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QR factorization

Section 4 in Darve & Wootters (2021)
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QR factorization
> A QR factorization decomposes a matrix as the product of an
orthogonal matrix Q with an upper-triangular matrix R.
> Recall that a matrix Q is orthogonal if Q7Q = I.

» If a matrix is orthogonal, then ||Qz||2 = ||z||2 for all z, i.e., @ doesn't
change the length of vectors.

The operations that do not change the length of vectors are rotations and
reflections, so an orthogonal matrix can be thought of as a map that
combines a rotation with a reflection.

R otation Reflection
7~ N

P P

Multiplication By an orthoaonal matrix
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QR factorization, cont'd

QR factorization

- Let A be a real m x n matrix with m > n. Then, there is an orthogonal
matrix @@ and an upper-triangular matrix R such that A = QR. This is
called the QR factorization.

- When A is complex, there is still a factorization A = QR, but @ is unitary,

e, QHQ =1. )

For the rest this lecture, we assume A is real, but QR factorizations do exist

for complex matrices.
» There are different forms of QR factorizations, depending on the shapeof A:

A Q R
nl
A Q R A Q R
I' ‘— ) - E\\\ III. u : . B
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Applications of the QR factorization
The QR factorization has several applications in numerical linear algebra:

@ It can be used to solve least-squares problems, i.e., problems of the form
arg min, || Az — bl|2 where A is tall and skiny.

@ It is used as part eigen- and singular value algorithms for small dense
matrices.

© It is also used in iterative methods to solve linear systems and compute
eigenvalues, such as in Krylov methods.
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QR factorization and least squares problems

To see why the QR factorization can be useful, let's look briefly at the least
squares problem:

» Let A € R™*" with m > n. We want to find z such that Az is closest to
b in Euclidean distance. That is

¥ = argmin ||Az — b||2.
x

To do this, we use the QR factorization, with a square Q, i.e., case III
from slide #2:

|4z = bll2 = |Q" (Az = b)||2 = |QT(QRz — b)|l2 = || Rz — Q" ]2
where we used the fact that for any vector y, ||QTy|2 = ||y||2 because
1QTI3 = (Q"y)"(Q"y) =" QQTy = y" QT Q) y =y Ty =y"y = |lyll3.

As it turns out, it is easier to find 2 that minimizes ||Rz — Q7'b||2 than it
is to minimize ||Ax — bl|2.
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Householder reflections
Section 4.1 in Darve & Wootters (2021)
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Householder reflections

>

>

Householder reflections are one of the most reliable methods to compute a
QR factorization with a square @, i.e., cases I and III.

That is, we ask the question, does there exists a matrix @ s.t. Q7 A = R.
Our goal is thus to create zero entries below the diagonal. Starting by the

first column, we have:
£ Let's £ocus on this column

B

We need to apply an orthogonal transformation Q7 to transform the first
column of A into a vector in the direction of ey.

Let's write A = [a1]...|an]. Then, since QT does not change the norm of
a1, we should have:

Q{ a x|la; loe
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Householder reflections, cont'd;

» A logical choice for Q7 would be a rotation that maps a; parallel to e;.

However, rotations in high dimensions are not so easy to set up.

Thus, we'll instead choose Q¥ to be a reflection that maps a; parallel to

€1:

a;

~ "e
/
/
/
/
/
/
/
/
/

» ©

[la; |l eq

Now that we have an idea of what the reflection should be doing, we need

to figure out its mathematical formula.
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Householder reflections, cont'ds

> Let us consider reflections in general. A reflection is defined by a vector:

X X
v \ /. Teraet v /

/ /

/ /

/ -’/ _/ A

// //
/// ///
// _ VTX //

Say we want to reflect .
x with respect to the  Consider the projection Then the toreet is
hyperplane orthoaonal y Of x onvto v x—2y=(1-2%)x

tov
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Householder reflections, cont'ds

Reflection
Let P be the matrix which represents a reflection over the hyperplane

orthogonal to some vector v. Then P is given by

P=1-Bw?T where 3 = ——.
viv

» Now we need to pick v to arrive at a Householder reflection, i.e., to get a
transformation from z to ||z||2e;.
The following geometric argument shows that v = x — ||z||2e1 will work

What is this line? This poir\”c is x +||x|le;.

