Numerical Linear Algebra for Computational Science and Information Engineering

> Lecture 07 Orthogonalization and Least-Squares Problems

> > Nicolas Venkovic nicolas.venkovic@tum.de

Group of Computational Mathematics School of Computation, Information and Technology Technical University of Munich

Summer 2025

Outline

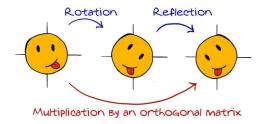
1	QR factorization Section 4 in Darve & Wootters (2021)	1
2	Householder reflections Section 4.1 in Darve & Wootters (2021)	5
3	Givens rotations Section 4.2 in Darve & Wootters (2021)	11
4	Gram-Schmidt procedures Section 4.3 in Darve & Wootters (2021)	14
5	Least-squares problems Section 4.4 in Darve & Wootters (2021)	25
6	Homework problems	33

QR factorization Section 4 in Darve & Wootters (2021)

QR factorization

- ► A QR factorization decomposes a matrix as the product of an orthogonal matrix Q with an upper-triangular matrix R.
- ▶ Recall that a matrix Q is orthogonal if $Q^T Q = I$.
- ► If a matrix is orthogonal, then ||Qx||₂ = ||x||₂ for all x, i.e., Q doesn't change the length of vectors.

The operations that do not change the length of vectors are **rotations** and **reflections**, so an orthogonal matrix can be thought of as a map that combines a rotation with a reflection.



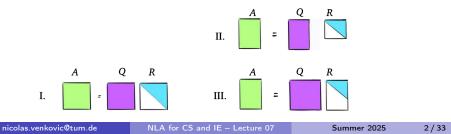
QR factorization, cont'd

QR factorization

- Let A be a real $m \times n$ matrix with $m \ge n$. Then, there is an orthogonal matrix Q and an upper-triangular matrix R such that A = QR. This is called the **QR factorization**.
- When A is complex, there is still a factorization A=QR, but Q is unitary, i.e., $Q^HQ=I.$

For the rest this lecture, we assume A is real, but QR factorizations do exist for complex matrices.

► There are different forms of QR factorizations, depending on the shape of A:



Applications of the QR factorization

The QR factorization has several applications in numerical linear algebra:

- It can be used to solve least-squares problems, i.e., problems of the form $\arg \min_x ||Ax b||_2$ where A is tall and skiny.
- It is used as part eigen- and singular value algorithms for small dense matrices.
- It is also used in iterative methods to solve linear systems and compute eigenvalues, such as in Krylov methods.

QR factorization and least squares problems

To see why the QR factorization can be useful, let's look briefly at the least squares problem:

▶ Let $A \in \mathbb{R}^{m \times n}$ with m > n. We want to find x such that Ax is closest to b in Euclidean distance. That is

$$x^* = \arg\min_x \|Ax - b\|_2.$$

To do this, we use the QR factorization, with a square Q, i.e., case III from slide #2:

$$||Ax - b||_2 = ||Q^T (Ax - b)||_2 = ||Q^T (QRx - b)||_2 = ||Rx - Q^T b||_2$$

where we used the fact that for any vector y, $\|Q^Ty\|_2 = \|y\|_2$ because

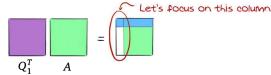
$$\|Q^T y\|_2^2 = (Q^T y)^T (Q^T y) = y^T Q Q^T y = y^T (Q^T Q)^T y = y^T I^T y = y^T y = \|y\|_2^2.$$

As it turns out, it is easier to find x that minimizes $||Rx - Q^T b||_2$ than it is to minimize $||Ax - b||_2$.

