sparse matrices.

▶ There is no unique sparse matrix data structure to optimally serve all
purposes in all situations.

▶ In general, the choice of a sparse data structure can be influenced by
- Sparsity pattern of the matrix.
- Hardware architecture:

o Memory layout.
o Sequential vs parallel with shared and/or distributed memory vs GPU.

- Algorithm and operations:
o Type of access.
o BLAS level, i.e., 1, 2 or 3.

- Implementation requirements.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 12 / 34



Sparse matrix data structures, cont’d1
▶ There are many sparse matrix data structure formats. In particular:

- Coordinate (COO)

intuitive/explicit not efficient large community support
most convenient/used for construction

- Compressed sparse row (CSR), compressed sparse column (CSC)

lowest memory need efficient large community support
most used

▶ Variants of CSR and CSC:
- Block sparse row (BSR/BCSR), block sparse column (BSC/BCSC)

good for block matrices overhead otherwise large support
- Mapped block row (MBR) sparse

lower memory need more efficient limited community support
- Modified sparse row (MSR/MCSR), modified sparse column (MSC/MCSC)

fast diagonal access square matrices only
limited community support

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 13 / 34



Sparse matrix data structures, cont’d2
▶ Vector architectures and GPU:

- Ellpack (ELL)
good for uniform sparsity community support GPU-friendly

▶ Banded matrices:
- Diagonal (DIA)

good for fixed bandwidth wasteful otherwise
moderate support

- Non-symmetric skyline (NSK), symmetric skyline (SSK)
good for variable bandwidth wasteful for isolated bands

moderate support

▶ Pythonic environment:
- List of lists (LIL)

used for construction Python-specific support not efficient
- Dictionary of keys (DOK)

used for construction Python-specific support not efficient
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 14 / 34



Coordinate (COO) format
▶ A COO data structures format is composed of:

- Array of non-zero components (val)
- Array of row indices of each component (row_idx)
- Array of column indices of each components (col_idx)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a12, a13, a21, a22, a33, a34, a43]

row_idx = [1, 1, 1, 2, 2, 3, 3, 4]

col_idx = [1, 2, 3, 1, 2, 3, 4, 3]

▶ Key characteristics:
- Explicit storage of all indices (higher memory usage)
- No particular ordering required
- Duplicates allowed (values must be summed)
- Flexible for matrix construction and modification
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 15 / 34



Compressed sparse row (CSR) format
▶ A CSR data structures format is composed of:

- Array of non-zero components (val)
- Array of column indices of each component (col_idx)
- Array of non-zero value indices where each row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a12, a13, a21, a22, a33, a34, a43]

col_idx = [1, 2, 3, 1, 2, 3, 4, 3]

row_start = [1, 4, 6, 8, 9]

▶ Key characteristics:
- Compact storage (lower memory than COO)
- Fast row access
- Values must be ordered by row
- Difficult to modify structure dynamically
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 16 / 34



Compressed sparse column (CSC) format
▶ A CSC data structures format is composed of:

- Array of non-zero components (val)
- Array of row indices of each component (row_idx)
- Array of non-zero indices where each column starts (col_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a21, a12, a22, a13, a33, a43, a34]

row_idx = [1, 2, 1, 2, 1, 3, 4, 3]

col_start = [1, 3, 5, 8, 9]

▶ Key characteristics:
- Compact storage (lower memory than COO)
- Fast column access
- Values must be ordered by column
- Difficult to modify structure dynamically
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 17 / 34



Block sparse row (BSR) format
▶ A BSR (or BCSR) data structure format is composed of:

- Block dimensions (r×c)
- Array (or matrix) of all components of non-zero blocks (val)
- Array of non-zero block column indices (col_idx)
- Array of block indices where each block row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


r = 2, c = 2

val = [a11, a12, a21, a22, a13, 0, 0, 0, a33, a34, a43, 0]

col_idx = [1, 2, 2]

row_start = [1, 3, 4]

▶ Key characteristics:
- Zero values within non-zero blocks are stored
- Similar to CSR but operates on blocks
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 18 / 34



Mapped block row (MBR) format
▶ A MBR data structure format is composed of:

- Block dimensions (r×c)
- Array of non-zero components of non-zero blocks (val)
- Array of non-zero block column indices (col_idx)
- Array of sparsity pattern encoding (b_map)
- Array of block indices where each block row starts (row_start)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


r = 2, c = 2

val = [a11, a12, a21, a22, a13, a33, a34, a43]

col_idx = [1, 2, 2] b_map = [15, 1, 7] row_start = [1, 3, 4]

▶ Key characteristic:
- Non-zero values within non-zero blocks are not stored
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 19 / 34



Modified sparse row (MSR) format
▶ A MSR data structure format is composed of:

- Array of diagonal elements first, then other non-zeros (val)
- Composite array idx := [row_start, col_idx] where:

o row_start contains the index of off-diagonal non-zero value
where each row starts.

o col_idx contains column indices of each off-diagonal non-zero
component.