% \,‘/ And this point,
x—lxlley, is
/ orthogonal to it.
/ IIXI|e1 ||XI|61

g
/
/
/
/
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Householder reflections, cont'ds
Let v = & — ||z||2€1, then we see that

U'UT
_ _ T
_ (1_2(95 Hﬂ?llzel);x |2]2€1) )x
(z — ||lzll2e1)T (x — ||z||2e1)

_ (I e lzlen) (@ - HxH2e1)T> )

2([lll3 = 2l|z]l221)

(z — llzllzen) (3 — llll221)
(llzl3 = 2ll=[l221)

=z — (z — |[z[l2e1)

=xr —

= ||lz|2e1

so that, indeed, a reflection over the hyperplane orthogonaltov = = — ||z||2e1,
is a Householder reflection of z.
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lterating Householder reflections

» Now that we know how to operate a first Householder reflection from a
to ||a1||2e1, we can apply a series of Householder transformations to
progressively reduce A to a upper-triangular form.

We proceed by first zeroing entries in the first column, then in the second
column, and so on.

In the end, for A € R™*"™ with m > n, we have
T T
me1---Q1A=R,

which is equivalent to

A=Q1...QnaR=QR

where Q = Q1...Qn—1 € R™*™ and R has zeros in the m — n rows if
m > n.

» In practice, when reducing A to R, the matrix P is never formed explicitly,
instead we compute PA = A — Bu(vl A) which carries a cost O(2mn),
instead of O(m?n) when P is assembled and applied, i.e., as P is dense.
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Givens rotations
Section 4.2 in Darve & Wootters (2021)
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Givens rotations

» When the matrix A is upper Hessenberg, i.e., whene a;; = 0 for all
1 > 7+ 1, most of the subdiagonal components are already zero, and using
Householder transformations in this situation is a bit of an overkill:

A

» On every column of A, only one entry needs to be zeroed, so that 2D
rotations, which are easy to set up, can be deployed for the job:

2D rotation
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Givens rotations, cont'd;

» Zeroing a single subdiagonal entry can be reduced to considering a 2D
vector u = (u1,uz) and finding a rotation G” such that the vector u
becomes aligned with eq:

Uy
L)

Muttiplication By GT

e

©
®

GTu = ||ullye

With some algebra, we find:
Givens rotation
A Givens rotation which rotates u = (u1,u2)” to ||ul|2e1 is the 2 x 2 matrix
defined by - u u
GT = [z CS] , C L = 2

= — &= = o
lull2 ” [ull2
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Givens rotations, cont'ds
» For an upper Hessenberg matrix A of size m x n, we can compute its QR

factorization using a sequence of Givens rotations.

» The algrithms is as follows:
1. For each column j=1,...,n—1:
2. Construct a Givens rotation matrix G7' that zeros a1 ;

3. Apply GT to rows j and j + 1 of A
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Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021)
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Gram-Schmidt procedures

» Householder reflections and Givens rotations produce a square matrix
Q € R™ ™ even when A € R™*"™ with m > n, i.e., case III.

On the other hand, Gram-Schmidt procedures will produce a
rectangular, tall and skinny matrix QQ € R™*" j.e., like in case II.

» Another peculiarity of Gram-Schmidt procedures is that they work
column-by-column, i.e., to compute ¢; in Q = [q1, - .., ¢n], you only need
access to a; from A =lay,...,ay] and q1, ..., qr—1.

This feature of the Gram-Schmidt procedures is particularly useful in
Krylov methods where A is not available all at once, and the new column
a; to orthogonalize is only available after an performing a full iteration of
computations.

