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Krylov subspace methods for few eigen-pairs
▶ So far we’ve seen:

- Power iterations, inverse iterations and Rayleigh quotient
iterations to compute a single eigen-pair

- QR iterations, the divide-and-conquer method and the method of
bissection to compute all the eigen-pairs of a small-to-medium size and
dense matrix

- LOBPCG to compute a few extremal generalized eigen-pairs of a large,
possibly sparse matrix pencil (A,B).

▶ Krylov subspace methods are another set of iterative methods to
compute a few eigen-pairs of a large matrix A

We assume that the mapping x 7→ Ax can be operated efficiently,
possibly because A is sparse
We denote two mehods in particular:
- The Arnoldi process is meant for non-symmetric matrices, and
- The Lanczos process, which was introduced later for symmetric

matrices.
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Arnoldi process
Section 6.1 in Darve & Wootters (2021)
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Arnoldi process as a Krylov subspace method
▶ Given a vector v ∈ Rn, the m-th Krylov subspace of A ∈ Rn×n is

Km(A, v) = span{v,Av, . . . , Am−1v}.

▶ The Arnoldi process which we present in this section is a procedure to
generate an orthogonal Qm := [q1, . . . , qm], i.e., QT

mQm = Im such that

span{q1, . . . , qm} = Km(A, v).

The orthonormal basis in the columns of Qm is such that QT
mAQm = Hm

is an upper Hessenberg matrix.
▶ We present two different ways to derive Arnoldi procedures:

1 Deduction of Arnoldi iteration from the AQ = QH relation.
2 Orthogonalization of Aqk against q1, . . . , qk.

▶ Later, we see that approximate eigen-pairs of A can be sought for within
the the Kylov subspace Km(A, v).
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Reduction to Hessenberg form
▶ We recall from lecture 7 that Householder transformations can be used to

transform a matrix into Hessenberg form:

QTAQ = H

where QTQ = QQT = In.
▶ The eigenvalues of H are the same as those of A, which can be exploited

to find eigenvalues of A.
▶ Here, instead of considering the full Hessenberg matrix H, we approximate

eigen-pairs of A with the eigen-pairs of a leading k-by-k block Hk of H.

▶ As it turns out, the eigen-pairs of the leading k-by-k block of H are good
approximations of some eigen-pairs of A.
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Deducting the Arnoldi process from AQ = QH
▶ Computing the leading k-by-k block of H is called the Arnoldi process.

We will see it is similar to the Gram-Schmidt procedure.
▶ Because Q is orthogonal, we can rewrite QTAQ = H as AQ = QH.
▶ We’d like to design an iterative procedure to recover Q and H.

- Suppose that we already have the k first columns of Q, and the first
k− 1 columns of H. How can we recover the next columns of Q and H?
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Deducting the Arnoldi process from AQ = QH, cont’d1
▶ The first thing we observe is that we can recover the entries hik for i ≤ k

using what we know, because qTi Aqk = hik.
Now that we know hik for i ≤ k, we focus on recovering hk+1,k and qk+1.
To do this, from the k-th column of AQ = QH, we write

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1.
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Deducting the Arnoldi process from AQ = QH, cont’d2

of which we can compute the left-hand side Aqk, and the only part of the
right-hand side that we don’t know is the vector hk+1,kqk+1. So we can
solve for it. Denote

rk := Aqk − h1kq1 − · · · − hkkqk = hk+1,kqk+1

where qk+1 has unit norm, so that

hk+1,k = ∥rk∥2, qk+1 = rk/hk+1,k.

(Note that we could also choose hk+1,k = −∥rk∥2, which would lead to a
different sign choice for qk+1. This choice is arbitrary.)
Thus we have figured out qk+1 and hik for i ≤ k + 1. This is what we
wanted to know, and we can now proceed to the step to obtain qk+2 and
hi,k+1 for i ≤ k + 2.
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Deducting the Arnoldi process from AQ = QH, cont’d3

▶ Consequently, we have the following iteration:

Arnoldi recurrence relation:
Suppose we have q1, . . . , qk and h:,j for j < k. Then we can find
qk+1 and h:,k as follows:

hik := qTi Aqk, for i ≤ k

rk := Aqk −
∑k

i=1 hikqi
hk+1,k := ∥rk∥2
qk+1 := rk

hk+1,k

▶ Performing this iteration starting from a given vector q1, we get a method
to calculate the columns of the matrices H and Q that satisfy
QTAQ = H. This is, in a nuttshell, the Arnoldi process.
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Alternative way to define Arnoldi procedures
▶ Given a vector X:,1, the Arnoldi procedure is defined by

Arnoldi : (X:,1,m) ∈ Rn × N 7→ Q = [q1, . . . , qm] ∈ Rn×m

s.t. QTQ = Im and Span{q1, . . . , qm} = Span{q1, Aq1, . . . , Am−1q1}
where q1 := X:,1/∥X:,1∥2.

▶ We are interested by the QR decomposition X = QR such that
X:,j := Aqj−1 for j = 2, . . . ,m. X is defined column-by-column w.r.t. Q,
so that the Gram-Schmidt procedure is particularly well adapted.

