
Numerical Linear Algebra
for Computational Science and Information Engineering

Lecture 06
Introduction to Direct Methods for Sparse Linear Systems

Nicolas Venkovic
nicolas.venkovic@tum.de

Group of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Summer 2025

Outline
1 Solving sparse triangular linear systems

Section 9.3 in Darve & Wotters (2021) 1

2 Cholesky factorization
Section 9.4 in Darve & Wotters (2021) 5

3 Nested dissesction
Section 9.5 in Darve & Wotters (2021) 20

4 Homework problems 26

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025

Solving sparse triangular linear systems
Section 9.3 in Darve & Wotters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025

When L is sparse and b is dense
▶ We want to solve Lx = b where L is a sparse lower-triangular matrix

with non-zero diagonal entries.
▶ Remember how to proceed when L is dense:

1. x1 = b1/l11

2. x2 = (b2 − l21x1)/l22
...

i. xi =
(
bi −

∑i−1
j=1 lijxj

)
/lii

...
n. xn =

(
bn −

∑n−1
j=1 lnjxj

)
/lnn

▶ When L is sparse, we simply need to skip the zero components lij in
each summand.

▶ We will see in practice session that this can easily be implemented.
▶ The final form of the implementation depends on the sparse matrix

data structure used to store L.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 1 / 26

When both L and b are sparse
▶ When L and b are sparse, then the solution x may be sparse.
▶ Ideally, we would like to solve for x as follows:

1. for i = 1, . . . , n :
2. if xi ̸= 0 :
3. xi ← bi/ℓii

4. for j = 1, . . . , i− 1 :
5. if ℓij ̸= 0 :
5. xi ← xi − ℓijxj/ℓii

▶ But iterating over the non-zero components of x requires to know the
structure of x.

▶ For any non-zero xi, we have either or both
(a) bi ̸= 0

(b) there is some j < i such that ℓij ̸= 0 and xj ̸= 0.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 2 / 26

When both L and b are sparse, cont’d1
▶ Let G = (V,E) be the graph associated with L, then we denote by X⊂V

the minimal set of vertices so that either or both (a) and (b) hold.
That is, X ⊂ V is the minimal set such that:

bi ̸= 0 =⇒ i ∈ X and ℓij ̸= 0 and j ∈ X =⇒ i ∈ X.

Definition (Reachability & Reach)
- A vertex i ∈ V in a directed graph G = (V,E) is reachable from a vertex
j ∈ V , if there is a directed path from j to i in G. That is, if there is a sequence
of edges (j, i1), (i1, i2), . . . , (ik−1, ik), (ik, i) where all the edges are in E.

- The set of vertices i ∈ V reachable from a vertex j ∈ V is the reach of j.

▶ If j ∈ X, then
every vertex in
the reach of j,
is also in X.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 3 / 26

When both L and b are sparse, cont’d2
▶ Then, if we let B ⊂ V be the set of vertices i ∈ V such that bi ̸= 0, then

X is the set of vertices reachable from B.
▶ Consequently, the set X can be found by operating on the graphG=(V,E)

associated with L.
Namely, the set X can be found using a depth-first traversal (DFS, i.e.,
for depth-first search) from every vertex in B.

▶ Depth-first traversal starts from some node j, and explores as far as
possible along each branch in the graph before backtracking.

▶ We will see an implementation of depth-first traversal in the practice
session.

▶ Procedure to solve Lx = b where both L and b are sparse is as follows:

Linear solve of Lx = b where both L and b are sparse
1. Define the set B from the sparsity pattern of b.
2. Find the set X of non-zero x components using DFS on B.
3. Run modified version of the algorithm to solve Lx = b with a sparse L, but

compute xi only if i ∈ X.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 4 / 26

Cholesky factorization
Section 9.4 in Darve & Wotters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025

Up-looking Cholesky algorithm
▶ Now that we know how to solve sparse trangular systems, we can use this

to obtain a sparse Cholesky factorization.
▶ In particular, the up-looking Cholesky algorithm performs a Cholesky

factorization by doing a series of sparse triangular solves.
▶ Proceeding by construction, assume the (n− 1)-dimensional leading block

L′ of the Cholesky factor L of A is already known, leading the following
structure of the LLT = A factorization:

First, we have [L′, 0(n−1)×1]

[
x
w

]
= b which simplifies to L′x = b.

