
Numerical Linear Algebra
for Computational Science and Information Engineering

Lecture 07
Orthogonalization and Least-Squares Problems

Nicolas Venkovic
nicolas.venkovic@tum.de

Group of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Summer 2025

Outline
1 QR factorization

Section 4 in Darve & Wootters (2021) 1

2 Householder reflections
Section 4.1 in Darve & Wootters (2021) 5

3 Givens rotations
Section 4.2 in Darve & Wootters (2021) 11

4 Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021) 14

5 Least-squares problems
Section 4.4 in Darve & Wootters (2021) 25

6 Homework problems 33

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

QR factorization
Section 4 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

QR factorization
▶ A QR factorization decomposes a matrix as the product of an

orthogonal matrix Q with an upper-triangular matrix R.
▶ Recall that a matrix Q is orthogonal if QTQ = I.
▶ If a matrix is orthogonal, then ∥Qx∥2 = ∥x∥2 for all x, i.e., Q doesn’t

change the length of vectors.
The operations that do not change the length of vectors are rotations and
reflections, so an orthogonal matrix can be thought of as a map that
combines a rotation with a reflection.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 1 / 33

QR factorization, cont’d
QR factorization
- Let A be a real m× n matrix with m ≥ n. Then, there is an orthogonal

matrix Q and an upper-triangular matrix R such that A = QR. This is
called the QR factorization.

- When A is complex, there is still a factorization A = QR, but Q is unitary,
i.e., QHQ = I.

For the rest this lecture, we assume A is real, but QR factorizations do exist
for complex matrices.
▶ There are different forms of QR factorizations, depending on the shape ofA:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 2 / 33

Applications of the QR factorization
The QR factorization has several applications in numerical linear algebra:
1 It can be used to solve least-squares problems, i.e., problems of the form

argminx ∥Ax− b∥2 where A is tall and skiny.
2 It is used as part eigen- and singular value algorithms for small dense

matrices.
3 It is also used in iterative methods to solve linear systems and compute

eigenvalues, such as in Krylov methods.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 3 / 33

QR factorization and least squares problems
To see why the QR factorization can be useful, let’s look briefly at the least
squares problem:
▶ Let A ∈ Rm×n with m > n. We want to find x such that Ax is closest to

b in Euclidean distance. That is

x∗ = argmin
x

∥Ax− b∥2.

To do this, we use the QR factorization, with a square Q, i.e., case III
from slide #2:

∥Ax− b∥2 = ∥QT (Ax− b)∥2 = ∥QT (QRx− b)∥2 = ∥Rx−QT b∥2

where we used the fact that for any vector y, ∥QT y∥2 = ∥y∥2 because

∥QT y∥22 = (QT y)T (QT y) = yTQQT y = yT (QTQ)T y = yT IT y = yT y = ∥y∥22.

As it turns out, it is easier to find x that minimizes ∥Rx−QT b∥2 than it
is to minimize ∥Ax− b∥2.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 4 / 33

Householder reflections
Section 4.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Householder reflections
▶ Householder reflections are one of the most reliable methods to compute a

QR factorization with a square Q, i.e., cases I and III.
▶ That is, we ask the question, does there exists a matrix Q s.t. QTA = R.
▶ Our goal is thus to create zero entries below the diagonal. Starting by the

first column, we have:

▶ We need to apply an orthogonal transformation QT
1 to transform the first

column of A into a vector in the direction of e1.
Let’s write A = [a1| . . . |an]. Then, since QT

1 does not change the norm of
a1, we should have:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 5 / 33

Householder reflections, cont’d1

▶ A logical choice for QT
1 would be a rotation that maps a1 parallel to e1.

However, rotations in high dimensions are not so easy to set up.
Thus, we’ll instead choose QT

1 to be a reflection that maps a1 parallel to
e1:

Now that we have an idea of what the reflection should be doing, we need
to figure out its mathematical formula.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 6 / 33

Householder reflections, cont’d2

▶ Let us consider reflections in general. A reflection is defined by a vector:

Given v, we can reason geometrically about what a reflection is:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 7 / 33

Householder reflections, cont’d3

Reflection
Let P be the matrix which represents a reflection over the hyperplane
orthogonal to some vector v. Then P is given by

P = I − βvvT where β =
2

vT v
.