▶ Let Π(j) be a projector onto Span{q1, . . . , qj}⊥, then Arnoldi(X:,1,m) is
given by the following GS procedure:

Algorithm 1 Arnoldi : (X:,1,m) 7→ Q

1: q1 := X:,1/∥X:,1∥2
2: for j = 2, . . . ,m do
3: X:,j := Aqj−1

4: qj := Π(j−1)X:,j

5: qj := qj/∥qj∥2
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Matrices of interest and notation
▶ From the orthogonality of Q, the QR decomposition of X is such that

QTX = R. Given that X:,j = Aqj−1 for j = 2, . . . ,m, we have
Rij = QT

:,iX:,j = qTi Aqj−1 for (i, j) ∈ [1,m]× [2,m].

▶ In the Arnoldi procedure, we are interested in some of the components of
R. In particular, we wish to compute the matrix defined by H := QTAQ.
The components of H are given by Hij = qTi Aqj .

▶ So as to explicitly state the dimension of Q during intermediate states
j < m of the Arnoldi algorithm, we write Qj := [q1, . . . , qj ]. Similarly, we
denote the corresponding matrix by Hj := QT

j AQj .

▶ Some properties of the Arnoldi procedure rely on the matrix defined by
Hj := QT

j+1AQj .
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CGS-based Arnoldi procedure
▶ For the CGS-based Arnoldi procedure, we let Π(j) := In −QjQ

T
j .

▶ We obtain the following algorithm:

Algorithm 2 CGS-based Arnoldi: (X:,1,m) 7→ Qm

1: q1 := X:,1/∥X:,1∥2
2: for j = 2, . . . ,m do
3: X:,j := Aqj−1

4: H1:j−1,j−1 := QT
j−1X:,j

5: qj := X:,j −Qj−1H1:j−1,j−1

6: qj := qj/∥qj∥2

▶ Let ∥qj∥2 be computed after line 5, then, after line 6, we have

∥qj∥2qj = (In −Qj−1Q
T
j−1)Aqj−1

∥qj∥2qTj qj = qTj (In −Qj−1Q
T
j−1)Aqj−1

∥qj∥2 = qTj Aqj−1

∥qj∥2 = hj,j−1.
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CGS-based Arnoldi procedure
▶ For the CGS-based Arnoldi procedure, we let Π(j) := In −QjQ

T
j .

▶ We obtain the following algorithm:

Algorithm 3 CGS-based Arnoldi: (X:,1,m) 7→ Qm

1: q1 := X:,1/∥X:,1∥2
2: for j = 2, . . . ,m do
3: X:,j := Aqj−1

4: H1:j−1,j−1 := QT
j−1X:,j

5: qj := X:,j −Qj−1H1:j−1,j−1

6: hj,j−1 := ∥qj∥2 ▷ Hj+1:m,j−1 := 0
7: qj := qj/Hj,j−1
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Hessenberg matrices and property of the Arnoldi algorithm
▶ From lines 4-7 of the algorithm, we have

hj,j−1qj = (In −Qj−1Q
T
j−1)Aqj−1,

hj,j−1q
T
i qj = qTi (In −Qj−1Q

T
j−1)Aqj−1.

Let i > j, then we have qTi Aqj−1 = 0 so that hij = 0 for i > j + 1, i.e.,
Hj is upper Hessenberg.

▶ We have Aqj =
∑j+1

i=1 hijqi.
Proof : From lines 4-7 of the algorithm, we have

hj,j−1qj = Aqj−1 −Qj−1Q
T
j−1Aqj−1

hj+1,jqj+1 = Aqj −QjQ
T
j Aqj

hj+1,jqj+1 = Aqj −QjH1:j,j

so that we can write

Aqj =
[
q1 . . . qj

] h1j...
hjj

+ hj+1,jqj+1.
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The Arnoldi relation
▶ Writing down the components of QjHj and AQj leads us to[∑j

i=1 hi1qi . . .
∑j

i=1 hijqi

]
= QjHj ,[

Aq1 . . . Aqj
]
= AQj .

▶ Then, using the fact that Aqj =
∑j+1

i=1 hijqi and that Hj is upper
Hessenberg, we have hj+1,i = 0 for i = 1, . . . , j − 1 so that[

Aq1 . . . Aqj
]
=

[∑j
i=1 hi1qi . . .

∑j
i=1 hijqi

]
+[

0 . . . 0 hj+1,jqj+1

]
which can be written as AQj = QjHj + hj+1,jqj+1e

T
j where ej is the

j-th column of the j-dimensional identity matrix. To distinguish from the
relation AQ = QH obtained only when m = n.

▶ Similarly, we have[
Aq1 . . . Aqj

]
=

[∑j+1
i=1 hi1qi . . .