Second, we have [xT w]

[
x
w

]
= a and w > 0 so that w =

√
a− xTx.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 5 / 26

Up-looking Cholesky algorithm, cont’d1
▶ This leads to the following algorithm:

Up-looking Cholesky algorithm
Given a sparse SPD matrix A ∈ Rn×n, initialize L′ :=

√
a11.

For k = 2, . . . , n:

- Let the leading k-by-k block of A be written as
[
A′ b
bT a

]
where A′ is the

(k − 1)-dimensional leading block, b is (k − 1)-by-1 and a is a scalar.

- Solve for x ∈ Rk−1 such that L′x = b where L′ and b are sparse.

- Compute w :=
√
a− xTx, and update

L′ :=

[
L′ 0
xT w

]
Return L := L′

Consequently, the sparse Cholesky factor L of the sparse matrix A is
formed by performing n− 1 sparse triangular solves of sizes 1, . . . , n− 1.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 6 / 26

Up-looking Cholesky algorithm, cont’d2

▶ Consider a matrix A with the following non-zero pattern:

▶ Since the 2-by-2 leading block A′ of A is diagonal, so is the corresponding
2-by-2 Cholesky factor L′ such that L′L′T = A′.

Let the vector complete the 3-by-3 leading block
[
A′ b
bT a

]
of A.

Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L′x = b.

▶ The Cholesky factor L′ :=

[
L′ 0
xT w

]
of

[
A′ b
bT a

]
has structure .

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 7 / 26

Up-looking Cholesky algorithm, cont’d3

▶ Consider a matrix A with the following non-zero pattern:

▶ Let the vector complete the 4-by-4 leading block
[
A′ b
bT a

]
of A.

Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L′x = b.

▶ The Cholesky factor L′ :=

[
L′ 0
xT w

]
of

[
A′ b
bT a

]
has structure .

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 8 / 26

Up-looking Cholesky algorithm, cont’d4
▶ Consider a matrix A with the following non-zero pattern:

▶ Let the vector complete the decomposition
[
A′ b
bT a

]
of A.

Then, the up-looking Cholesky algorithm requires that we do the sparse
triangular solve of L′x = b.

▶ The Cholesky factor L′ :=

[
L′ 0
xT w

]
of

[
A′ b
bT a

]
has structure .

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 9 / 26

Up-looking Cholesky algorithm, cont’d5
▶ The up-looking Cholesky algorithm yield a factor with the following

non-zero pattern:

Note that the sparsity of L resembles that of A, with additional fill-ins:

▶ While the up-looking algorithm is better than performing a dense Cholesky
factorization, it does require many DFS in graphs.

▶ We’ll now try to do better than the up-looking algorithm.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 10 / 26

Elimination tree
▶ The graph associated with the sparsity pattern of a Cholesky factor L

has a special property which allows to ignore many of its edges and
retain the same reach.

▶ Consider what happens when we ignore all the non-zero entries of L
below the first subdiagonal non-zero component. E.g.,

Removing these entries results in a sparsification of the associated
graph:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 11 / 26

Elimination tree, cont’d

Two general properties are observed:
1 The reach of every vertex remains unchanged by sparsification.
2 Every vertex of the sparsified graph has at most one edge leading out of it.

I.e., if the graph is connected, then it is a directed tree.

Remarks:
The sparsified graph is called an elimination tree.
The elimination tree may be disconnected, in which case it is a forest, but
even then, it will be called an elimination tree.
The elimination tree is an important data structure that can be used to
simplify all reach calculations in a sparse Cholesky factorization.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 12 / 26

Non-zero pattern of L
▶ Say we aim to compute the i-th line of the Cholesky factor L of an SPD A.
▶ We are equipped with L′ := L[1 : i− 1, 1 : i− 1]:

▶ We saw the non-zero entries of L[i, 1 : i− 1] are the non-zero entries of
the solution x of the above system with right-hand side b := A[1 : i− 1, i].