Householder reflections Section 4.1 in Darve & Wootters (2021)

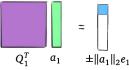
Householder reflections

- Householder reflections are one of the most reliable methods to compute a QR factorization with a square Q, i.e., cases I and III.
- That is, we ask the question, does there exists a matrix Q s.t. $Q^T A = R$.
- Our goal is thus to create zero entries below the diagonal. Starting by the first column, we have:



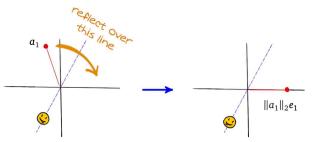
We need to apply an orthogonal transformation Q₁^T to transform the first column of A into a vector in the direction of e₁.

Let's write $A = [a_1| \dots |a_n]$. Then, since Q_1^T does not change the norm of a_1 , we should have:



Householder reflections, cont'd₁

 A logical choice for Q₁^T would be a rotation that maps a₁ parallel to e₁. However, rotations in high dimensions are not so easy to set up. Thus, we'll instead choose Q₁^T to be a reflection that maps a₁ parallel to e₁:

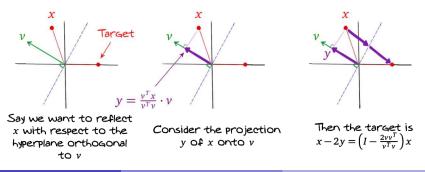


Now that we have an idea of what the reflection should be doing, we need to figure out its mathematical formula.

Householder reflections, cont'd₂

Let us consider reflections in general. A reflection is defined by a vector:

Given v, we can reason geometrically about what a reflection is:



NLA for CS and IE - Lecture 07

Householder reflections, $cont'd_3$

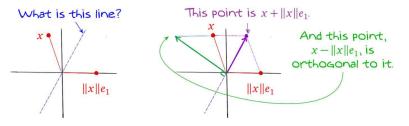
Reflection

Let P be the matrix which represents a reflection over the hyperplane orthogonal to some vector v. Then P is given by

$$P = I - \beta v v^T$$
 where $\beta = \frac{2}{v^T v}$.

Now we need to pick v to arrive at a Householder reflection, i.e., to get a transformation from x to ||x||₂e₁.

The following geometric argument shows that $v=x-\|x\|_2e_1$ will work



Householder reflections, cont'd₃

Let $v = x - ||x||_2 e_1$, then we see that

$$Px = \left(I - 2\frac{vv^T}{v^Tv}\right)x$$

= $\left(I - 2\frac{(x - ||x||_2e_1)(x - ||x||_2e_1)^T}{(x - ||x||_2e_1)^T(x - ||x||_2e_1)}\right)x$
= $\left(I - 2\frac{(x - ||x||_2e_1)(x - ||x||_2e_1)^T}{2(||x||_2^2 - 2||x||_2x_1)}\right)x$
= $x - \frac{(x - ||x||_2e_1)(||x||_2^2 - ||x||_2x_1)}{(||x||_2^2 - 2||x||_2x_1)}$
= $x - (x - ||x||_2e_1)$
= $||x||_2e_1$

so that, indeed, a reflection over the hyperplane orthogonal to $v = x - ||x||_2 e_1$, is a Householder reflection of x.

9/33

Iterating Householder reflections

Now that we know how to operate a first Householder reflection from a₁ to ||a₁||₂e₁, we can apply a series of Householder transformations to progressively reduce A to a upper-triangular form.

We proceed by first zeroing entries in the first column, then in the second column, and so on.

In the end, for $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, we have

$$Q_{n-1}^T \dots Q_1^T A = R,$$

which is equivalent to

$$A = Q_1 \dots Q_{n-1}R = QR$$

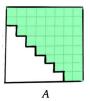
where $Q = Q_1 \dots Q_{n-1} \in \mathbb{R}^{m \times m}$, and R has zeros in the m - n rows if m > n.

▶ In practice, when reducing A to R, the matrix P is never formed explicitly, instead we compute $PA = A - \beta v(v^T A)$ which carries a cost O(2mn), instead of $O(m^2n)$ when P is assembled and applied, i.e., as P is dense.