∑j+1
i=1 hijqi

]
which can be written as AQj = Qj+1Hj .
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CGS-based Arnoldi procedure
▶ Approximate solutions in Km(A, r0) for linear systems and eigenvalue

problems have residuals which depend on the product AQm.
▶ Exploit the Arnoldi relation AQm = Qm+1Hm for faster computation.
▶ The Arnoldi algorithm is reformulated as follows so as to compute Hm at

the m-th iteration:

Algorithm 4 CGS-based Arnoldi
1: q1 := X:,1/∥X:,1∥2
2: for j = 1, . . . ,m do
3: X:,j+1 := Aqj
4: H1:j,j := QT

j X:,j+1

5: qj+1 := X:,j+1 −QjH1:j,j

6: Hj+1,j := ∥qj+1∥2 ▷ Hj+2:m+1,j := 0
7: qj+1 := qj+1/Hj+1,j

▶ The approach of the book of Darve and Wootters (2021) we presented is
equivalent to CGS-based Arnoldi.
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MGS-based Arnoldi procedure
▶ MGS-based Arnoldi =⇒ Π(i) := (In − qiq

T
i ) . . . (In − q1q

T
1 ).

▶ We obtain the following algorithm:

Algorithm 5 MGS-based Arnoldi: (X:,1,m) 7→ Qm

1: q1 := X:,1/∥X:,1∥2
2: for j = 2, . . . ,m do
3: qj := Aqj−1

4: for i = 1, . . . , j − 1 do
5: qj := qj − qiq

T
i qj

6: qj := qj/∥qj∥2

▶ For all (i, j) ∈ [1, j − 1]× [2,m], prior to executing line 5, we have

qj = (In − qi−1q
T
i−1) . . . (In − q1q

T
1 )Aqj−1

so that, assuming perfect orthogonality of Qj , we have

qTi qj = qTi (In − qi−1q
T
i−1) . . . (In − q1q

T
1 )Aqj−1 = qTi Aqj−1 = hi,j−1.
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MGS-based Arnoldi procedure
▶ Also, when computing ∥qj∥2 prior to line 7, we have ∥qj∥2 = hj,j−1.
▶ We obtain the following algorithm:

Algorithm 6 MGS-based Arnoldi: (X:,1,m) 7→ Qm

1: q1 := X:,1/∥X:,1∥2
2: for j = 2, . . . ,m do
3: qj := Aqj−1

4: for i = 1, . . . , j − 1 do
5: Hi,j−1 := qTi qj
6: qj := qj −Hi,j−1qi
7: Hj,j−1 := ∥qj∥2 ▷ Hj+1:m,j−1 := 0
8: qj := qj/hj,j−1

▶ All the properties we showed for the CGS-based Arnoldi procedure remain
valid for MGS-based Arnoldi.

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 11 Summer 2025 15 / 45



MGS-based Arnoldi procedure
▶ Similarly as before, we want the upper Hessenberg matrix Hm to be

computed at the end of the m-th iteration.
▶ Consequently, the Arnoldi algorithm is reformulated as follows:

Algorithm 7 MGS-based Arnoldi
1: q1 := X:,1/∥X:,1∥2
2: for j = 1, . . . ,m do
3: qj+1 := Aqj
4: for i = 1, . . . , j do
5: Hij := qTi qj+1

6: qj+1 := qj+1 −Hijqi
7: Hj+1,j := ∥qj+1∥2 ▷ Hj+2:m+1,j := 0
8: qj+1 := qj+1/hj+1,j

▶ MGS-based Arnoldi is the most commonly used implementation of Arnoldi
process.
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Arnoldi Rayleigh-Ritz for dominant
eigenpairs
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Arnoldi procedure with Rayleigh-Ritz vectors
▶ Eigenvectors with eigenvalues whose norms are the largest among

the spectrum of A tend to be well approximated by Rayleigh-Ritz
projections, as explained by Parlett (1998) and Saad (2011).

▶ Rayleigh-Ritz projections are commonly defined with respect to Krylov
subspaces whose bases Qm are obtained by a Arnoldi procedure:

Then, a Rayleigh-Ritz vector y ∈ R(Qm) approximates an eigenvector of A
with the Ritz value λ such that Ay − λy ⊥ R(Qm). That is, we search for
(λ, ŷ) ∈ C× Cm \ {0} s.t. zH (Ay − λy) = 0 ∀ z ∈ R(Qm) with y = Qmŷ.
This simplifies to

QH
m (AQmŷ − λQmŷ) = 0

Hmŷ − λŷ = 0 =⇒ Hmŷ = λŷ

where use was made of the Arnoldi relation and QH
mQm = In.

k<m dominant eigenpairs {(λℓ, ŷℓ)}kℓ=1 of Hm are used to approximate
the dominant eigenpairs of A with {(λℓ, yℓ)}kℓ=1 where yℓ := Qmŷℓ.

B. N. Parlett, The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics (1998).
Y. Saad, Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied
Mathematics (2011).

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 11 Summer 2025 17 / 45



Arnoldi procedure with Rayleigh-Ritz vectors, cont’d1
▶ A desirable property of the Rayleigh-Ritz approximation yℓ is that the Ritz

value θℓ equates the corresponding Rayleigh quotient:

yHℓ Ayℓ = (Qmŷℓ)
HAQmŷℓ = ŷHℓ QH

mAQmŷℓ = ŷHℓ Hmŷℓ = λℓŷ
H
ℓ ŷℓ = λℓ

where ŷℓ is assumed to have unit length.
▶ The eigen-residual r̃ℓ := Ayℓ − λℓyℓ of the Rayleigh-Ritz vector yℓ is s.t.

r̃ℓ = AQmŷℓ − λℓQmŷℓ

= QmHmŷℓ + hm+1,mqm+1e
T
mŷℓ − λℓQmŷℓ

= λℓQmŷℓ + hm+1,mqm+1e
T
mŷℓ − λℓQmŷℓ

= hm+1,mqm+1e
T
mŷℓ

r̃ℓ = βm,ℓqm+1 where βm,ℓ := hm+1,meTmŷℓ .