▶ Remember from our sparse triangular solves, xj = ℓij is non-zero either if
(a) bj = aij ̸= 0, or if (b) ∃ k < j so that both ℓjk ̸= 0 and xk = ℓik ̸= 0.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 13 / 26

Non-zero pattern of L, cont’d
▶ Therefore, the pattern of non-zero values of L is characterized as follows:

Graph of (possible) non-zero entries of L
Let j < i, then ℓij is non-zero if
(a) aij ̸= 0, or
(b) there is a column index k < j such that ℓjk and ℓik are non-zero.

We denote by Gch the graph with fewest edges that respect (a) and (b).
That is, Gch is the minimal graph such that aij ̸= 0 =⇒ (j, i) ∈ Gch and
(j, k), (i, k) ∈ Gch =⇒ (j, i) ∈ Gch.

▶ The graph Gch is a superset of the non-zero pattern of the Cholesky factor
L of A.
It can be that (j, i) ∈ Gch but ℓij numerically cancels out. However, if so,
a tiny perturbation of A with fixed sparsity is enough to make ℓij ̸= 0.
Therefore, the graph Gch is best referred to as the graph of possible
non-zero entries of the Cholesky factor L.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 14 / 26

Definition of the elimination tree
▶ The elimination tree can be defined as follows:

Elimination tree
Let A be an SPD matrix, and Gch be the graph representing the non-zero
entries of the Cholesky factor L of A.
The elimination tree is obtained as follows.
For each node i in Gch:
- Let Vi be the set of nodes j of Gch for which there is an edge (i, j) ∈ Gch, i.e.,
Vi is the set of out-neighbors of i. Let pi = minVi be the smallest-indexed node
in Vi.

- Remove the edges (i, j) for all j ∈ Vi \ {pi} from Gch, i.e., remove all the the
edges leaving i except for (i, pi).

The elimination tree is what’s left of Gch.

Example:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 15 / 26

Properties of the elimination tree
▶ Since for each vertex i in Gch, the elimination tree is formed by removing

all but one out-neighbors, each vertex is left with at most one single
out-neighbor, and the elimination tree is indeed a tree, or at least a forest.

▶ Consider the following example for a graph Gch of non-zero entries of the
Cholesky factor L:

As Gch is, the reach of k is j, i.
If k < j < i, the elimination tree is formed by removing the edge (k, i).
Then, the reach of k in the elimination tree is still j, i.

Theorem (Conservation of reach)
For a given graph Gch of non-zero entries of a Cholesky factor L of A, for
any 1 ≤ i ≤ n, the reach of the corresponding elimination tree is the same as
the reach of i in Gch.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 16 / 26

Computing the elimination tree from A
▶ Since the elimination tree has the same reach as Gch, but is sparser than

Gch, it can be used to more efficiently identify the non-zero entries of the
Cholesky factor.
For that, we need to figure out how to efficiently compute the elimination
tree from the given sparsity pattern of A.

▶ The idea behind computing the elimination tree of A is to proceed one
vertex at a time, maintaining a forest which contains all the vertices added
so far.The elimination tree shall be obtained once all the vertices are added.

▶ Suppose we have a forest which has all the vertices 1, . . . , i− 1 at the
correct place. To proceed with the i-th vertex, if aik ̸= 0 for some k < i,
then we’ll want i to be in the reach of k. In order to avoid potential
redundant edges, we should then connect i to whichever vertex j which is
at the leaf of the tree containing k.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 17 / 26

Computing the elimination tree from A, cont’d
▶ The pseudocode of the algorithm to build the elimination tree from the

sparsity pattern of A is given by

1. Initialize a forest F = ∅ :
2. For i = 1, . . . , n :
3. Add vertex i to F
4. For all k < i such that aik ̸=0 :
5. Find vertex j at the leaf of k’s tree
6. Add the edge (j, i) to F

Taking the same sparse matrix A as earlier, the elimination tree is then
built as follows:

We see that the same elimination tree is obtained as before.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 18 / 26

Summary
To compute a sparse Cholesky factor L of a sparse matrix A, we
1 Build the elimination tree of A, at cost O(|A|), where |A| is the number of

non-zero entries in A.
2 Find the graph Gch of possible non-zero entries of L using reaches of the

elimination tree.
3 Perform the up-looking Cholesky factorization to build L.