» The first k columns q1, ..., q; formed by Gram-Schmidt procedure in Q
are an orthonormal basis of the subspace spanned by as, ..., ax.
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Gram-Schmidt procedures, cont'd;

» Visualizing the column a;, = QR. ;, and the fact that R. ;, has k non-zero
entries followed by m — k zeros on the subdiagonal, we can write
ar = Q. 1. Rk ke

Consider just this part of the equation

— <\

aka., ai lies in
I the span of the

first k columns

= of Q, and the
kth column of R

Gives the
coefficients.
A ay

That is, ay is formed by linear combination of ¢, ..., q:

ap = T1kq1 + -+ kG-
» Thus, instead of searching for the matrix Q that makes Q©' A upper

triangular, we are rather going to search for the upper triangular matrix R
such that every ay is given by linear combination of g1, ..., qx.
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Gram-Schmidt procedures, cont'd,

» First, since we have a; = 1141, and ¢; has unit norm, we set 11 = ||a1]|2
and ¢1 = a1 /ri1.

» Then, we continue iteratively, i.e., as = r12¢q1 + 722¢2 so that ¢ is a unit
vector in span{qi, as} = spanf{ai, as}, orthogonal to ¢:

We already know ¢, =a,/rm q, is 3 unit vector
in span{q;,a,} which
is orthogonal to
q;. That determines
it, up to a sian

{q1, a3}, which is the
samwe as the span of

{a1, a5} Now ry; and ry, are whatever they
need 10 Be t0 make this ceometry
work out!

Then r15 and roy are found to close the system.
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Classical Gram-Schmidt (CGS) procedure

» More formally, for each 1 < k < n, we write

k k-1
ag = Zriqu' = Tkkqk + Z Tikdi
i=1 i=1

Assuming we already know ¢; and r;; for all j < k and i < j, we can then
use this formula to find expressions for the 7;,'s and ¢;..

First, multiplying by ¢! and invoking the orthonormality of the basis given
by q1,. ., qr, we get
k

T T T .
q; ak:E TikG; @G = Tik = Tik = q; ay for i < k.
i=1

Next, to find 7, we have gpri, = ap — Zf;ll r1q; Where g has unit
norm so that

Tkk =

k—1
Qg — E Tikq;i
=1 2
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Classical Gram-Schmidt (CGS) procedure, cont'dy

Note that 7 could also be chosen to be negative. However, it is standard
to let R have positive components on the diagonal.

Finally, we have

1 k—1
4k = ——— (ak - Zﬁ'qu') .

"kk i=1

This procedure is referred to as the classical Gram-Schmidt algorithm.
We see indeed that, in order to compute g, you need access to a; and
q1,-- -5 4qk—1-
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Classical Gram-Schmidt (CGS) procedure, cont'd;

When we @et the kth column of A:

The $irst k—1 columns, g1, ..., Qr—1,
have already Been orthoaonalized. STEP [|: Set the kth column of R
a I . X
k " - é- This matrix has
I rows that are
ax USPEREP k-1

STEP 2: Update q
This matrix projects

B a; onto the space
<« |- orthogonal to
n I H \‘ | I “

STEP 3: Renormalize q;
and set ry appropriately.

Now we've turned g, into g, L qy,...,q—;! Move on to the next column
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Classical Gram-Schmidt (CGS) procedure, cont'ds
» So the CGS algorithm is implemented as follows:
Lo = flaallz ¢ i=aa/ri
2. Foreachk=2,...,n:
3. Run_1k = QT yar // BLAS 2
gk = ar — Q. 1:k—1Ri:k—1,% // BLAS 2
Tek = llakll2; ax = qr /i

o

so that CGS relies on two BLAS 2 calls per iteration.
Similarly, we can write

—_

T11 = ||a1||2; q1 = a1/7“11

2. Foreachk=2,...,n:

3. qx =1k 1a;

4 ek = llakllzs gk = ae/Tri

where IT; 1 := I, — Q.14-1Q7,.._, is an orthogonal projector onto the
subspace 1range(Q:71;;.c_1)L so, indeed, g, is made orthogonal to the
previously formed vectors q1, ..., qr_1.
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Instability of CGS

» CGS is known to not being very stable.