Essentially, the eigen-residuals r̃1, . . . , r̃m of the Rayleigh-Ritz vectors
y1, . . . , ym defined with respect to the Krylov subspace Km(A, q1) are all
parallel, along the Arnoldi vector qm+1.
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Arnoldi procedure with Rayleigh-Ritz vectors, cont’d2
▶ From the fact that r̃ℓ = βm,ℓqm+1, the norm of the eigen-residual is such

that ∥r̃ℓ∥22 = |βm,ℓ|2qHm+1qm+1 = |βm,ℓ|2 where |βm,ℓ| = |hm+1,m| |eTmŷℓ|.
Consequently, a stopping criterion of the form ∥r̃ℓ∥2 < ϵ|λℓ| can be
checked efficiently at every iteration without having to compute the
matrix-vector product Ayℓ or even to assemble the vector yℓ := Qmŷℓ.

▶ As explained earlier,
the orthogonalization which is at the root of the Arnoldi procedure has time
complexity O(m2n),
the reduced eigensolve of Hm has time complexity O(m3),
the storage of the Arnoldi basis in Qm has space complexity O(mn) so
that, if convergence is not achieved for some number m of iterations, it is
necessary to start the Arnoldi procedure over with a new initial vector q1.

▶ A naive restart of the Arnoldi procedure can be highly detrimental to
the convergence of approximate eigenvectors. Some care needs to be
taken so as to reduce convergence slowdown.
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Shift-and-invert Arnoldi Rayleigh-Ritz for
interior eigenpairs
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Shift-and-invert spectral transformation
▶ Rayleigh-Ritz pairs (λ, y) converge first towards eigenpairs (θ, z) of A with

the largest value of |θ|.
In practice, we may want to approximate an eigenpair with eigenvalue θ close
to some σ, i.e., with small value of |σ − θ|. E.g., σ = 0.
Rayleigh-Ritz approximations (λ, y) of such eigenpairs (θ, z) in Krylov
subspaces converge very slowly when |σ| is small compared to the spectral
radius of A.

▶ The shift-and-invert spectral transformation was introduced by Ericsson
and Ruhe (1980) as a means to circumvent this issue:

Consider the eigenvalue problem given by

(A− σIn)
−1w = ϑw

where it is assumed that σ is not an eigenvalue of A. Then, we have

w = ϑ(A− σIn)w

w = ϑAw − ϑσw.

Ericsson, T., & Ruhe, A. (1980). The spectral transformation Lanczos method for the numerical solution of large
sparse generalized symmetric eigenvalue problems. Mathematics of Computation, 35(152), 1251-1268.
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Shift-and-invert spectral transformation, cont’d
Since σ is not an eigenvalue of the non-singular matrix A, the shift-and-invert
operator (A− σIn)

−1 is not singular and ϑ ̸= 0 so that

Aw =

(
σ +

1

ϑ

)
w.

Essentially, (σ + 1/ϑ,w) is an eigenpair of A.
Now, if an Arnoldi procedure is applied to (A− σIn)

−1, the corresponding
Rayleigh-Ritz pairs will first converge to the eigenpairs (ϑ,w) of the
shift-and-invert operator with largest |ϑ|.
However, when |ϑ| is maximized, the magnitude of σ− (σ+1/ϑ) is minimized.
Therefore, the Rayleigh-Ritz pairs of a shift-and-invert Arnoldi procedure will
first converge to the eigenpairs of A with eigenvalues closest to σ.

▶ Shift-and-invert operators are implemented in ARPACK to compute
interior eigenpairs.

▶ Shift-and-invert Arnoldi procedures rely on repetitive applications of the
(A− σIn)

−1 operator.
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Arnoldi harmonic Ritz for interior eigenpairs
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Harmonic Ritz approximation of interior eigenpairs
▶ While shift-and-invert Arnoldi procedures allow fast convergence of

Rayleigh-Ritz pairs towards interior eigenpairs, it comes at the cost of
repeated applications of (A− σIn)

−1. However:
1. Factorizing the shifted operator A− σIn is not always possible.
2. One may actually need to generate a basis for a Krylov subspace of A, and

have little use for a basis of Krylov subspace of the shift-and-invert operator
(A− σIn)

−1:
▶ E.g., if interior eigenvectors of A are needed to restart GMRES when solving

Ax = b.
▶ As a means to bypass the need to apply shift-and-invert operators, Morgan

(1991) introduces a new projection method in which the shift-and-invert
operator is applied implicitly:

Consider the case in which we are equipped with a basis for the search space
R(P ) stored in the columns of P .
Let Q := (A− σIn)P , and consider the Rayleigh-Ritz pairs of the
shift-and-invert operator (A− σIn)

−1 with respect to R(Q).