Pseudocode of the up-looking Cholesky factorization to build row k of L:
1. L[k, 1 : k] := A[k, 1 : k]

2. For each j < k such that ℓkj ̸= 0:

3. ℓkj ← ℓkj/ℓjj

4. For each i > j such that ℓij ̸= 0 :

5. ℓki ← ℓki − ℓij/ℓkj

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 19 / 26

Nested dissesction
Section 9.5 in Darve & Wotters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025

Reducing fill-ins in L
▶ While the row and column permutations of a matrix do not really impact

the solution of a linear system (i.e., PrAPc · P T
c x = Prb), they can have a

significant impact on the sparsity pattern, i.e., the graph Gch of the
Cholesky factor:

Even though only one row and one column are permuted between A1 and
A2, the difference between the numbers of fill-ins in L1 and L2 is very
significant.

▶ How should a matrix be ordered to reduce the number of fill-ins in
the Cholesky factor L?

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 20 / 26

One step of nested dissection
▶ Nested dissection is a strategy for ordering a matrix A in a way that

closely minimizes the number of fill-ins in L.
▶ Nested dissection is a recursive method based on graph partitioning.
▶ Consider the symmetric matrix A with an associated graph G.

Let the vertices of G be decomposed in the disjoint union of V1, V2 and S,
so that there are no edges between vertices of V1 and V2.
If G1 and G2 are the induced graph on V1 and V2, respectively, then we
have

where S is referred to as a separator.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 21 / 26

One step of nested dissection, cont’d1
▶ A node separator set S partitions the graph G of A into three disjoint

sets of vertices V1, V2 and S such that none of the nodes of V1 are
connected to any of the nodes of V2, and vice-versa.

▶ The removal of S from the graph G leads to two subgraphs G1 and G2,
disconnected from each other.

▶ Consider what happens when we order the vertices as

(vertices of G1, vertices of G2, S)

we obtain the matrix

which is structurally close to the A1 matrix with small number of fill-ins.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 22 / 26

One step of nested dissection, cont’d2

As a result of the block diagonal structure due to G1 and G2, the Cholesky
factor L of the reordered matrix will preserve a block diagonal structure.
If the blue blocks are dense, the sparsity of L is exactly given by that of A.
In general, each block of L will be sparse.
From here, we will proceed as follows:

▶ Entries in S. For these entries, we give up and accept whatever fill-ins
happen. Thus we want S to be as small as possible.

▶ Entries in G1 and G2. For these entries, we will recurse on the blocks
G1 ×G1 and G2 ×G2, i.e., find small separators S1 and S2 for G1 and
G2, respectively, and so on.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 23 / 26

Nested dissection
▶ The basic idea of nested dissection is to recursively apply the procedure

we just described, and yield a nested dissection ordering of the graph
nodes.

▶ The description of find_separator_set is beyond the scope of this class.
A good separator set has as few nodes as possible, and it decomposes the
graph in roughly equally sized subgraphs.
Finding a good separator set is actually a NP-hard problem.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 24 / 26

Nested dissection, cont’d
▶ In the matrix, the recursive process of nested dissection looks like this:

As we can see, if good separators are chosen, the "down-and-right-arrow"
patterns shows up at all scales, and we can guarantee that more and more
entries of L will be zero.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 25 / 26

Homework problems

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025

Homework problem
Turn in your own solution to the following problem:

Pb. 16 Find the non-zero pattern of the Cholesky factor L for the following
matrix:

A =


a11 a12 0 a14
a12 a22 0 a24
0 0 a33 0
a14 a24 0 a44

 .

Show your work using the up-looking Cholesky factorization algorithm.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 06 Summer 2025 26 / 26

	Solving sparse triangular linear systems Section 9.3 in Darve & Wotters (2021)
	Cholesky factorization Section 9.4 in Darve & Wotters (2021)
	Nested dissesction Section 9.5 in Darve & Wotters (2021)
	Homework problems