▶ Now we need to pick v to arrive at a Householder reflection, i.e., to get a
transformation from x to ∥x∥2e1.
The following geometric argument shows that v = x− ∥x∥2e1 will work

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 8 / 33

Householder reflections, cont’d3
Let v = x− ∥x∥2e1, then we see that

Px =

(
I − 2

vvT

vT v

)
x

=

(
I − 2

(x− ∥x∥2e1)(x− ∥x∥2e1)T

(x− ∥x∥2e1)T (x− ∥x∥2e1)

)
x

=

(
I − 2

(x− ∥x∥2e1)(x− ∥x∥2e1)T

2(∥x∥22 − 2∥x∥2x1)

)
x

=x− (x− ∥x∥2e1)(∥x∥22 − ∥x∥2x1)
(∥x∥22 − 2∥x∥2x1)

=x− (x− ∥x∥2e1)
= ∥x∥2e1

so that, indeed, a reflection over the hyperplane orthogonal to v = x− ∥x∥2e1,
is a Householder reflection of x.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 9 / 33

Iterating Householder reflections
▶ Now that we know how to operate a first Householder reflection from a1

to ∥a1∥2e1, we can apply a series of Householder transformations to
progressively reduce A to a upper-triangular form.
We proceed by first zeroing entries in the first column, then in the second
column, and so on.
In the end, for A ∈ Rm×n with m ≥ n, we have

QT
n−1 . . . Q

T
1 A = R,

which is equivalent to

A = Q1 . . . Qn−1R = QR

where Q = Q1 . . . Qn−1 ∈ Rm×m, and R has zeros in the m− n rows if
m > n.

▶ In practice, when reducing A to R, the matrix P is never formed explicitly,
instead we compute PA = A− βv(vTA) which carries a cost O(2mn),
instead of O(m2n) when P is assembled and applied, i.e., as P is dense.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 10 / 33

Givens rotations
Section 4.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Givens rotations
▶ When the matrix A is upper Hessenberg, i.e., whene aij = 0 for all

i > j + 1, most of the subdiagonal components are already zero, and using
Householder transformations in this situation is a bit of an overkill:

▶ On every column of A, only one entry needs to be zeroed, so that 2D
rotations, which are easy to set up, can be deployed for the job:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 11 / 33

Givens rotations, cont’d1
▶ Zeroing a single subdiagonal entry can be reduced to considering a 2D

vector u = (u1, u2) and finding a rotation GT such that the vector u
becomes aligned with e1:

With some algebra, we find:
Givens rotation
A Givens rotation which rotates u = (u1, u2)

T to ∥u∥2e1 is the 2 x 2 matrix
defined by

GT =

[
c −s
s c

]
, c =

u1
∥u∥2

, s = − u2
∥u∥2

.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 12 / 33

Givens rotations, cont’d2

▶ For an upper Hessenberg matrix A of size m× n, we can compute its QR
factorization using a sequence of Givens rotations.

▶ The algrithms is as follows:
1. For each column j = 1, . . . , n− 1 :
2. Construct a Givens rotation matrix GT that zeros aj+1,j

3. Apply GT to rows j and j + 1 of A

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 13 / 33

Gram-Schmidt procedures
Section 4.3 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Gram-Schmidt procedures
▶ Householder reflections and Givens rotations produce a square matrix

Q ∈ Rm×m, even when A ∈ Rm×n with m > n, i.e., case III.
On the other hand, Gram-Schmidt procedures will produce a
rectangular, tall and skinny matrix Q ∈ Rm×n, i.e., like in case II.

▶ Another peculiarity of Gram-Schmidt procedures is that they work
column-by-column, i.e., to compute qi in Q = [q1, . . . , qn], you only need
access to ai from A = [a1, . . . , an] and q1, . . . , qk−1.
This feature of the Gram-Schmidt procedures is particularly useful in
Krylov methods where A is not available all at once, and the new column
ai to orthogonalize is only available after an performing a full iteration of
computations.