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.
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Harmonic Ritz approximation of interior eigenpairs, cont’d1
That is, consider the pair (ϑ,Qŷ) such that

QH(A− σIn)
−1Qŷ = ϑQHQŷ,

which develops into the reduced generalized eigenvalue problem

PH(A− σIn)
HP ŷ = ϑPH(A− σIn)

H(A− σIn)P ŷ

which does not require any application of the shift-and-invert operator.
Resulting from a Rayleigh-Ritz projection of the shift-and-invert operator
(A− σIn)

−1, the pair (σ + 1/ϑ,Qŷ) should be a good approximation with
respect to R(Q) of the eigenpair closest to σ.
As good of an approximation Qŷ might be, P ŷ = (A− σIn)

−1Qŷ is the first
power iterate of the shift-and-invert operator initiated with Qŷ, so that P ŷ
should be an even slightly better approximation of the eigenvector with
eigenvalue closest to σ.
Stewart (2001) showed that solutions (θ,Qŷ) for which Qŷ has unit norm are
such that∥Ayi∥ ≤ |θi|, so that it is guaranteed that ∥r̃i∥2 is small if θi is near
zero.

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.
G. W. Stewart, Matrix Algorithms II: Eigensystems, SIAM, Philadelphia, (2001).
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Harmonic Ritz approximation of interior eigenpairs, cont’d2

Consequently, Morgan (1991) proposes a Petrov-Galerkin projection and seeks
for pairs (σ + λ, y) to approximate eigenpairs of A near σ with respect to
R(P ), leading to the following procedure:

Find λ and y ∈ R(P ) s.t. (A− σIn)y − λy ⊥ (A− σIn)R(P ),

which first converges to eigenpairs of A near σ, thus motivating the selection
of reduced generalized eigenpairs (λ, ŷ) with smallest values of |λ| such that

PH(A− σIn)
H(A− σIn)P ŷ = λPH(A− σIn)

HP ŷ.

The projection proposed by Morgan (1991) is first studied for symmetric
matrices, then further analyzed and first referred to as harmonic Ritz by Paige
et al. (1995) before being considered in the context of non-symmetric
eigenvalue problems by Sleijpen and Van der Vorst (1996).

Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154,
289-309.
Paige, C. C., Parlett, B. N., & Van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov
subspaces. Numerical linear algebra with applications, 2(2), 115-133.
Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems.
Matrix, 17(2), 401-425.
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Harmonic Ritz approximation of interior eigenpairs, cont’d3

To simplify what follows, let us define

G1 := PH(A− σIn)
H(A− σIn)P and G2 := PH(A− σIn)P

so that the reduced eigenpair (λ, ŷ) is such that G1ŷ = λGH
2 ŷ.

It is well established that the Rayleigh quotient ρ of y with respect to A is a
better approximation of the eigenvalue of A near σ than σ + λ. The Rayleigh
quotient can be efficiently computed as

ρ =
yHAy

yHy
=

ŷHPHAPŷ

ŷPHPy
= σ +

ŷHPH(A− σIn)P ŷ

ŷPHPy
= σ +

ŷHG2ŷ

ŷPHPy

so that, if PHP = Im and ŷH ŷ = 1, then we have ρ = σ + ŷHG2ŷ .
It is also common to monitor convergence through stopping criteria defined
with respect to the residual

r̂ := Ay − ρy
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Harmonic Ritz approximation of interior eigenpairs, cont’d4

whose norm can also be efficiently computed as we have

r̂H r̂ = (Ay − ρy)H(Ay − ρy)

= ((A− σIn)y + (σ − ρ)y)H((A− σIn)y + (σ − ρ)y)

= yH(A− σIn)
H(A− σIn)y + (σ − ρ)yH(A− σIn)

Hy

+ (σ − ρ)yH(A− σIn)y + (σ − ρ)(σ − ρ)yHy

= ŷHG1ŷ + (σ − ρ)ŷHGH
2 ŷ + (σ − ρ)ŷHG2ŷ + (σ − ρ)(σ − ρ)yHy

where, once again, we assume PHP = Im and ŷH ŷ = 1 so that

r̂H r̂ = ŷHG1ŷ + (σ − ρ)ŷHGH
2 ŷ + (σ − ρ)ŷHG2ŷ + (σ − ρ)(σ − ρ)

= λŷHGH
2 ŷ + (σ − ρ)ŷHGH

2 ŷ + (σ − ρ)(ρ− σ) + (σ − ρ)(σ − ρ)

= (σ + λ− ρ)ŷHGH
2 ŷ

= (σ + λ− ρ)ŷHG2ŷ

which leads to r̂H r̂ = (σ + λ− ρ)(ρ− σ) .
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Harmonic Ritz approximation of interior eigenpairs, cont’d5

The norm of the harmonic residual r̃ := Ay − (σ + λ)y can also be used to
monitor convergence. Still assuming PHP = Im and ŷH ŷ = 1, we then have

r̃H r̃ = (Ay − (σ + λ)y)H(Ay − (σ + λ)y)

= ((A− σIn)y − λy)H((A− σIn)y − λy)