1 1 1
» For example, consider the matrix A = e 00 )
0 € O
0 0 ¢
If we assume 2 is smaller than the unit roundoff u, then the Q matrix
1 0 0
generated by CGS is Q = (5) _11/\\[f _1(/)\/5 .
0 0 1/V2
Then we see that ¢o and g3 are far from being orthogonal as we have

gz =1/2.
» Numerical stability is measured with respect to the loss of orthogonality,
LOO, given by || I, — QT Q.
> With CGS, the LOO depends on the condition number of the matrix A,
i.e., LOO = O(u - k2(A)).
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Re-orthogonalization, CGS2
» An alternative is to orthogonalize twice by CGS, leading to CGS2:

L origc=llaile; ¢ = a1/rna L o= flaglle; 1 i= aa/ri
2. Foreachk=2,...,n: 2. Foreachk=2,...,n:
3. qx =1l 1ax 3. Rupk=Q, a
4. qp =Tk _1qk 4 qrr=ap — Qrk—1Rik—1k
5 ki = |lakll2; ar = an/Trk 5 Sik1:=0QN 1k

T 6 qr = qx — Q:1:k—151:k—1
where 1= I = @1k 1Quur 7.y = lakll2: ar = ar/rrr

» The error bound becomes LOO = O(u), so that CGS2 is inconditionally
stable.

» However, CGS2 requires 4mn? FLOP instead of 2mn? for CGS.
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Modified Gram-Schmidt, MGS

> Another alternative to CGS, referred to as modified Gram-Schmidt (MGS),
is obtained by letting ITj,_1 := (I, — quk—quk—l) O - q;’lqa) in

L7 = larll2; 1 == a1/r1a

2. Foreachk=2,...,n:

3. qr =1 104

5. ik = |larll2s arx = qr/Tre

Assuming perfect arithmetic, this is equivalent to CGS, but it relies on
BLAS 1 instead BLAS 2 operations:

L= |laill2i @1 == a1 /1

2. Foreachk=2,...,n:

qk ‘= g

Foreach/=1,...,k—1:
Tek = qlqr // BLAS 1
Q= qr —Texqe // BLAS 1

Tek = [qrll2; k= Qr/TER
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Modified Gram-Schmidt, MGS, cont'd

» The error bound of MGS is LOO = O(u - k(A)), so that it is more stable
than CGS.

1 11
. . : e 00 9
» Considering once again the matrix A = 0 e 0 where €4 < u,
0 0 ¢
1 0 0
. e —1/vV2 —1/V6
MGS vyields a @ matrix A = 0 12 —1/v6|
0 0 VI3

Contrarily to CGS, we see that ¢2 and g3 are exactly orthogonal, i.e.,
@3 q3 = 0, and ¢ is nearly orthogonal to g2 and g3, with |¢f qa| = ¢/V/2
and |g{ g3| = ¢/V6.

» In practice, MGS and CGS2 are used instead of CGS.
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Least-squares problems
Section 4.4 in Darve & Wootters (2021)
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Geometry of least-squares
» One of the applications of the QR decomposition is the solving of

least-squares problems arg min, ||Ax — bl|2:
Since A is tall and skinny, there are more

A X b
equations than unknowns! So there may
o not Be some x sO that Ax =b. The
: least-sQuares proelem is to £ind the x so
= that Ax is dosest 1o b, in 2-norm.

with a tall and skinny matrix A € R™*" and a vector b € R".
» To minimize the 2-norm from a point b to a subspace {Ax, x € R"}, we

can just do an orthogonal projection:
*b
/ The point Ax which is
Ax closest to b in 2-norm
28 I = I:II is the orthoconal
projection of b
2 s onto the sugspace
{Ax : x eR"}

X — Ax
R" R™ {Ax|x e R"}
Summer 2025 25 /33
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Method of normal equations

» As per property of orthogonal projections, the z that minimizes || Az — bl|2
has an error e := Az — b which is orthogonal to the range of A. This can
be written as

AT(Az —b) =0. (1)

Assuming A is full-rank, this equation can be used to solve for = by a
method called normal equations.

