Numerical Linear Algebra for Computational Science and Information Engineering

> Lecture 16 Elements of Randomized Numerical Linear Algebra

> > Nicolas Venkovic nicolas.venkovic@tum.de

Group of Computational Mathematics School of Computation, Information and Technology Technical University of Munich

Summer 2025

Outline

- Random subspace embeddings
- 2 Sketching methods
- 3 Randomized low-rank

Introduction

- Why randomized numerical linear algebra (RandNLA)?
 - Reducing algorithmic complexity and memory footprint
 - Improving numerical stability
- What does RandNLA address?
 - Mapping of vectors and/or matrices onto low dimensional spaces using randomized embeddings, i.e., in a way that approximately preserves the geometry of transformed object with high probability.
- What is the scope of RandNLA?
 - Theory: Characterization of random embeddings, stability analysis, ...
 - Implementation: Fast sketching, ...
- Seminal works:
 - Least-squares problems
 - Compressed sensing, i.e., sparse signal recovery
 - Randomized trace estimation
 - Randomized SVD and randomized low-rank
 - Randomized Gram-Schmidt

Random subspace embeddings

(Deterministic) subspace embeddings

 Subspace embeddings can offer a means to reduce dimension of high-dimensional data.

Definition (Subspace embedding)

- A subspace embedding with distortion $\varepsilon \in (0, 1)$, or a ε -embedding, is a linear map $x \in \mathbb{F}^n \mapsto \Theta x \in \mathbb{F}^d$ which embeds \mathbb{F}^d into $\mathcal{E} \subseteq \mathbb{F}^n$, i.e.,

 $(1-\varepsilon)\|x\| \le \|\Theta x\| \le (1+\varepsilon)\|x\| \ \forall \ x \in \mathcal{E}.$

- Such maps, also referred to as **quasi-isometries**, require $d \ge \dim(\mathcal{E})$.
- In practice, we want to achieve significant dimension reduction, i.e., $d \ll n$, but this limits the possible dimension of \mathcal{E} .

(Deterministic) subspace embeddings, cont'd

Definition (Subspace embedding)

- A subspace embedding with distortion $\varepsilon \in (0, 1)$, or a ε -embedding, is a linear map $x \in \mathbb{F}^n \mapsto \Theta x \in \mathbb{F}^d$ which embeds \mathbb{F}^d into $\mathcal{E} \subseteq \mathbb{F}^n$, i.e.,

 $(1-\varepsilon)\|x\| \le \|\Theta x\| \le (1+\varepsilon)\|x\| \ \forall \ x \in \mathcal{E}.$

- Such maps, also referred to as quasi-isometries, require $d \ge \dim(\mathcal{E})$.

Randomization allows to *.

Randomized subspace embeddings

The limitation of d on the dimension of the embedding subspace $\mathcal{E} \subset \mathbb{F}^n$ is achieved by

Definition (Randomized subspace embedding)

- A random subspace embedding with distortion $\varepsilon \in (0,1)$ is a linear map $x \in \mathbb{F}^n \mapsto \Theta x \in \mathbb{F}^d$ which embeds \mathbb{F}^d into $\mathcal{E} \subseteq \mathbb{F}^n$, i.e.,

$$\Pr\left\{(1-\varepsilon)\|x\| \le \|\Theta x\| \le (1+\varepsilon)\|x\|\right\} \ge 1-\delta$$

- Such maps, also referred to as quasi-isometries, require $d \ge \dim(\mathcal{E})$.

stuff

Sketching methods

Content

- Counting sketch
- SASO
- Subsampled trigonometric transforms

Randomized low-rank

Content