= ŷHPH(A− σIn)
H(A− σIn)P ŷ − λŷHPH(A− σIn)

HP ŷ

− λŷHPH(A− σIn)P ŷ + λλ

= ŷHG1ŷ − λŷHGH
2 ŷ − λŷHG2ŷ + λλ

= λŷHGH
2 ŷ − λŷHGH

2 ŷ − λŷHG2ŷ + λλ

= λ(λ− ŷHG2ŷ)

where ŷHG2ŷ = ρ− σ so that

r̃H r̃ = (σ + λ− ρ)λ .
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Arnoldi procedure with harmonic Ritz vectors
▶ More can be said for the case in which the search space is Krylov and

generated by an Arnoldi procedure, see Morgan and Zheng (1998).
▶ Consider the shifted procedure Arnoldi(A− σIn, q1, m) 7→ (Qm+1, Hm)

which returns an orthonormal basis Qm := [q1 . . . qm] of Km(A− σIn, q1)
such that (A− σIn)Qm = Qm+1Hm where Qm+1 := [Qm qm+1] as well as
Hm = QH

m+1(A− σIn)Qm and Hm = QH
m(A− σIn)Qm.

▶ Then, harmonic Ritz vectors y∈R(Qm) are such that

(A− σIn)y − λy ⊥ (A− σIn)R(Qm)

yields the following reduced generalized eigenvalue problem in which we
search for non-trivial pairs (λ, ŷ) ∈ C× Cm such that y = Qmŷ and

QH
m(A− σIn)

H(A− σIn)Qmŷ = λQH
m(A− σIn)

HQmŷ

HH
mQH

m+1Qm+1Hmŷ = λHH
m ŷ

HH
mHmŷ = λHH

m ŷ

Morgan, R. B., & Zeng, M. (1998). Harmonic projection methods for large non-symmetric eigenvalue problems.
Numerical linear algebra with applications, 5(1), 33-55.
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Arnoldi procedure with harmonic Ritz vectors, cont’d1
▶ Reformulating the Arnoldi relation into

(A− σIn)Qm = QmHm + hm+1,mqm+1e
T
m

allows to rewrite the reduced eigenvalue problem of the harmonic Ritz
projection as follows:

(HH
mHm + |hm+1,m|2emeTm)ŷ = λHH

m ŷ

(Hm + |hm+1,m|2feTm)ŷ = λŷ

where f := H−H
m em ∈ Cm and em := Im[:,m].

▶ Then, the harmonic eigen-residual r̃ := Ay − (σ + λ)y of a given harmonic
Ritz approximate eigen-pair (σ + λ, y) with y := Qmŷ is such that
r̃ = AQmŷ − (σ + λ)Qmŷ

= (A− σIn)Qmŷ − λQmŷ = (QmHm + hm+1,mqm+1e
T
m)ŷ − λQmŷ

= Qm(λIn − |hm+1,m|2feTm)ŷ + hm+1,mqm+1e
T
mŷ − λQmŷ

= hm+1,m(eTmŷ)qm+1 − |hm+1,m|2(eTmŷ)Qmf

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 11 Summer 2025 29 / 45



Arnoldi procedure with harmonic Ritz vectors, cont’d2

which can be written

r̃ = hm+1,m(eTmŷ)Qm+1

[
0m×1

1

]
− |hm+1,m|2(eTmŷ)Qm+1

[
f
0

]
= hm+1,m(eTmŷ)Qm+1

[
0m×1

1

]
+ hm+1,m(eTmŷ)Qm+1

[
−hm+1,mf

0

]
= hm+1,m(eTmŷ)Qm+1

[
−hm+1,mf

1

]
= βmQm+1s

so that

r̃ = βmQm+1s where βm := hm+1,meTmŷ and s :=

[
−hm+1,mf

1

]
.

▶ The norm of r̃ is then given by ∥r̃∥2 = |βm|(|hm+1,m|2fHf + 1)1/2 .
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Arnoldi procedure with harmonic Ritz vectors, cont’d3

▶ When precise eigenvalues are wanted, it is preferred to use the Rayleigh
quotient rather than σ + λ. Assuming ŷ has unit norm, so does y := Qmŷ,
and the Rayleigh quotient of y is given by

ρ = σ + ŷHHmŷ = σ + λ− |hm+1,m|2(ŷHf)(eTmŷ).

▶ Moreover, the norm of the eigen-residual r̂ := Ay − ρy is still such that

∥r̂∥22 = (σ + λ− ρ)(ρ− σ)

and that of the harmonic residual r̃ := Ay − (σ + λ)y is still such that

∥r̃∥22 = (σ + λ− ρ)λ.
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Arnoldi procedure with harmonic Ritz vectors, cont’d4
▶ As mentioned before, we are interested by the case in which harmonic Ritz

approximations are considered in the context of the non-shifted procedure
Arnoldi(A, q1,m) 7→ (Qm+1, Hm) which returns an orthonormal basis
Qm := [q1 . . . qm] of Km(A, q1) such that AVm = Qm+1Hm where
Qm+1 := [Qm qm+1], Hm = QH

m+1AQm and Hm = QH
mAQm.

