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Introduction
CS294/Math270 – Demmel and Grigori (2016)

MIT 6.172 – Shun (2018)
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Cost of algorithm deployment
▶ Deploying an algorithm has two costs measured in time (or energy):

- Arithmetic (floating-point operations, FLOPs)

# of FLOPs ÷ (# of FLOPs per cycle × # cycles per unit of time)

- Communication due to data movement between

- levels of a memory hierarchy:
sequential part of a program
DRAM, L3 cache, L2 cache, L1 cache, registers
cache hit, cache miss

- processors over a network:
parallel part of a program

# of messages × latency + # of words ÷ bandwidth idle time
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Roofline model
▶ Algorithm on given hardware characterized by arithmetic intensity:

Arithmetic intensity (AI)
Ratio of number of FLOPs over amount of data moved.

▶ Hardware characterized by machine balance:
Machine balance (MB)
Ratio of peak floating-point performance over peak memory bandwidth.
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Memory wall
▶ Cost to move data much greater than cost of arithmetic:

time per FLOP ≪ 1

bandwidth
≪ latency

▶ Peak floating-point performance evolves faster than memory bandwidth:

▶ Relative cost of algorithms due to communication larger every year
Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M.W., Keutzer, K. (2024). AI and Memory Wall.
arXiv:2403.14123v1.
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Ideal cache model
▶ An ideal cache model is introduced for the analysis of algorithms:

▶ Model parameters:
- Two-level hierarchy
- Cache size of M bytes
- Cache line length of B bytes
- Fully associative cache (cache lines can be stored anywhere in cache)
- Least-recently used (LRU) cache replacement policy
- Arbitrary large main memory
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Tall caches
▶ An
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Communication lower bounds
▶ *
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Matrix-matrix multiplication
MIT 6.172 – Shun (2018)
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Cache misses analysis
▶ Assume a tall ideal cache
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Cache misses analysis, cont’d1

▶ Matrix-matrix multiplication with row major data:

for i = 1, . . . , n

for j = 1, . . . , n

C[i ∗ n+ j] := 0

for k = 1, . . . , n

C[i ∗ n+ j] := C[i ∗ n+ j] + A[i ∗ n+ k] ∗ B[k ∗ n+ j]

▶ Assume a tall ideal cache
- Case 1: n > cM/B
- Case 2: c′M1/2 < n < cM/B
- Case 3: n < cM1/2
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Cache misses analysis, cont’d2

▶ Assume a tall ideal cache
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Swapping inner loops
▶ *
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Blocked (tiled) matrix multiplication
▶ *
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Two-level cache
▶ *

nicolas.venkovic@tum.de NLA for CS and IE – Lecture 17 Summer 2025 12 / 24



Three-level cache
▶ *
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Recursive matrix multiplication
▶ *
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Recursive implementation
▶ *
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Analysis of work
▶ *
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Analysis of cache misses
▶ *
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Overview and principles of communication
avoidance
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Reducing data movement
▶ Reformulate algorithms to rely on more arithmetically intense kernels:
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Sample speedups
▶ *
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Sparse matrix-vector product (SpMV)
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Low data locality of SpMV
▶ Recall the CSR data structure:

A =


a11 a12 a13 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 0


val = [a11, a12, a13, a21, a22, a33, a34, a43]

col_idx = [1, 2, 3, 1, 2, 3, 4, 3]

row_start = [1, 4, 6, 8, 9]

with the following SpMV kernel:

for i = 1, . . . , n

sum := 0

for row_start[i], . . . , row_start[i+ 1]− 1

sum := sum+ val[j] ∗ x[col_idx[j]]
y[i] := sum
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Low data locality of SpMV, cont’d
▶ SpMV kernel for CSR data structures:

sum := 0

for i = 1, . . . , n

for row_start[i], . . . , row_start[i+ 1]− 1

sum := sum+ val[j] ∗ x[col_idx[j]]
y[i] := sum

▶ Irregular access to the components of x:

- No spatial locality, no time locality.
- Every component of x loaded for a single multiply-and-add is trashed

immediatly from register, i.e., no loop unrolling, no SIMD, ...
- Sparsity induces lower arithmetic intensity (AI) than GEMV.
- SpMV kernels are memory-bound, even if x fits in cache.
- Performance of SpMV kernels depends on data structure, non-zero

structure and hardware.
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Register blocking
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Tuning of register blocks
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MBR
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Block Gram-Schmidt procedures
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s-step iterative solvers
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Matrix power kernels
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Homework problems
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Practice session
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