
Numerical Linear Algebra
for Computational Science and Information Engineering

Lecture 09
Basic Iterative Methods for Eigenvalue Problems

Nicolas Venkovic
nicolas.venkovic@tum.de

Group of Computational Mathematics
School of Computation, Information and Technology

Technical University of Munich

Summer 2025

Outline
1 Methods for computing a single eigenvalue

Section 5.1 in Darve & Wootters (2021) 4

2 Basic QR iteration
Section 5.2 in Darve & Wootters (2021) 15

3 Other methods and implementations
Section 5.2 in Darve & Wootters (2021) 27

4 Homework problems 30

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025

Computing eigenvalues exactly is impossible
▶ Computing eigenvalues and -vectors is a very difficult task.

There is no direct method for computing eigenvalues of matrices of size
five or higher in general.
That is, there is no algorithm that can compute eigenvalues exactly
assuming perfect arithmetic.

▶ Moreover, it can be proved that a method that computes eigenvalues
exactly cannot exist for general matrices of size five or higher.
The reason for this is the Abel-Ruffini theorem, which states that no
direct method exists to find exact zeros of a polynomial of degree five
or higher.
That is the case because computing the roots of any polynomial is
equivalent to finding the eigenvalues of a matrix.
Thus, since there is no method for finiding zeros of a polynomial, then
there cannot exist an exact method for finding eigenvalues of a general
matrix.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 1 / 30

Computing eigenvalues exactly is impossible, cont’d
You saw one side of the equivalence between solving for eigenvalues of a
general matrix and solving for the zeros of a polynomial in your Linear
Algebra class.
To see the other direction, consider a generic polynomial given by

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Then, there is a matrix

such that, if we pick u = [1 z z2 . . . zn−1]T where z is a root of p(x), then
we have Au = zu so that (z, u) is an eigen-pair of A.
Consequently, all roots of p(x) are eigenvalues of A.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 2 / 30

Convention
▶ Let us denote A = XΛX−1 an eigendecomposition of A.

In this lecture, all the algorithms will normalize vectors, i.e., replace x by
x/∥x∥2 during the iterative process.
Therefore, when discussing convergence, we will assume the columns of X
have norm 1.
This is done without loss of generality, since A = XΛX−1 remains valid
irrespective of the magnitude of the columns of X.
Moreover, in many places, results will be stated "up to a sign" or "up to a
unit complex factor", because even with normed columns, the matrix X of
an eigendecomposition is not unique.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 3 / 30

Methods for computing a single eigenvalue
Section 5.1 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025

Taking powers of A
▶ Suppose that A is a square diagonalizable matrix.

Then A has an eigenvalue decomposition A = XΛY H where the columns
xi of X are right eigenvectors of A, and the columns yi of Y := X−H are
left eigenvectors of A:

One thing about the eigen-decomposition is that powers of A are such that

Ak = XΛkY H =
∑
i

λk
i xiy

H
i .

Notice that, even if A is real, it can have complex eigenvalues and -vectors.
Note also that left and right eigenvectors of A coincide if A is normal.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 4 / 30

Taking powers of A, cont’d
▶ Let us assume the eigenvalues of A are ordered such that

|λ1| > |λ2| ≥ · · · ≥ |λn|

where, in particular, the largest eigenvalue has magnitude strictly greater
than the second one.
Then, even for moderate values of the power k, we expect λk

1 to dominate
in Ak, i.e., |λk

1| ≫ |λk
2| ≥ · · · ≥ |λk

n| so that

Ak = λk
1x1y

H
1 + · · ·+ λk

nxny
H
n ≈ λk

1x1y
H
1 .

▶ Let’s multiply Ak by a random vector z, such that yH1 z is not too small,
then

Akz ≈ λk
1x1y

H
1 z = λk

1(y
H
1 z)x1

so that Akz/∥Akz∥2 gives a good approximation of x1.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 5 / 30

Power iteration
▶ The power iteration is based on this idea of taking powers of A to

approximate the largest eigen-pair. The algorithm is as follows:

1. Sample a random vector q(0) ∈ Cn

2. q(0) := q(0)/∥q(0)∥2
3. For k = 0, 1, 2 . . .