Then, the harmonic Ritz vector y ∈ R(Qm) is still such that

(A− σIn)y − λy ⊥ (A− σIn)R(Qm)

but now yields the following reduced generalized eigenvalue problem:

((A− σIn)Qm)H(A− σIn)Qmŷ = λ((A− σIn)Qm)HQmŷ

((A− σIn)Qm)HAQmŷ − σ((A− σIn)Qm)HQmŷ = λ((A− σIn)Qm)HQmŷ

so that

((A− σIn)Qm)HAQmŷ = (σ + λ)((A− σIn)Qm)HQmŷ
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Arnoldi procedure with harmonic Ritz vectors, cont’d5

which develops as follows:

((AQm)HAQm − σQH
mAQm)ŷ = (σ + λ)(QH

mAHQm − σIm)ŷ

(HH
mHm + |hm+1,m|2emeTm − σHm)ŷ = (σ + λ)(HH

m − σIm)ŷ

((HH
m − σIm)Hm + |hm+1,m|2emeTm)ŷ = (σ + λ)(Hm − σIm)H ŷ

((Hm − σIm)HHm + |hm+1,m|2emeTm)ŷ = (σ + λ)(Hm − σIm)H ŷ

to finally yield

(Hm + |hm+1,m|2feTm)ŷ = (σ + λ)ŷ where f := (Hm − σIm)−Hem ,

so that the expression for f differs from the shifted procedure. Still, the
harmonic Ritz pairs should converge first to the eigenpairs of A closest to σ so
that, now, we should not retain the least dominant reduced eigenpairs, but
rather those with eigenvalues closest to σ.
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Arnoldi procedure with harmonic Ritz vectors, cont’d6
Now, still assuming ŷH ŷ = 1, the Rayleigh quotient is given by

ρ = yHAy = ŷHV H
m AVmŷ = ŷHHmŷ = σ + λ− |hm+1,m|2(ŷHf)(eTmŷ).

Irrespective of the basis generated, as long as it’s orthonormal, we already saw
the residual given by r̂ := Ay − ρy is such that

r̂H r̂ = (σ + λ− ρ)(ρ− σ).

And the harmonic eigen-residual r̃ := Ay − (σ + λ)y is such that
r̃ = AQmŷ − (σ + λ)Qmŷ

= QmHmŷ + hm+1,mqm+1e
T
mŷ − (σ + λ)Qmŷ

= (σ + λ)Qmŷ − |hm+1,m|2QmfeTmŷ + hm+1,mqm+1e
T
mŷ − (σ + λ)Qmŷ

= − |hm+1,m|2(eTmŷ)Qmf + hm+1,mqm+1e
T
mŷ

which, similarly as before, can be recast into

r̃ = βmQm+1s where βm := hm+1,meTmŷ and s =

[
−hm+1,mf

1

]
,

where the difference with shifted Arnoldi is the expression for f .
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Lanczos process
Section 6.2 in Darve & Wootters (2021)

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 11 Summer 2025



Lanczos process for symmetric matrices
▶ The Lanczos process is a specialized form of the Arnoldi process for

symmetric matrices.
▶ When A is symmetric (i.e., A = AT ), the Hessenberg matrix

Hm = QT
mAQm is symmetric too. Consequently, it is tridiagonal:

Tm =


α1 β1 0 · · · 0
β1 α2 β2 · · · 0
0 β2 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αm


where αi = qTi Aqi are the diagonal elements and βi = qTi Aqi+1 = qTi+1Aqi
are the off-diagonal elements.

▶ This tridiagonal structure means that in the Arnoldi recurrence relation,
most terms vanish:

Aqj = βj−1qj−1 + αjqj + βjqj+1

▶ This three-term recurrence relation is the foundation of the Lanczos process.
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Derivation of the Lanczos process
▶ From the three-term recurrence relation, we can derive the Lanczos

algorithm:

βjqj+1 = Aqj − αjqj − βj−1qj−1

▶ Rearranging to compute qj+1:

qj+1 =
1

βj
(Aqj − αjqj − βj−1qj−1)

▶ The coefficients are determined as:

αj = qTj Aqj and βj = ∥Aqj − αjqj − βj−1qj−1∥2

▶ This leads to amuch simpler algorithm compared to the full Arnoldi process:
- we only need to maintain three vectors in memory at any time: qj−1, qj ,

and qj+1.
- the work done remains constant as the iteration count increases.
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Lanczos algorithm
▶ The Lanczos algorithm can be formulated as follows:

Algorithm 8 Lanczos
1: Choose a starting vector q1 with ∥q1∥2 = 1
2: Set β0 = 0 and q0 = 0
3: for j = 1, 2, . . . ,m do
4: v = Aqj
5: αj = qTj v
6: v = v − αjqj − βj−1qj−1

7: βj = ∥v∥2
8: qj+1 = v/βj

▶ After m steps, we have:
- An orthonormal basis Qm = [q1, q2, . . . , qm] for the Krylov subspace
Km(A, q1)

- A tridiagonal matrix Tm = QT
mAQm with diagonal elements αi and

off-diagonal elements βi
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The Lanczos relation
▶ Similar to the Arnoldi relation, we have the Lanczos relation:

AQm = QmTm + βmqm+1e
T
m

where Tm is the tridiagonal matrix.
▶ We can also write:

AQm = Qm+1Tm

where Tm is the (m+ 1)×m tridiagonal matrix:

Tm =



α1 β1 0 · · · 0
β1 α2 β2 · · · 0
0 β2 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αm

0 0 0 · · · βm


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Lanczos Rayleigh-Ritz for dominant eigenpairs
▶ Eigenvectors with eigenvalues whose norms are the largest among

the spectrum of A are well approximated by Rayleigh-Ritz projections.
▶ A Rayleigh-Ritz vector y ∈ R(Qm) approximates an eigenvector of A

with the Ritz value λ such that Ay − λy ⊥ R(Qm). That is, we search
for (λ, ŷ) ∈ C× Cm \ {0} s.t. zH (Ay − λy) = 0 ∀ z ∈ R(Qm) with
y = Qmŷ. This simplifies to

QH
m (AQmŷ − λQmŷ) = 0

Tmŷ − λŷ = 0 =⇒ Tmŷ = λŷ

where use is made of the Lanczos relation and QH
mQm = In.

▶ The eigen-residual r̃ := Ay − λy can be computed as:

r̃ = AQmŷ − λQmŷ = βm(eTmŷ)qm+1

▶ This means ∥r̃∥2 = βm∥eTmŷ∥, providing a simple way to assess
convergence without explicitly computing Ay.
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Lanczos Rayleigh-Ritz in finite precision
▶ Loss of orthogonality: In finite precision arithmetic, the Lanczos vectors

quickly lose orthogonality, which can lead to:
- Multiple copies of the same eigenvalue appearing (ghost eigenvalues)
- Inaccurate eigenvalue approximations
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Reorthogonalization strategies
▶ Different strategies exist to circumvent the issue of loss of orthogonality in

finite precision.
- Full reorthogonalization: Explicitly orthogonalize each new vector

against all previous vectors.
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Reorthogonalization strategies, cont’d

Algorithm 9 Lanczos with full reorthogonalization
1: Choose a starting vector q1 with ∥q1∥2 = 1
2: Set β0 = 0 and q0 = 0
3: for j = 1, 2, . . . ,m do
4: v = Aqj
5: αj = qTj v
6: v = v − αjqj − βj−1qj−1

7: for i = 1, 2, . . . , j do
8: v = v − (qTi v)qi ▷ Reorthogonalization step
9: βj = ∥v∥2

10: qj+1 = v/βj

Full reorthogonalization turns Lanczos back into Arnoldi. Alternatives:
- Selective reorthogonalization: Only reorthogonalize when necessary,

based on loss of orthogonality measures
- Partial reorthogonalization: Reorthogonalize against a subset of

previous vectors
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Lanczos harmonic Ritz for interior eigenpairs
▶ Eigenvectors with interior eigenvalues are better approximated by

harmonic Ritz projections.
▶ A harmonic Ritz vector y ∈ R(Qm) approximates an eigenvector of A

with the harmonic Ritz value λ such that

(A− σIn)y − λy ⊥ (A− σIn)R(Qm).

That is, we search for (λ, ŷ) ∈ C× Cm \ {0} s.t.

QH
m(A− σIn)

H(A− σIn)Qmŷ = λQH
m(A− σIn)

HQmŷ

T T
mTmŷ = λTH

m ŷ.

Using the Lanczos relation, this is recast into

(Tm + |βm|2feTm)ŷ = λŷ

f := T−H
m em ∈ Cm and em := Im[:,m].
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Summary of Krylov subspace methods
▶ We studied two main Krylov subspace methods for eigenvalue problems:

- Arnoldi process: For general matrices, produces a Hessenberg matrix
Hm, requires orthogonalization against all previously formed vectors

- Lanczos process: For symmetric matrices, produces a tridiagonal
matrix Tm, relies on a three terms recurence formula

▶ Both methods:
- Construct an orthonormal basis for the Krylov subspace Km(A, v)
- Can be used with either Rayleigh Ritz or harmonic Ritz projections

▶ Key advantages of Krylov subspace methods:
- Only require matrix-vector products, ideal for large sparse matrices
- Can find several eigenvalues simultaneously

▶ Modern implementations use:
- Restarting techniques to limit memory requirements and increasing

computational cost of Arnoldi (will be covered in Lecture 15)
- Reorthogonalization strategies for numerical stability of Lanczos
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Homework problems
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Homework problem
Turn in your own solution to Pb. 23:

Pb. 23 For the matrices

A =

2 1 0
1 2 1
0 1 2

 and V =

1 0
0 1
0 0

 ,

(a) Find the Rayleigh Ritz pairs of A with respect to R(V ).
(b) Assemble the reduced eigenvalue problem to solve in order to find
the harmonic Ritz values of A with respect to R(V ) for σ = 0.

Pb. 24 For the matrix A =

2 3 0
1 2 3
0 1 2

 and q1 =

10
0

, use the Arnoldi process

to build an orthonormal basis Q2 = [q1, q2] of the Krylov subspace
K2(A, q1), and compute the projected matrix H2 = QT

2 AQ2.
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