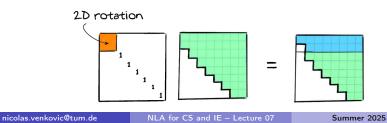
Givens rotations Section 4.2 in Darve & Wootters (2021)

Givens rotations

When the matrix A is upper Hessenberg, i.e., whene a_{ij} = 0 for all i > j + 1, most of the subdiagonal components are already zero, and using Householder transformations in this situation is a bit of an overkill:



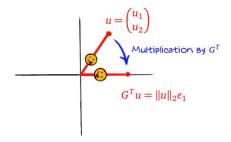
On every column of A, only one entry needs to be zeroed, so that 2D rotations, which are easy to set up, can be deployed for the job:



11/33

Givens rotations, $cont'd_1$

Zeroing a single subdiagonal entry can be reduced to considering a 2D vector u = (u₁, u₂) and finding a rotation G^T such that the vector u becomes aligned with e₁:



With some algebra, we find:

Givens rotation

A Givens rotation which rotates $u = (u_1, u_2)^T$ to $||u||_2 e_1$ is the 2 x 2 matrix defined by $G^T = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}, \quad c = \frac{u_1}{||u||_2}, \quad s = -\frac{u_2}{||u||_2}.$

Givens rotations, $cont'd_2$

- For an upper Hessenberg matrix A of size m × n, we can compute its QR factorization using a sequence of Givens rotations.
- The algrithms is as follows:
 - 1. For each column $j = 1, \ldots, n-1$:
 - 2. Construct a Givens rotation matrix G^T that zeros $a_{j+1,j}$
 - 3. Apply G^T to rows j and j + 1 of A

Gram-Schmidt procedures Section 4.3 in Darve & Wootters (2021)

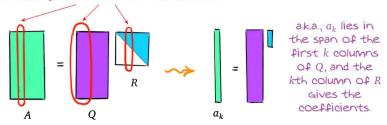
Gram-Schmidt procedures

- ► Householder reflections and Givens rotations produce a square matrix Q ∈ ℝ^{m×m}, even when A ∈ ℝ^{m×n} with m > n, i.e., case III. On the other hand, Gram-Schmidt procedures will produce a rectangular, tall and skinny matrix Q ∈ ℝ^{m×n}, i.e., like in case II.
- Another peculiarity of Gram-Schmidt procedures is that they work column-by-column, i.e., to compute q_i in Q = [q₁,...,q_n], you only need access to a_i from A = [a₁,...,a_n] and q₁,...,q_{k-1}.
 - This feature of the Gram-Schmidt procedures is particularly **useful in Krylov methods** where A is not available all at once, and the new column a_i to orthogonalize is only available after an performing a full iteration of computations.
- ► The first k columns q₁,..., q_k formed by Gram-Schmidt procedure in Q are an orthonormal basis of the subspace spanned by a₁,..., a_k.

Gram-Schmidt procedures, cont'd1

► Visualizing the column a_k = QR_{:,k}, and the fact that R_{:,k} has k non-zero entries followed by m - k zeros on the subdiagonal, we can write a_k = Q_{:,1:k}R_{1:k,k}:

Consider just this part of the equation



That is, a_k is formed by linear combination of q_1, \ldots, q_k :

$$a_k = r_{1k}q_1 + \dots + r_{kk}q_k.$$

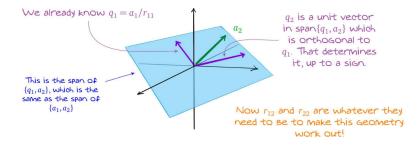
Thus, instead of searching for the matrix Q that makes Q^TA upper triangular, we are rather going to search for the upper triangular matrix R such that every a_k is given by linear combination of q₁,...,q_k.

nicolas.venkovic@tum.de

NLA for CS and IE - Lecture 07

Gram-Schmidt procedures, cont'd₂

- First, since we have $a_1 = r_{11}q_1$, and q_1 has unit norm, we set $r_{11} = ||a_1||_2$ and $q_1 = a_1/r_{11}$.
- ► Then, we continue iteratively, i.e., a₂ = r₁₂q₁ + r₂₂q₂ so that q₂ is a unit vector in span{q₁, a₂} = span{a₁, a₂}, orthogonal to q₁:



Then r_{12} and r_{22} are found to close the system.