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a22, a33, 0,−1, a12, a13, a21, a34, a43]
idx = [6, 8, 9, 10, 11, 2, 3, 1, 4, 3]

▶ Key characteristics:
- Diagonal elements stored first =⇒ Fast diagonal access
- Dummy element, here −1, stored in val for consistency with idx (?).
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 20 / 34



Ellpack (ELL) format
▶ An ELL data structure format is composed of:

- Maximum number of non-zero components on a row (row_nnz)
- Array of all components stored in column-major order, from the

block of left-aligned non-zero components (val)
- Array of column indices of stored components (col_idx)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


row_nnz = 3

val = [a11, a21, a33, a43, a12, a22, a34, 0, a13, 0, 0, 0]

col_idx = [1, 1, 3, 3, 2, 2, 4,−1, 3,−1,−1,−1]
▶ Key characteristics:

- Stores 2×row_nnz values, including some zeros
- Wasteful if number of non-zero components varies significanly from one

row to another
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 21 / 34



Diagonal (DIA) format
▶ A DIA data structure format is composed of:

- Array of components on non-zero diagonals padded to n (val)
- Array of offset indices (ioff)

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [∗, a21, 0, a43, a11, a22, a33, 0, a12, 0, a34, ∗, a13, 0, ∗, ∗]

ioff = [−1, 0, 1, 2]

▶ Key characteristics:
- Fast diagonal access
- Wasteful for diagonal with large offset indices (?)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 22 / 34



List of list (LIL) format
▶ A LIL data structure format is composed of:

- A list (rows) of lists, one per row, each list storing column indices
of non-zero components.

- A list (data) of lists, one per row, each list storing non-zero
components, ordered consistently with the indices in rows.

▶ Example:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0

 rows =


[1, 2, 3]
[1, 2]
[3, 4]
[3]

 data =


[a11, a12, a13]
[a21, a22]
[a33, a34]
[a43]


▶ Key characteristics:

- No particular ordering required for column indices
- Unordered column indices slows down access
- Mostly used for matrix construction, particularly in Python

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 23 / 34



Sparse matrix data structures in practice
▶ Intel oneAPI MKL supports sparse vectors, and the sparse matrix data

structures CSR, CSC, COO and BSR.
For example, using the C interface:
- A COO matrix can be created as follows:

- Sparse matrices can be defined in other formats, namely CSR, CSC
and BSR, directly from their underlying data structures.

- Only two functions to convert constructed sparse matrices into
CSR (mkl_sparse_convert_csr)

and BSR (mkl_sparse_convert_bsr).
Possible to convert A into CSC, by using the CSR representation of AT .

- Documentation:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/matrix-manipulation-routines.html
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 24 / 34

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/matrix-manipulation-routines.html


Sparse matrix data structures in practice, cont’d
▶ Nvidia cuSPARSE also supports several vectors, and several sparse

matrix data structures:
- COO, CSR, CSC and BSR
- Sliced Ellpack (SELL)
- Blocked Ellpack (BLOCKED-ELL)
Documentation:
https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats

▶ Other implementations:
- AMD ROCsparse: proprietary, for GPU
- SuiteSparse, PETSc,Trilinos, OSKI, PSBLAS, ... : open-source

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 25 / 34

https://docs.nvidia.com/cuda/cusparse/#cusparse-storage-formats


Sparse matrix data structures in Julia
▶ Support of basic structured formats through LinearAlgebra.jl:

Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal, ...
▶ Standard library support through SparseArrays.jl:

- Only CSC (SparseMatrixCSC) is supported by default:

- Construction using COO-style input:

with immediate conversion to CSC.
- Construction using the SparseMatrixCSC struct:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 26 / 34



Sparse matrix data structures in Julia, cont’d
- Random constructor for sparse matrix of density d with iid non-zero

elements distributed uniformly in [0, 1), sprand(m,n,d).
- Random constructor for sparse matrix of density d with iid non-zero

elements distributed according to the standard normal distribution,
sprandn(m,n,d).

▶ More formats supported through other packages:
- SparseMatricesCSR.jl: Julia native implementation of CSR formats.
- MKLSparse.jl: Julia wrappers to Intel oneAPI MKL sparse interface.
- SuiteSparse.jl: Julia wrappers to SuiteSparse library.

...
...

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 27 / 34



Sparse BLAS
Section 9.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Sparse basic linear algebra subprograms
▶ Sparse BLAS is the extension of BLAS for sparse matrices and vectors.
▶ Level 1 (vector operations):

Intel oneAPI MKL functions use a compressed sparse vector format:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/sparse-blas-level-1-routines.html

- Sparse y ← αx+ y (SpAXPY): mkl_sparse_x_axpy
▶ Level 2-3 functions have format-specific implementations.