▶ The first k columns q1, . . . , qk formed by Gram-Schmidt procedure in Q
are an orthonormal basis of the subspace spanned by a1, . . . , ak.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 14 / 33

Gram-Schmidt procedures, cont’d1
▶ Visualizing the column ak = QR:,k, and the fact that R:,k has k non-zero

entries followed by m− k zeros on the subdiagonal, we can write
ak = Q:,1:kR1:k,k:

That is, ak is formed by linear combination of q1, . . . , qk:

ak = r1kq1 + · · ·+ rkkqk.

▶ Thus, instead of searching for the matrix Q that makes QTA upper
triangular, we are rather going to search for the upper triangular matrix R
such that every ak is given by linear combination of q1, . . . , qk.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 15 / 33

Gram-Schmidt procedures, cont’d2

▶ First, since we have a1 = r11q1, and q1 has unit norm, we set r11 = ∥a1∥2
and q1 = a1/r11.

▶ Then, we continue iteratively, i.e., a2 = r12q1 + r22q2 so that q2 is a unit
vector in span{q1, a2} = span{a1, a2}, orthogonal to q1:

Then r12 and r22 are found to close the system.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 16 / 33

Classical Gram-Schmidt (CGS) procedure
▶ More formally, for each 1 ≤ k ≤ n, we write

ak =

k∑
i=1

rikqi = rkkqk +

k−1∑
i=1

rikqi

Assuming we already know qj and rij for all j < k and i ≤ j, we can then
use this formula to find expressions for the rik’s and qk.
First, multiplying by qTi and invoking the orthonormality of the basis given
by q1, . . . , qk, we get

qTi ak =
k∑

j=1

rjkq
T
i qj = rik =⇒ rik = qTi ak for i < k.

Next, to find rkk, we have qkrkk = ak −
∑k−1

i=1 rikqi where qk has unit
norm so that

rkk =

∥∥∥∥∥ak −
k−1∑
i=1

rikqi

∥∥∥∥∥
2

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 17 / 33

Classical Gram-Schmidt (CGS) procedure, cont’d1

Note that rkk could also be chosen to be negative. However, it is standard
to let R have positive components on the diagonal.
Finally, we have

qk =
1

rkk

(
ak −

k−1∑
i=1

rikqi

)
.

This procedure is referred to as the classical Gram-Schmidt algorithm.
We see indeed that, in order to compute qk, you need access to ak and
q1, . . . , qk−1.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 18 / 33

Classical Gram-Schmidt (CGS) procedure, cont’d2

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 19 / 33

Classical Gram-Schmidt (CGS) procedure, cont’d3
▶ So the CGS algorithm is implemented as follows:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. R1:k−1,k := QT

:,1:k−1ak // BLAS 2
4. qk := ak −Q:,1:k−1R1:k−1,k // BLAS 2
5. rkk := ∥qk∥2; qk := qk/rkk

so that CGS relies on two BLAS 2 calls per iteration.
Similarly, we can write

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

4. rkk := ∥qk∥2; qk := qk/rkk

where Πk−1 := Im −Q:,1:k−1Q
T
:,1:k−1 is an orthogonal projector onto the

subspace range(Q:,1:k−1)
⊥ so, indeed, qk is made orthogonal to the

previously formed vectors q1, . . . , qk−1.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 20 / 33

Instability of CGS
▶ CGS is known to not being very stable.

▶ For example, consider the matrix A =

1 1 1
ε 0 0
0 ε 0
0 0 ε

.

If we assume ε2 is smaller than the unit roundoff u, then the Q matrix

generated by CGS is Q =

1 0 0

ε −1/
√
2 −1/

√
2

0 1/
√
2 0

0 0 1/
√
2

.

Then we see that q2 and q3 are far from being orthogonal as we have
qT2 q3 = 1/2.

▶ Numerical stability is measured with respect to the loss of orthogonality,
LOO, given by ∥Im −QTQ∥2.

▶ With CGS, the LOO depends on the condition number of the matrix A,
i.e., LOO = O(u · κ2(A)).

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 21 / 33

Re-orthogonalization, CGS2
▶ An alternative is to orthogonalize twice by CGS, leading to CGS2:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

4. qk := Πk−1qk

5. rkk := ∥qk∥2; qk := qk/rkk

where Πk−1 := Im −Q:,1:k−1Q
T
:,1:k−1.