Classical Gram-Schmidt (CGS) procedure

• More formally, for each $1 \le k \le n$, we write

$$a_k = \sum_{i=1}^k r_{ik}q_i = r_{kk}q_k + \sum_{i=1}^{k-1} r_{ik}q_i$$

Assuming we already know q_j and r_{ij} for all j < k and $i \leq j$, we can then use this formula to find expressions for the r_{ik} 's and q_k .

First, multiplying by q_i^T and invoking the orthonormality of the basis given by q_1, \ldots, q_k , we get

$$q_i^T a_k = \sum_{j=1}^k r_{jk} q_i^T q_j = r_{ik} \implies r_{ik} = q_i^T a_k \text{ for } i < k.$$

Next, to find r_{kk} , we have $q_k r_{kk} = a_k - \sum_{i=1}^{k-1} r_{ik} q_i$ where q_k has unit norm so that

$$r_{kk} = \left\| a_k - \sum_{i=1}^{k-1} r_{ik} q_i \right\|_2$$

NLA for CS and IE – Lecture 07

Classical Gram-Schmidt (CGS) procedure, cont'd₁

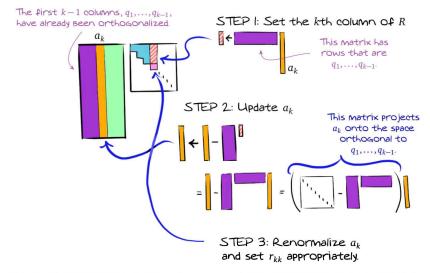
Note that r_{kk} could also be chosen to be negative. However, it is standard to let R have positive components on the diagonal.

Finally, we have

$$q_k = \frac{1}{r_{kk}} \left(a_k - \sum_{i=1}^{k-1} r_{ik} q_i \right).$$

This procedure is referred to as the classical Gram-Schmidt algorithm. We see indeed that, in order to compute q_k , you need access to a_k and q_1, \ldots, q_{k-1} .

Classical Gram-Schmidt (CGS) procedure, cont'd₂ When we get the kth column of A:



Now we've turned a_k into $q_k \perp q_1, \ldots, q_{k-1}$! Move on to the next column.

Classical Gram-Schmidt (CGS) procedure, cont'd₃

So the CGS algorithm is implemented as follows:

1.
$$r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$$

2. For each $k = 2, ..., n$:
3. $R_{1:k-1,k} := Q_{:,1:k-1}^T a_k //$ BLAS 2
4. $q_k := a_k - Q_{:,1:k-1} R_{1:k-1,k} //$ BLAS

5.
$$r_{kk} := ||q_k||_2; q_k := q_k/r_{kk}$$

so that CGS relies on two BLAS 2 calls per iteration. Similarly, we can write

1.
$$r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$$

- 2. For each $k = 2, \ldots, n$:
- $3. \qquad q_k := \Pi_{k-1} a_k$

4.
$$r_{kk} := \|q_k\|_2; \ q_k := q_k/r_{kk}$$

where $\Pi_{k-1} := I_m - Q_{:,1:k-1}Q_{:,1:k-1}^T$ is an orthogonal projector onto the subspace range $(Q_{:,1:k-1})^{\perp}$ so, indeed, q_k is made orthogonal to the previously formed vectors q_1, \ldots, q_{k-1} .

2

Instability of CGS

CGS is known to not being very stable.

• For example, consider the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}$$
.

If we assume ε^2 is smaller than the unit roundoff $u_{\rm r}$ then the Q matrix

generated by CGS is
$$Q = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 0 \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

Then we see that q_2 and q_3 are far from being orthogonal as we have $q_2^T q_3 = 1/2$.