4. z(k) := Aq(k)

5. λ(k+1) = z(k)Hq(k)

6. q(k+1) := z(k)/∥z(k)∥2

where (λ(k), q(k)) is an iterate approximating the largest eigen-pair of A.
At the k-th step, the approximate eigenvector is

q(k) = Akq(0)/∥Akq(0)∥2,

and the corresponding approximate eigenvalue is λ(k) = q(k)HAq(k).
Note that, even though q(k) is formed with Ak, the matrix power Ak is not
explicitly computed.
Instead, we just perform repeated matrix-vector products.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 6 / 30

Convergence of power iteration
▶ Let us assume again that the eigen-pairs (λ1, x1), . . . , (λn, xn) of A are

ordered such that |λ1| > |λ2| ≥ · · · ≥ |λn|.
▶ The starting vector q(0) can be expressed in the basis formed by the

eigenvectors of A, i.e.,

q(0) = α1x1 + · · ·+ αnxn.

For the method to work, we need to assume α1 ̸= 0, that is, q(0) is not
orthogonal to x1.

▶ Then, we have

Akq(0) =
n∑

i=1

αiA
kxi =

n∑
i=1

αiλ
k
i xi

which can be factorized as follows:

Akq(0) = α1λ
k
1x1 + α2λ

k
2x2 + · · ·+ αnλ

k
nxn

α1λ
k
1

(
x1 +

α2

α1

(
λ2

λ1

)k

x2 + · · ·+ αn

α1

(
λn

λ1

)k

xn

)
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 7 / 30

Convergence of power iteration, cont’d
From that expression, we have

∥Akq(0)∥2 = |α1λ
k
1|(1 +O(λ2/λ1)) and

∥(α1λ
k
1)

−1Akq(0) − x1∥2 =O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

which, along with the fact that ∥Akq(0)∥2 ≈ |α1λ
k
1| implies that our

estimate q(k) = Akq(0)/∥Akq(0)∥ approaches x1 with an error O(|λ2/λ1|k).
In summary, we have

∥q(k) − x1∥2 = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

and |λ(k) − λ1| = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
.

▶ Although it is a good starting point, this version of power iteration is
limited as it cannot find approximates of any eigenvalue except the largest
one. It also cannot leverage given approximations of λi.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 8 / 30

Inverse iteration
▶ Assume we are equiped with an approximation µ of the eigenvalue λi of A.
▶ An inverse iteration uses µ to form an abritrarily good approximation of λi.

▶ If µ is a good approximation of λi, then
The shifted matrix A− µIn has a small eigenvalue λi − µ.
The shift-and-invert matrix (A− µIn)

−1 has a large eigenvalue 1/(λi − µ).
So, a power iteration applied to (A− µIn)

−1 should allow us to calculate
xi very quickly, since 1/(λi − µ) is now the largest eigenvalue, with the
corresponding eigenvector xi.
The algorithm of inverse iteration is as follows:

1. Sample a random vector q(0) ∈ Cn

2. q(0) := q(0)/∥q(0)∥2
3. For k = 0, 1, 2 . . .

4. Solve for z(k) such that (A− µIn)z
(k) = q(k) // z(k) := (A− µIn)

−1q(k)

5. q(k+1) := z(k)/∥z(k)∥2
6. λ(k+1) = q(k+1)HAq(k+1)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 9 / 30

Convergence of inverse iteration
▶ Similarly to power iteration, we can characterize the convergence of inverse

interations by

|λ(k) − λi| = O

(∣∣∣∣λi − µ

λj − µ

∣∣∣∣k
)

where λi and λj are the closest and second closest eigenvalues of A to µ,
respectively.
If |λi − µ| ≪ |λj − µ|, then the convergence is fast.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 10 / 30

Rayleigh quotient iteration
▶ As inverse iterations progess, the iterate λ(k) becomes a better

approximation of the eigenvalue λi than µ.
One could use this fact to redefine the shift µ and get faster convergence.