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. R1:k−1,k := QT

:,1:k−1ak

4. qk := ak −Q:,1:k−1R1:k−1,k

5. S1:k−1 := QT
:,1:k−1qk

6. qk := qk −Q:,1:k−1S1:k−1

7. rkk := ∥qk∥2; qk := qk/rkk

▶ The error bound becomes LOO = O(u), so that CGS2 is inconditionally
stable.

▶ However, CGS2 requires 4mn2 FLOP instead of 2mn2 for CGS.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 22 / 33

Modified Gram-Schmidt, MGS
▶ Another alternative to CGS, referred to as modified Gram-Schmidt (MGS),

is obtained by letting Πk−1 := (Im − q:,k−1q
T
:,k−1) . . . (Im − q:,1q

T
:,1) in

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := Πk−1ak

5. rkk := ∥qk∥2; qk := qk/rkk

Assuming perfect arithmetic, this is equivalent to CGS, but it relies on
BLAS 1 instead BLAS 2 operations:

1. r11 := ∥a1∥2; q1 := a1/r11

2. For each k = 2, . . . , n :
3. qk := ak

4. For each ℓ = 1, . . . , k − 1 :
3. rℓk := qTℓ qk // BLAS 1
4. qk := qk − rℓkqℓ // BLAS 1
5. rkk := ∥qk∥2; qk := qk/rkk

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 23 / 33

Modified Gram-Schmidt, MGS, cont’d
▶ The error bound of MGS is LOO = O(u · κ(A)), so that it is more stable

than CGS.

▶ Considering once again the matrix A =

1 1 1
ε 0 0
0 ε 0
0 0 ε

 where ε2 < u,

MGS yields a Q matrix A =

1 0 0

ε −1/
√
2 −1/

√
6

0 1/
√
2 −1/

√
6

0 0
√
2/
√
3

.

Contrarily to CGS, we see that q2 and q3 are exactly orthogonal, i.e.,
qT2 q3 = 0, and q1 is nearly orthogonal to q2 and q3, with |qT1 q2| = ε/

√
2

and |qT1 q3| = ε/
√
6.

▶ In practice, MGS and CGS2 are used instead of CGS.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 24 / 33

Least-squares problems
Section 4.4 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Geometry of least-squares
▶ One of the applications of the QR decomposition is the solving of

least-squares problems argminx ∥Ax− b∥2:

with a tall and skinny matrix A ∈ Rm×n and a vector b ∈ Rn.
▶ To minimize the 2-norm from a point b to a subspace {Ax, x ∈ Rn}, we

can just do an orthogonal projection:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 25 / 33

Method of normal equations
▶ As per property of orthogonal projections, the x that minimizes ∥Ax− b∥2

has an error e := Ax− b which is orthogonal to the range of A. This can
be written as

AT (Ax− b) = 0. (1)

Assuming A is full-rank, this equation can be used to solve for x by a
method called normal equations.
Eq. (1) may also be derived from calculus, namely, the optimal x which
minimizes the cost function

f(x) = ∥Ax− b∥22 = (Ax− b)T (Ax− b) = xTATAx− 2xTAT b+ bT b

is obtained for ∇f(x) = 0 where

∇f(x) = 2ATAx− 2AT b,

which equivalently yields Eq. (1).
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 26 / 33

Method of normal equations, cont’d
▶ Assuming A is full-rank, ATA is SPD so that we may compute its

Cholesky factorization and solve for x in ATAx = AT b.

Normal equations
Finding the solution x to the least-suqares problem argmin ∥Ax− b∥2 by
solving the system ATAx = AT b is called the method of normal equations.

▶ Since the condition number of ATA is the square of that of A, the method
of normal equations can run into issues when A is poorly conditioned.