- Numerical stability is measured with respect to the loss of orthogonality, LOO, given by ||I_m - Q^TQ||₂.
- With CGS, the LOO depends on the condition number of the matrix A, i.e., LOO = O(u · κ²(A)).

Re-orthogonalization, CGS2

An alternative is to orthogonalize twice by CGS, leading to CGS2:

- 1. $r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$
- 2. For each k = 2, ..., n :
- 3. $q_k := \prod_{k=1}^{k} a_k$
- 4. $q_k := \prod_{k=1}^{k} q_k$
- 5. $r_{kk} := ||q_k||_2; q_k := q_k/r_{kk}$

- 1. $r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$
- 2. For each k = 2, ..., n :
- 3. $R_{1:k-1,k} := Q_{\cdot 1 \cdot k-1}^T a_k$
- 4. $q_k := a_k Q_{\cdot 1 \cdot k 1} R_{1 \cdot k 1 \cdot k}$

5.
$$S_{1:k-1} := Q_{:,1:k-1}^T q_k$$

6.
$$q_k := q_k - Q_{:,1:k-1} S_{1:k-1}$$

where
$$\Pi_{k-1} := I_m - Q_{:,1:k-1}Q_{:,1:k-1}^T \cdot 7$$
. $q_k := \|q_k\|_2; q_k := q_k/r_{kk}$

- ▶ The error bound becomes LOO = O(u), so that CGS2 is inconditionally stable.
- ▶ However, CGS2 requires $4mn^2$ FLOP instead of $2mn^2$ for CGS.

Modified Gram-Schmidt, MGS

Another alternative to CGS, referred to as modified Gram-Schmidt (MGS), is obtained by letting $\Pi_{k-1} := (I_m - q_{:,k-1}q_{:,k-1}^T) \dots (I_m - q_{:,1}q_{:,1}^T)$ in

1.
$$r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$$

- 2. For each $k = 2, \ldots, n$:
- $\mathbf{3.} \qquad q_k := \Pi_{k-1} a_k$

5.
$$r_{kk} := ||q_k||_2; q_k := q_k/r_{kk}$$

Assuming perfect arithmetic, this is equivalent to CGS, but it relies on BLAS 1 instead BLAS 2 operations:

1.
$$r_{11} := ||a_1||_2; q_1 := a_1/r_{11}$$

2. For each $k = 2, \ldots, n$:

$$3. \quad q_k := a_k$$

4. For each
$$\ell = 1, \ldots, k-1$$
 :

3.
$$r_{\ell k} := q_\ell^T q_k //$$
 BLAS 1

4.
$$q_k := q_k - r_{\ell k} q_\ell //$$
 BLAS 1

5.
$$r_{kk} := ||q_k||_2; q_k := q_k/r_{kk}$$

Modified Gram-Schmidt, MGS, cont'd

▶ The error bound of MGS is $LOO = O(u \cdot \kappa(A))$, so that it is more stable than CGS.

• Considering once again the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}$$
 where $\varepsilon^2 < u$,

MGS yields a
$$Q$$
 matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -1/\sqrt{2} & -1/\sqrt{6} \\ 0 & 1/\sqrt{2} & -1/\sqrt{6} \\ 0 & 0 & \sqrt{2}/\sqrt{3} \end{bmatrix}$

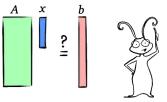
Contrarily to CGS, we see that q_2 and q_3 are exactly orthogonal, i.e., $q_2^T q_3 = 0$, and q_1 is nearly orthogonal to q_2 and q_3 , with $|q_1^T q_2| = \varepsilon/\sqrt{2}$ and $|q_1^T q_3| = \varepsilon/\sqrt{6}$.

▶ In practice, MGS and CGS2 are used instead of CGS.