Intel oneAPI MKL offers access through an Inspector-Executor API:
https://www.intel.com/content/www/us/en/docs/onemkl/

developer-reference-c/2024-2/
inspector-executor-sparse-blas-execution-routines.html

- Level 2 (matrix-vector operations):
o Sparse matrix-vector product (SpMV): mkl_sparse_x_mv

- Level 3 (matrix-matrix operations):
o Sparse matrix-(dense) matrix product (SpMM): mkl_sparse_x_mm
o Sparse matrix-(sparse) matrix product (SpGEMM): mkl_sparse_spmm

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 28 / 34

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/sparse-blas-level-1-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/inspector-executor-sparse-blas-execution-routines.html


Sparse matrices and graphs
Section 9.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



A few definitions
▶ Basics of graph theory are essential to sparse matrix computation.

Definition (Graph)
- An undirected graph is a pair G = (V,E) formed by a non-empty finite set V

of vertices and a set E ⊆ V × V of unordered pairs of vertices referred to as
edges.

- A directed graph G = (V,E) is formed by a set E of ordered edges.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 29 / 34



A few definitions, cont’d
▶ A path from a vertex u to another vertex v is a sequence of edges

(u0, u1), . . . , (ut−1, ut) such that u0 = u and ut = v.
▶ A graph is connected if there is a path from any vertex u to any

vertex v.
▶ A tree is a connected graph without cycles, i.e., with no path from a

vertex to itself.
A tree has a root, i.e., a designated vertex
represented at the top of the tree.

▶ If a tree has an edge (u, v), and u is closer to
the root r than v is, then we say that v is a
parent and u is a child.
Each vertex in a tree has a unique parent.

▶ A leaf is a vertex in a tree with no children.
▶ Family logic applies to define descendants and

ancestors.
Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 30 / 34



Graph representation of sparsity patterns
▶ The sparsity pattern of a square matrix A ∈ Fn×n can be represented as

a directed graph with n vertices.
▶ In Darve and Wooters (2021), the convention is that a directed edge

(i, j) from vertex j to vertex i exists if and only if aij ̸= 0.
For example:

▶ The sparsity pattern of symmetric matrices can be represented by
undirected graphs.

Darve, E., & Wootters, M. (2021). Numerical linear algebra with Julia. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 31 / 34



Homework problem

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Homework problem
Turn in your own solution to the following problem:
Pb. 15 Consider the matrices

A =



• • 0 • 0 0
0 • 0 0 0 •
0 • • 0 0 0
0 • 0 0 • 0
0 0 0 0 • 0
0 0 0 0 0 •

 and B =



• 0 0 0 0 0
• 0 • 0 • 0
0 • 0 0 0 0
• • 0 0 0 0
0 • 0 • • 0
0 0 • 0 0 •


where each • denotes a non-zero component.
Show the adjacency graphs of A, B, AB and BA. You may assume
that there are no numerical cancellations in computing the products
AB and BA.
Problem excerpted from Pb. 4 in Chap. 3 of Saad (2003).

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 32 / 34



Practice session

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025



Practice session
1 Use the mmread function from MatrixMarket.jl to read the matrix cage3

from the SuiteSparse website. Investigate the default sparse data structure
in which the matrix is stored in Julia.

2 Write a function called dcscmv to perform SpMV in CSC format.
3 Write a function called csc_to_coo to convert a CSC matrix to COO

format. Use the following custom type:
mutable struct SparseMatrixCOO

m::Int # Number of rows
n::Int # Number of columns
rowval::Vector{Int} # Starting index for each row
colval::Vector{Int} # Column indices
nzval::Vector{Float64} # Matrix entries

end
4 Write a function called dcoomv to perform SpMV in COO format.
5 Write a function called coo_to_csr to convert a COO matrix to CSR

format using a custom type SparseMatrixCSR with arguments m::Int,
n::Int, rowptr::Vector{Int}, colval::Vector{Int} and
nzval::Vector{Float64}.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 33 / 34



Practice session, cont’d
6 Write a function called coo_to_csr2 to convert a COO matrix to CSR

format making use of the built-in sparse function.
Hint:Think of the relation between CSC and CSR.

7 Write a function called dcsrmv to perform SpMV in CSR format.
8 Write a function called coo_to_ell to convert a COO matrix to ELL

format using a custom type SparseMatrixELL with arguments m::Int,
n::Int, rownnz::Int, colval::Vector{Int} and
nzval::Vector{Float64}.

9 Write a function called dellmv to perform SpMV in ELL format.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 05 Summer 2025 34 / 34


	Basic linear algebra subprograms (BLAS)
	Sparse matrix data structures Section 9.1 in Darve & Wootters (2021)
	Sparse BLAS Section 9.1 in Darve & Wootters (2021)
	Sparse matrices and graphs Section 9.2 in Darve & Wootters (2021)
	Homework problem
	Practice session