▶ Let us assume the matrix A is real and symmetric so that its eigenvalues
and -vectors are real, and the eigenvectors are orthogonal.

▶ The idea to update the shift µ during the iteration is deployed in an
algortihm called Rayleigh quotient iteration.
Let us consider the Rayleigh quotient given by r(x) = xTAx

xT x
for x ̸= 0.

The Rayleigh quotient is used to approximate an eigenvalue.
Indeed, note that if x is an eigenvector of A, i.e., Ax = λx, then r(x) = λ
is the corresponding eigenvalue.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 11 / 30

Rayleigh quotient iteration, cont’d
▶ The algorithm for Rayleigh quotient iterations is as follows:

1. Sample a random vector q(0) ∈ Cn

2. q(0) := q(0)/∥q(0)∥2
3. λ(0) := µ

4. For k = 0, 1, 2 . . .

5. Solve for z(k) such that (A− λ(k)In)z
(k) = q(k)

6. q(k+1) := z(k)/∥z(k)∥2
7. λ(k+1) = q(k+1)HAq(k+1)

▶ Rayleigh quotient iterations converge faster than inverse iterations.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 12 / 30

Convergence of Rayleigh quotient iterations
▶ Note first that the gradient of the Rayleigh quotient r for a symmetric A is

given by ∇r(x) = 2
xT x

(Ax− r(x)x) so that r(xi) = λi implies ∇r(xi) = 0.

More often than not, the zeros of ∇r are saddle points, as the Rayleigh
quotient is only minimized (resp. maximized) at the smallest eigen-pair
(resp. largest eigen-pair).
In particular, we remember the Courant-Fischer theorem from lecture 1
which states

λmin = min
x ̸=0

xTAx

xTx
and λmax = max

x ̸=0

xTAx

xTx
.

▶ Then, suppose that y is close to an eigenvector xi, by Taylor expansion
around xi, we have

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 13 / 30

Convergence of Rayleigh quotient iterations, cont’d
Consequently, the first order term disapears, leaving us with

r(y) = λi +O(∥y − xi∥22)

and the behavior of the Rayleigh quotient near an eigenvector xi is as
follows:

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 14 / 30

Basic QR iteration
Section 5.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025

Basic QR iteration
▶ The PageRank algorithm is a variant of power iteration aimed at finding

the largest eigenvector of a modified adjacency matrix of a web graph.
However, in general, iterative methods for computing a single eigen-pair
have limited applicability.

▶ Unlike those previously covered iterative methods for eigenvalue solving,
QR iterations aim at finding all the eigenvalues of a matrix.

▶ The QR iteration was elected one of the 10 best algorithms of the
20th century by Dongarra and Sullivan (2000).

▶ The QR iteration is the state of the art eigensolver for small dense
eigenvalue problems. It is implemented in LAPACK, and it serves as a
building block of larger, possibly sparse iterative eigensolvers.

▶ An important assumption of this Section is that A is diagonalizable with
separate eigenvalues, i.e., such that |λ1| > |λ2| > · · · > |λn|.
Because A is real with separate eigenvalues, we have that eigen- and Schur
decompositions of A are real.

Dongarra, J., & Sullivan, F. (2000). Guest editor’s introduction: The top 10 algorithms. Computing in Science &
Engineering 2, 22-23.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 15 / 30

Orthogonal iteration for r = 2
▶ Orthogonal iterations allow us to recover more than one eigenvalue at once.
▶ For starter, consider that only r = 2 eigenvalues are needed.