Least-squares problems Section 4.4 in Darve & Wootters (2021)

Geometry of least-squares

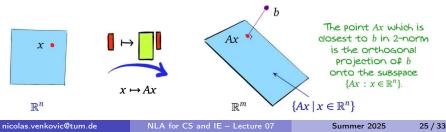
One of the applications of the QR decomposition is the solving of least-squares problems arg min_x ||Ax - b||₂:



Since A is tall and skinny, there are more equations than unknowns! So there may not be some x so that Ax = b. The least-squares problem is to find the x so that Ax is closest to b, in 2-norm.

with a tall and skinny matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^n$.

▶ To minimize the 2-norm from a point b to a subspace $\{Ax, x \in \mathbb{R}^n\}$, we can just do an orthogonal projection:



Method of normal equations

► As per property of orthogonal projections, the x that minimizes ||Ax - b||₂ has an error e := Ax - b which is orthogonal to the range of A. This can be written as

$$A^T(Ax - b) = 0. (1)$$

Assuming A is full-rank, this equation can be used to solve for x by a method called **normal equations**.

Eq. (1) may also be derived from calculus, namely, the optimal x which minimizes the cost function

$$f(x) = \|Ax - b\|_2^2 = (Ax - b)^T (Ax - b) = x^T A^T A x - 2x^T A^T b + b^T b$$

is obtained for $\nabla f(x)=0$ where

$$\nabla f(x) = 2A^T A x - 2A^T b,$$

which equivalently yields Eq. (1).

26 / 33

Method of normal equations, cont'd

Assuming A is full-rank, $A^T A$ is SPD so that we may compute its Cholesky factorization and solve for x in $A^T A x = A^T b$.

Normal equations

Finding the solution x to the least-sugares problem $\arg \min ||Ax - b||_2$ by solving the system $A^T A x = A^T b$ is called the method of **normal equations**.

- Since the condition number of A^TA is the square of that of A, the method of normal equations can run into issues when A is poorly conditioned.
- ▶ For cases where A is poorly conditioned, the QR factorization can be used to yield a more accurate computation of the solution x to the least-squares problem.

QR factorization for least-squares problems

► The origin of the method of normal equations stems from saying that the error Ax - b is orthogonal to the range of A. But if we know a QR factorization A = QR where Q ∈ ℝ^{m×n}, then the range of A is the same as the range of Q.

The orthogonality condition can then be re-stated as

$$Q^T(Ax - b) = 0. (2)$$

Since Q is orthogonal, it is necessarily well-conditioned, and the conditioning problem of the method of normal equations can be avoided. Since A = QR, due to the orthogonality of Q, we have $Q^T A = R$ so that Eq. (2) becomes

$$Rx = Q^T b$$

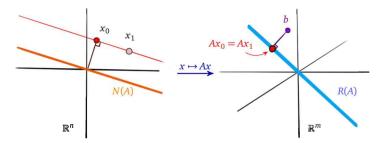
where R is non-singular as long as A is non-singular, so that there exists a unique solution x.

nicolas.venkovic@tum.de

28 / 33

Case of rank-deficient A

- If A is rank-deficient, the null space of A is non-trivial. Then, for some x that minimizes ||Ax − b||₂, there are infinitely many δx ∈ null(A) such that A(x + δx) = Ax. Hence, the solution to the least-squares problem is not unique.
- ► In case of non-uniqueness of solution, one can search for the unique x₀ which minimizes both ||Ax b||₂ and ||x||₂:



We can see the x_0 we are after is orthogonal to the null space of A, while any other solution x_1 is of the form $x_0 + \delta x$.

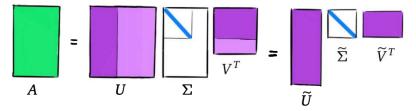
nicolas.venkovic@tum.de

NLA for CS and IE – Lecture 07

SVD method for solving least-squares with rank-deficient \boldsymbol{A}

► Let $A \in \mathbb{R}^{m \times}$ be of rank r < n < m have an SVD given by $A = U\Sigma V^T$ with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$ where Σ has zeros from row r + 1 to m.