▶ For cases where A is poorly conditioned, the QR factorization can be used
to yield a more accurate computation of the solution x to the least-squares
problem.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 27 / 33

QR factorization for least-squares problems
▶ The origin of the method of normal equations stems from saying that the

error Ax− b is orthogonal to the range of A.
But if we know a QR factorization A = QR where Q ∈ Rm×n, then the
range of A is the same as the range of Q.
The orthogonality condition can then be re-stated as

QT (Ax− b) = 0. (2)

Since Q is orthogonal, it is necessarily well-conditioned, and the
conditioning problem of the method of normal equations can be avoided.
Since A = QR, due to the orthogonality of Q, we have QTA = R so that
Eq. (2) becomes

Rx = QT b

where R is non-singular as long as A is non-singular, so that there exists a
unique solution x.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 28 / 33

Case of rank-deficient A
▶ If A is rank-deficient, the null space of A is non-trivial. Then, for some x

that minimizes ∥Ax− b∥2, there are infinitely many δx ∈ null(A) such
that A(x+ δx) = Ax. Hence, the solution to the least-squares problem is
not unique.

▶ In case of non-uniqueness of solution, one can search for the unique x0
which minimizes both ∥Ax− b∥2 and ∥x∥2:

We can see the x0 we are after is orthogonal to the null space of A, while
any other solution x1 is of the form x0 + δx.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 29 / 33

SVD method for solving least-squares with rank-deficient A
▶ Let A ∈ Rm× be of rank r < n < m have an SVD given by A = UΣV T

with U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n where Σ has zeros from row
r + 1 to m.
Then we can ignore the columns of U and V that correspond to zeros in Σ
to create the thin SVD A = Ũ Σ̃Ṽ T :

▶ Now, Ax = 0 if and only if Ṽ Tx = 0, which means that the null space of
A is the same as that of Ṽ T , i.e., null(A) = null(Ṽ T).

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 30 / 33

SVD method for solving least-squares with rank-deficient A
▶ We know that any solution x to the least-squares problem satisfies

ATAx = AT b

(Ũ Σ̃Ṽ T)T Ũ Σ̃Ṽ Tx = (Ũ Σ̃Ṽ T)T b

Ṽ Σ̃T Σ̃Ṽ Tx = Ṽ Σ̃T ŨT b

Σ̃Ṽ Tx = ŨT b

where r < n so that Σ̃Ṽ T is not full-column-rank and this equation admits
infinitely many solutions.

▶ However, we can find one solution as follows.
First, let’s solve the system Σ̃ω = ŨT b for ω ∈ Rr. This gives

ωi =
ũTi b

σ̃ii

where Ũ = [ũ1, . . . , ũr] and Σ̃ = diag(σ̃11, . . . , σ̃rr).
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 31 / 33

SVD method for solving least-squares with rank-deficient A
Then, since ω = Σ̃−1ŨT b, we have

Σ̃Ṽ T (Ṽ ω) = Σ̃Ṽ T Ṽ Σ̃−1ŨT b = ŨT b

so that x0 := Ṽ ω is solution of Σ̃Ṽ Tx0 = ŨT b and thus, as explained
before, it is also solution of the least-squares problem.
Note that x0 := Ṽ ω is the solution with smallest norm.
To see this, we need to show x0 ⊥ null(A). First, let

null(Ṽ T) = {y ∈ Rn, Ṽ T y = 0}

and consider that for each y ∈ null(Ṽ T), we have

xT0 y = (Ṽ ω)T y = ωṼ T y = 0

so that x0 ⊥ null(Ṽ T).
But since null(Ṽ T) = null(A), we have that x0 ⊥ null(A).

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 32 / 33

Homework problems

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Homework problem
Turn in your own solution to the following problem:

Pb. 17 Let A =

1 1
1 −1
1 1

 and b =

12
3

.

(a) Find a QR decomposition of A applying a Gram-Schmidt procedure
with a pen and paper.
(b) Find the least-squares problem solution x = argminx ∥Ax − b∥2
making use of the QR factorization.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 33 / 33

Practice session

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025

Practice session
1 CGS
2 CGS2
3 MGS
4 Comparison

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 07 Summer 2025 34 / 33

	QR factorization Section 4 in Darve & Wootters (2021)
	Householder reflections Section 4.1 in Darve & Wootters (2021)
	Givens rotations Section 4.2 in Darve & Wootters (2021)
	Gram-Schmidt procedures Section 4.3 in Darve & Wootters (2021)
	Least-squares problems Section 4.4 in Darve & Wootters (2021)
	Homework problems