Then, the pseudocode of orthogonal iterations is as follows:

1. Sample two random vector q1, q2 ∈ Rn

2. While not converged :
5. q1 := Aq1; q2 := Aq2

6. Project q2 onto the space orthogonal to q1 // E.g., q2 :=
(
In − q1q

T
1

qT1 q1

)
q2

7. q1 := q1/∥q1∥2, q2 := q2/∥q2∥2
8. Return qT1 Aq1 and qT2 Aq2

Disregarding the vector q2, the vector q1 undergoes a standard power
iteration so that, at the k-th step, we have

q
(k)
1 =

Akq
(0)
1

∥Akq
(0)
1 ∥2

which converges towards x1.
nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 16 / 30

Orthogonal iteration for r = 2, cont’d1
▶ If we assume that q1 ≈ x1 has already converged, then the update step for

q2 is of the form
q
(k)
2 ≈ (In − x1x

T
1)Aq

(k−1)
2

where In − x1x
T
1 is the orthogonal projector onto span{x1}⊥.

Thus, q2 is undergoing a power iteration with the matrix (In − x1x
T
1)A.

It can be shown that the largest eigenvalue of this matrix is λ2 with an
eigenvector along (In − x1x

T
1)x2 towards which q2 converges.

▶ Note that, if x1 and x2 are not orthogonal, then (In − x1x
T
1)x2 is not

aligned wth x2. However, we do have span{q1, q2} = span{x1, x2}.
Then, we claim that QTAQ where Q = [q1 q2] converges to an
upper-triangular matrix with λ1 and λ2 on the diagonal :

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 17 / 30

Orthogonal iteration for r = 2, cont’d2

- First, the upper-triangularity is explained as follows:

qT2 Aq1 ≈ q2Ax1 = λ1q
T
2 x1 ≈ λ1q

T
2 q1 = 0

so that the lower-left entry converges to zero.
- To see that λ1 and λ2 lie on the diagonal, it suffices to show that they are

eigenvalues of QTAQ, as QTAQ is triangular.
For this, since span{q1, q2} = span{x1, x2} after convergence, then there is
vi ∈ R2 such that Qvi ≈ xi and we have

QTAQvi ≈ QTAxi = λiQ
Txi ≈ λiQ

TQvi = λivi

so that vi is an eigenvector of QTAQ with eigenvalue λi for i = 1, 2.
- Since Q is orthogonal and QTAQ is upper triangular with the same

eigenvalues as A, it seems that Q(QTAQ)QT is a Schur decomposition of A.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 18 / 30

Orthogonal iteration for general r
▶ When an arbitrary number r of eigenvalues is sought, the approximate

eigenvectors are orthogonalized by performing a QR factorization, leading
to the following pseudocode:

1. Sample a random matrix Q0 ∈ Rn×r

2. k := 0

3. While not converged :
4. Yk+1 := AQk

5. Compute QR factorization Qk+1Rk+1 = Yk+1

6. k := k + 1

7. Return diag(QT
kAQk)

Similarly as with r = 2, this method converges to an upper-triangular
matrix QT

kAQk with eigenvalues λ1, . . . , λr.
Once the algorithm has converged, the approximate eigenvalues can be
read from the diagonal of the Schur form QT

kAQk.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 19 / 30

Convergence of orthogonal iteration for general r
▶ If A is symmetric, then the eigenvectors x1, . . . , xr are orthogonal, and the

i-th column of Qk, which we denote by q
(k)
i , converges to ±xi.

For general matrices, things are different.
▶ Let us denote the matrices Qx ∈ Rn×r and Rx ∈ Rr×r such that

[x1 . . . xr] = QxRx.

We see that the iterate Qk converges to Qx:

Since q
(k)
1 undergoes a normal power iteration, it converges to x1 = qx1 .

For q(k)2 , the QR decomposition ensures span{x1, x2} = span{qx1 , qx2} and
we have

span{q(k)1 , q
(k)
2 } ≈ span{x1, x2} = span{qx1 , qx2}

Thus q
(k)
2 converges to something in the space span{qx1 , qx2}, and it also

has to be orthogonal to q
(k)
1 ≈ qx1 . Therefore q

(k)
2 has to converge to ±qx2 .