Eq. (1) may also be derived from calculus, namely, the optimal = which
minimizes the cost function

f(x) = || Az — b]|3 = (Az — b)T(Az — b) = 2T AT Az — 227 ATH + bTd
is obtained for V f(x) = 0 where
Vf(z) =2AT Az — 2AT,

which equivalently yields Eq. (1).
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Method of normal equations, cont'd

» Assuming A is full-rank, AT A is SPD so that we may compute its
Cholesky factorization and solve for x in AT Az = ATb.

Normal equations

Finding the solution x to the least-suqares problem arg min || Az — b||2 by
solving the system AT Az = ATb is called the method of normal equations.

» Since the condition number of AT A is the square of that of A, the method
of normal equations can run into issues when A is poorly conditioned.

» For cases where A is poorly conditioned, the QR factorization can be used
to yield a more accurate computation of the solution z to the least-squares

problem.
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QR factorization for least-squares problems
» The origin of the method of normal equations stems from saying that the
error Ax — b is orthogonal to the range of A.

But if we know a QR factorization A = QR where Q € R™*™, then the
range of A is the same as the range of Q.

The orthogonality condition can then be re-stated as
QT (Azx —b) =0. (2)

Since @ is orthogonal, it is necessarily well-conditioned, and the
conditioning problem of the method of normal equations can be avoided.

Since A = QR, due to the orthogonality of @, we have Q7 A = R so that
Eq. (2) becomes

Rz =Q"b

where R is non-singular as long as A is non-singular, so that there exists a
unique solution z.
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Case of rank-deficient A

> If A is rank-deficient, the null space of A is non-trivial. Then, for some z
that minimizes || Az — b||2, there are infinitely many dx € null(A) such
that A(x + dx) = Azx. Hence, the solution to the least-squares problem is
not unique.

» In case of non-uniqueness of solution, one can search for the unique ¢
which minimizes both ||Az — b||2 and ||z]|2:

\ b
X
> 5
Axg = Axy
~_7
x — Ax
-5
N(A) R(A)
R" R™

We can see the zg we are after is orthogonal to the null space of A, while
any other solution 1 is of the form xy + dz.
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SVD method for solving least-squares with rank-deficient A

» Let A€ R™ be of rank » < n < m have an SVD given by A = UXV7T
with U € R™*™ V€ R™™™ and ¥ € R™*"™ where X has zeros from row

r+1tom.
Then we can ignore the columns of U and V' that correspond to zeros in X

to create the thin SVD A = USVT:
U

» Now, Az = 0 if and only if VT2 =0, which means that the null space of
A'is the same as that of VT, i.e., null(A) = null(V7).

A U z
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SVD method for solving least-squares with rank-deficient A

» We know that any solution z to the least-squares problem satisfies

AT Az = ATh
OUSVHTUSVT e = (USVTTh
VETsvTe = vsTuTh

SV e =0T
where 7 < n so that ©V7 is not full-column-rank and this equation admits
infinitely many solutions.
» However, we can find one solution as follows.

First, let's solve the system Sw = UTb for w € R”. This gives

al'b
W; = —=<
Oig
where U = [tiy, ..., %] and ¥ = diag(d11,. . .,5m).
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SVD method for solving least-squares with rank-deficient A

Then, since w = S~1UTb, we have
SVIWw) =svIvsoTe =0"b

so that zg := Vw is solution of if/%o = UTb and thus, as explained
before, it is also solution of the least-squares problem.

Note that x( := Vw is the solution with smallest norm.

To see this, we need to show xy L null(A). First, let
nll(V7) = {y e R", VTy =0}
and consider that for each y € null(V7), we have
vy = (Vo) y=wVTy=0

so that zo L null(VT).
But since null(V7) = null(4), we have that z L null(A).
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Homework problems
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Homework problem

Turn in your own solution to the following problem:

1 1 1
Pb.17 Let A= |1 —1| andb= |2].
1 1 3

(a) Find a QR decomposition of A applying a Gram-Schmidt procedure
with a pen and paper.

(b) Find the least-squares problem solution 2 = arg min, || Az — b||2
making use of the QR factorization.
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Practice session
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Practice session

QO CGS
@ CGS2
@ MGS

@ Comparison
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