Numerical Linear Algebra for Computational Science and Information Engineering

Lecture 17 Introduction to Communication-Avoiding Algorithms

Nicolas Venkovic
nicolas.venkovic@tum.de

Group of Computational Mathematics School of Computation, Information and Technology Technical University of Munich

Summer 2025

Outline

	Introduction CS294/Math270 – Demmel and Grigori (2016) MIT 6.172 – Shun (2018)	1
	Matrix-matrix multiplication MIT 6.172 – Shun (2018)	7
3	Overview and principles of communication avoidance	18
4	Sparse matrix-vector product (SpMV)	20
5	Block Gram-Schmidt procedures	25
6	s-step iterative solvers	25
7	Matrix power kernels	25
8	Homework problems	25
9	Practice session	25

Introduction

CS294/Math270 – Demmel and Grigori (2016) MIT 6.172 – Shun (2018)

Cost of algorithm deployment

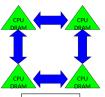
- Deploying an algorithm has two costs measured in time (or energy):
 - Arithmetic (floating-point operations, FLOPs)

of FLOPs \div (# of FLOPs per cycle \times # cycles per unit of time)

- Communication due to data movement between
 - levels of a memory hierarchy:
 sequential part of a program
 DRAM, L3 cache, L2 cache, L1 cache, registers cache hit, cache miss



processors over a network:
 parallel part of a program



of messages \times latency + # of words \div bandwidth

idle time

Roofline model

▶ Algorithm on given hardware characterized by arithmetic intensity:

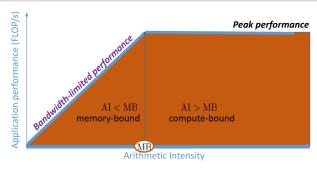
Arithmetic intensity (AI)

Ratio of number of FLOPs over amount of data moved.

Hardware characterized by machine balance:

Machine balance (MB)

Ratio of peak floating-point performance over peak memory bandwidth.

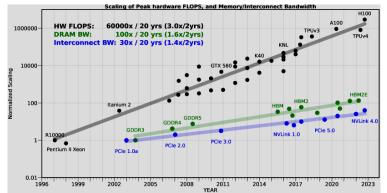


Memory wall

Cost to move data much greater than cost of arithmetic:

time per FLOP
$$\ll \frac{1}{\text{bandwidth}} \ll \text{latency}$$

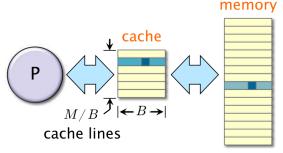
Peak floating-point performance evolves faster than memory bandwidth:



► Relative cost of algorithms due to communication larger every year Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M.W., Keutzer, K. (2024). Al and Memory Wall. arXiv:2403.14123v1.

Ideal cache model

► An ideal cache model is introduced for the analysis of algorithms:



- Model parameters:
 - Two-level hierarchy
 - Cache size of ${\cal M}$ bytes
 - Cache line length of B bytes
 - Fully associative cache (cache lines can be stored anywhere in cache)
 - Least-recently used (LRU) cache replacement policy
 - Arbitrary large main memory

Tall caches

► An

Communication lower bounds

Matrix-matrix multiplication MIT 6.172 – Shun (2018)

Cache misses analysis

Assume a tall ideal cache

Cache misses analysis, cont'd₁

Matrix-matrix multiplication with row major data:

$$\begin{aligned} &\text{for } i=1,\ldots,n\\ &\text{for } j=1,\ldots,n\\ &C[i*n+j]:=0\\ &\text{for } k=1,\ldots,n\\ &\mathbf{C}[i*n+j]:=\mathbf{C}[i*n+j]+\mathbf{A}[i*n+k]*\mathbf{B}[k*n+j] \end{aligned}$$

- Assume a tall ideal cache
 - Case 1: n > cM/B
 - Case 2: $c'M^{1/2} < n < cM/B$
 - Case 3: $n < cM^{1/2}$

Cache misses analysis, cont'd₂

Assume a tall ideal cache

Swapping inner loops

Blocked (tiled) matrix multiplication

Two-level cache

Three-level cache

Recursive matrix multiplication

Recursive implementation

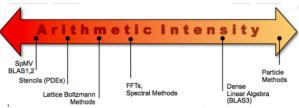
Analysis of work

Analysis of cache misses

Overview and principles of communication avoidance

Reducing data movement

Reformulate algorithms to rely on more arithmetically intense kernels:



Sample speedups

Sparse matrix-vector product (SpMV)

Low data locality of SpMV

Recall the CSR data structure:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & 0 \end{bmatrix}$$

$$\begin{aligned} \texttt{val} &= [a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{33}, a_{34}, a_{43}] \\ \texttt{col_idx} &= [1, 2, 3, 1, 2, 3, 4, 3] \\ \texttt{row_start} &= [1, 4, 6, 8, 9] \end{aligned}$$

with the following SpMV kernel:

$$\begin{split} &\text{for } i=1,\ldots,n\\ &\text{sum}:=0\\ &\text{for } \text{row_start}[i],\ldots,\text{row_start}[i+1]-1\\ &\text{sum}:=\text{sum}+\text{val}[j]*\text{x}[\text{col_idx}[j]]\\ &\text{y}[i]:=\text{sum} \end{split}$$

Low data locality of SpMV, cont'd

SpMV kernel for CSR data structures:

```
\begin{split} & \texttt{sum} := 0 \\ & \texttt{for} \ i = 1, \dots, n \\ & \texttt{for} \ \texttt{row\_start}[i], \dots, \texttt{row\_start}[i+1] - 1 \\ & \texttt{sum} := \texttt{sum} + \texttt{val}[j] * \texttt{x}[\texttt{col\_idx}[j]] \\ & \texttt{y}[i] := \texttt{sum} \end{split}
```

- Irregular access to the components of x:
 - No spatial locality, no time locality.
 - Every component of x loaded for a single multiply-and-add is trashed immediatly from register, i.e., no loop unrolling, no SIMD, ...
 - Sparsity induces lower arithmetic intensity (AI) than GEMV.
 - **SpMV kernels** are **memory-bound**, even if x fits in cache.
 - Performance of SpMV kernels depends on data structure, non-zero structure and hardware.

Register blocking

Tuning of register blocks

MBR

Block Gram-Schmidt procedures

s-step iterative solvers

Matrix power kernels

Homework problems

Practice session