Similarly, q(k)i converges to ±qxi . Overall, we have that Qk converges to Qx.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 20 / 30

Convergence to the Schur decomposition
▶ Now that we know that Qk converges to Qx, we can analyze the matrix

QT
kAQk, which converges to QxTAQx up to some columnwise sign

changes.
▶ Since AX = XΛ where X = [x1, . . . , xr] and Λ = diag(λ1, . . . , λr), the

definitions of Qx and Rx imply that

AX = XΛ

AQxRx = QxRxΛ

QxTAQxRx(Rx)−1 = QxTQxRxΛ(Rx)−1

QxTAQx = RxΛ(Rx)−1.

Since Rx is upper triangular and Λ is diagonal, we have that RxΛ(Rx)−1

is upper triangular.
More particularly, we also have that QxTAQx is upper triangular with the
eigenvalues λ1, . . . , λr on the diagonal.
Then, the matrix QT

kAQk converges to QxTAQx, which is upper
triangular and has the top r eigenvalues of A on the diagonal.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 21 / 30

Convergence of orthogonal iteration
▶ The convergence analysis being sequential, i.e., we assumed q

(k)
1 ≈ qx1 ,

then showed that q(k)2 converges to qx2 , and so on; may lead to think that
the convergence of orthogonal iteration is slow. I.e., we first have to wait
that q(k)1 converges, then q

(k)
2 , and so on.

But, in fact, what actually happens is that all of the q
(k)
i converge

simultaneously.
▶ It can be shown that the convergence of the iterate Qk to Qx depends,

similarly as before, on the separation between λr and λr+1. In particular,
we have

∥QkQ
T
k −QxQxT ∥2 = O

(∣∣∣∣λr+1

λr

∣∣∣∣k
)
.

That is, the smaller |λr+1/λr|, the faster the convergence of Qk to Qx.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 22 / 30

QR iteration
▶ QR iterations are a re-framing of orthogonal iterations with r = n.

QR iterations yield the full Schur decomposition T = QTAQ of A where T
is an n-by-n upper triangular matrix with the eigenvalues of A on the
diagonal, and Q is a n-by-n orthogonal matrix of a QR decomposition of
the eigenvectors X of A.

▶ The iterate of QR iteration is denoted by Qk with a corresponding matrix
Tk := QT

kAQk.
▶ The formulation of QR iterations is more commonly expressed as a

recurrence from Tk = QT
kAQk to Tk+1 = QT

k+1AQk+1.
From the definition of orthogonal iterations, we have

Qk+1Rk+1 = AQk so that Tk = QT
kAQk = QT

kQk+1Rk+1

and, since r = n, we have QkQ
T
k = In and

Rk+1Q
T
k = QT

k+1A so that Tk+1 = QT
k+1AQk+1 = Rk+1Q

T
kQk+1

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 23 / 30

QR iteration, cont’d1
Then, as we let Uk+1 := QT

kQk+1, we have

Tk =Uk+1Rk+1

Tk+1 =Rk+1Uk+1

where Rk+1 is upper triangular, and Uk+1 is orthogonal.
Note that Uk+1Rk+1 is a QR decomposition of Tk = QT

kAQk.
This yields the following pseudocode to compute the eigenvalues of A :

1. T0 := A

2. k := 0

3. While not converged :
4. Compute QR factorization Uk+1Rk+1 = Tk

5. Tk+1 := Rk+1Uk+1

6. k := k + 1

7. Return diag(Tk)

Notice that A is only needed at the start of the algorithm, after what we
only repeatedly compute QR decompositions and switch the factors.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 24 / 30

QR iteration, cont’d2

▶ In this algorithm, the matrix Uk+1 = QT
kQk+1 represents an orthogonal

correction.
Since upon convergence Uk → In, the determinant of Uk is 1 for large k,
and we can interpret Uk as a small rotation on the orthogonal vectors in
Qk. In particular, we have:

U1 . . . Uk+1 = QT
0 Q1Q

T
1 Q2 . . . Q

T
kQk+1 = Q0Qk+1 = Qk+1

because we chose Q0 = In.
As the algorithm converges, Qk and Qk+1 become very close.