Then we can ignore the columns of U and V that correspond to zeros in Σ to create the thin SVD $A = \widetilde{U}\widetilde{\Sigma}\widetilde{V}^T$:



Now, Ax = 0 if and only if $\widetilde{V}^T x = 0$, which means that the null space of A is the same as that of \widetilde{V}^T , i.e., $\operatorname{null}(A) = \operatorname{null}(\widetilde{V}^T)$.

SVD method for solving least-squares with rank-deficient \boldsymbol{A}

 \blacktriangleright We know that any solution x to the least-squares problem satisfies

$$A^{T}Ax = A^{T}b$$
$$(\widetilde{U}\widetilde{\Sigma}\widetilde{V}^{T})^{T}\widetilde{U}\widetilde{\Sigma}\widetilde{V}^{T}x = (\widetilde{U}\widetilde{\Sigma}\widetilde{V}^{T})^{T}b$$
$$\widetilde{V}\widetilde{\Sigma}^{T}\widetilde{\Sigma}\widetilde{V}^{T}x = \widetilde{V}\widetilde{\Sigma}^{T}\widetilde{U}^{T}b$$
$$\widetilde{\Sigma}\widetilde{V}^{T}x = \widetilde{U}^{T}b$$

where r < n so that $\widetilde{\Sigma}\widetilde{V}^T$ is not full-column-rank and this equation admits infinitely many solutions.

• However, we can find one solution as follows. First, let's solve the system $\widetilde{\Sigma}\omega = \widetilde{U}^T b$ for $\omega \in \mathbb{R}^r$. This gives

$$\omega_i = \frac{\widetilde{u}_i^T b}{\widetilde{\sigma}_{ii}}$$

where
$$\widetilde{U} = [\widetilde{u}_1, \dots, \widetilde{u}_r]$$
 and $\widetilde{\Sigma} = \operatorname{diag}(\widetilde{\sigma}_{11}, \dots, \widetilde{\sigma}_{rr})$.

SVD method for solving least-squares with rank-deficient AThen, since $\omega = \tilde{\Sigma}^{-1} \tilde{U}^T b$, we have

$$\widetilde{\Sigma}\widetilde{V}^T(\widetilde{V}\omega)=\widetilde{\Sigma}\widetilde{V}^T\widetilde{V}\widetilde{\Sigma}^{-1}\widetilde{U}^Tb=\widetilde{U}^Tb$$

so that $x_0 := \widetilde{V}\omega$ is solution of $\widetilde{\Sigma}\widetilde{V}^T x_0 = \widetilde{U}^T b$ and thus, as explained before, it is also solution of the least-squares problem. Note that $x_0 := \widetilde{V}\omega$ is the solution with smallest norm.

To see this, we need to show $x_0 \perp \operatorname{null}(A)$. First, let

$$\operatorname{null}(\widetilde{V}^T) = \{ y \in \mathbb{R}^n, \ \widetilde{V}^T y = 0 \}$$

and consider that for each $y \in \operatorname{null}(\widetilde{V}^T)$, we have

$$x_0^T y = (\widetilde{V}\omega)^T y = \omega \widetilde{V}^T y = 0$$

so that $x_0 \perp \operatorname{null}(\widetilde{V}^T)$. But since $\operatorname{null}(\widetilde{V}^T) = \operatorname{null}(A)$, we have that $x_0 \perp \operatorname{null}(A)$.

32 / 33

Homework problems

Homework problem

Turn in your own solution to the following problem:

Pb. 17 Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

(a) Find a QR decomposition of A applying a Gram-Schmidt procedure with a pen and paper.

(b) Find the least-squares problem solution $x = \arg \min_x ||Ax - b||_2$ making use of the QR factorization.

Practice session

Practice session

- CGS
- CGS2
- MGS
- Omparison