▶ In the symmetric case, Tk = QT
kAQk is symmetric, but since it also

converges to an upper symmetric matrix, it actually converges to a
diagonal form, in which case the Schur decomposition is actually an
eigendecomposition.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 25 / 30

QR iteration, cont’d3
▶ The QR iteration presented so far has drawbacks:

- A QR factorization at cost O(n3) is computed at each iteration
- The convergence depends heavily on the distribution of the eigenvalues,

and it may never converge if two eigenvalues have the same magnitude
▶ Improvements of the QR iteration method can be introduced to improve

the robustness and efficiency:
- The transformation of A into an upper Hessenberg form allows to

decrease the cost of the QR factorizations
- A shifted version of the QR iteration can improve convergence, even

when the eigenvalues are not well-separated, making the method robust
to cases of eigenvalues with equal magnitudes

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 26 / 30

Other methods and implementations
Section 5.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025

Divide-and-conquer method
▶ A symmetric matrix can efficiently be transformed into a tridiagonal form

using an orthogonal transformation

QTAQ = T.

Then, the eigendecomposition of A can be obtained from that of T .
▶ The divide-and-conquer method splits the tridiagonal matrix into two

tridiagonal blocks plus a rank-1 perturbation:

T =

[
T1

T2

]
+ ρuuT .

▶ The method proceeds as follows:
1 Calculate the eigendecompositions of T1 and T2.
2 The rank-1 perturbation allows to compute the eigenvalues of T given

the eigendecompositions of T1 and T2.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 27 / 30

Method of bissection
▶ The method of bissection also considers a tridiagonal form QTAQ = T .
▶ The eigenvalues of T are the roots of pn(λ) = det(T − λIn).

Finding these roots is generally a complex problem, but it can be simplified
if we consider only the leading r-by-r block Tr of T and the corresponding
characteristic polynomial

pr(λ) = det(Tr − λIr).

▶ As T is tridiagonal, it is possible to find a simple relation between pr, pr−1

and pr−2.
Using this sequence of polynomials, the method of bissection is able to
efficiently calculate the roots of pn.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 28 / 30

Existing implementations
▶ QR iteration:

- Implementation sometimes requires tridiagonalization,
available for general matrices

- Fastest to compute the eigendecomposition of small matrices, i.e., for n ≤ 25

- Algorithm behind the Matlab, NumPy and Julia functions eig
- Available in LAPACK as ssyev for dense symmetric matrices
- Available in LAPACK as sstev for symmetric tridiagonal matrices

▶ Divide-and-conquer method:
- Implementation requires tridiagonalization, available for symmetric matrices
- Fastest to compute the eigendecomposition of medium size tridiagonal

matrices, i.e., for n > 25

- Available in LAPACK as sstevd for symmetric tridiagonal matrices,
sstevd defaults to QR iteration for smaller matrices

▶ Method of bissection:
- Available in LAPACK as ssyevx for dense symmetric matrices

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 29 / 30

Homework problems

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025

Homework problem
Turn in your own solution to Pb. 20:

Pb. 19 Show that the gradient of the Rayleigh quotient of a symmetric matrix
A given by

r(x) =
xTAx

xTx
for x ̸= 0

is ∇r(x) = 2
xT x

(Ax− r(x)x).

Pb. 20 Let (λ, x) be a right eigen-pair of A, (µ, y) be a left eigen-pair of A
and µ be distinct from λ. Show that x and y are orthogonal.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 09 Summer 2025 30 / 30

	Methods for computing a single eigenvalue Section 5.1 in Darve & Wootters (2021)
	Basic QR iteration Section 5.2 in Darve & Wootters (2021)
	Other methods and implementations Section 5.2 in Darve & Wootters (2021)
	Homework problems

