Stochastic morphological simulation based on partial statistical description of polycrystals

Nicolas Venkovic nvenkov1@jhu.edu

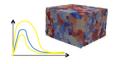
Kirubel Teferra kteferr1@jhu.edu Lori Graham-Brady lori@jhu.edu

The Johns Hopkins University

Engineering Mechanics Institute (EMI) Conference Stanford University, June 18 2015

Motivation, Objective and Approach

Structure - Property Relation



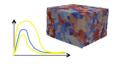
- Grain size, shape, boundary type
 - Crystallographic orientation
- Phase configuration

- Dissipation mechanism
- Strength, ductility
- Thermal, electrical conductivity

Objective: Facilitate the development of a better understanding of the mechanical behavior of polycrystals by means of numerical simulation.

Motivation, Objective and Approach

Structure - Property Relation



- Grain size, shape, boundary type
 - Crystallographic orientation
 - Phase configuration

- Dissipation mechanism
- Strength, ductility
- Thermal, electrical conductivity

Objective: Facilitate the development of a better understanding of the mechanical behavior of polycrystals by means of numerical simulation.

Microstructure simulation

Approach: Enable the simulation of polycrystalline microstructures with target:

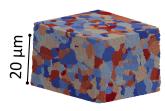
- Distribution of morphological features;
- and correlation structures.

Parameterization of polycrystalline microstructures

Polycrystalline microstructures are generally represented as digitalized data sets; for instance this sample of nickel super-alloy IN100 $\,$

Data set from EBSD:

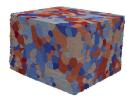
- Data consuming;
- Finite resolution.



4, 444, 713 parameters

Parameterization by ellispoidal growth tessellation

- Less than 2% the original amount of data;
- Infinite resolution (in theory).



14, 118 parameters

Presentation outline

- Ellipsoidal growth tessellation: a model for morphologically anisotropic polycrystals.
- Tessellation resolution: from numerical to semi-analytical solutions.
- Transformation of the problem: from growth to collision.
- Grain boundary resolution: a semi-analytical approach.
- Morphology characterization: using Minkowski valuations.
- Stochastic simulation with target morphological features: next steps and objectives.

• Tessellation on \mathbb{R}^d : Countable set $m = \{\mathring{\mathcal{C}}_{\alpha}\}$ of disjoint and space-filling cells $\mathring{\mathcal{C}}_{\alpha} \subset \mathbb{R}^d$:

$$\mathring{\mathcal{C}}_{\alpha} \cap \mathring{\mathcal{C}}_{\gamma} = \emptyset \ ; \ \bigcup_{\alpha} \mathring{\mathcal{C}}_{\alpha} = \mathbb{R}^{d} \ ; \ \#\{\mathring{\mathcal{C}}_{\alpha} \cap m \, | \, \mathring{\mathcal{C}}_{\alpha} \cap \mathcal{B} \neq \emptyset\} < \infty \ \forall \, \mathcal{B} \subset \mathbb{R}^{d}$$

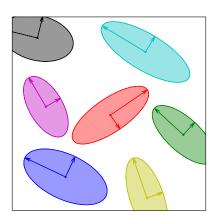
Multiplicatively weighted anisotropic Voronoi tessellation:

$$C_{\alpha} = \{ \underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) < T_{\gamma}(\underline{x}) \ \forall \ \gamma \neq \alpha \}$$

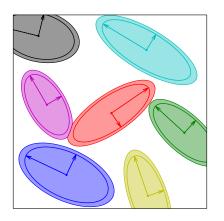
where $T_{\alpha}(\underline{x}) \equiv (\underline{x} - \underline{x}^{\alpha}) \cdot \mathbf{Z}_{\alpha} \cdot (\underline{x} - \underline{x}^{\alpha})$ and

$$\mathbf{Z}_{lpha} = \sum_{j=1}^d rac{\underline{u}_j^{lpha} \otimes \underline{u}_j^{lpha}}{(v_j^{lpha})^2}$$

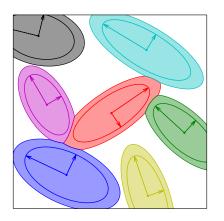
while $\underline{u}_j^\alpha \in \mathbb{R}^d$ and $v_j^\alpha \in \mathbb{R}^+$ such that every \mathbf{Z}_α is a second-rank positive definite tensor.



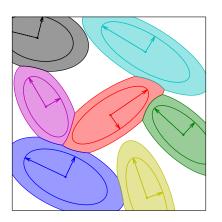
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - $ightharpoonup C_{\alpha}$ is the set of points x reached first by the cell.



- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - $ightharpoonup \mathcal{C}_{\alpha}$ is the set of points x reached first by the cell.



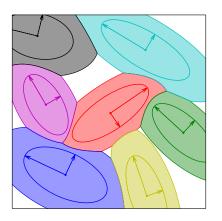
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from $\underline{\mathbf{x}}_{\alpha}$:
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



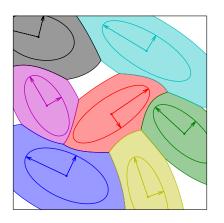
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from $\underline{\mathbf{x}}_{\alpha}$:
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



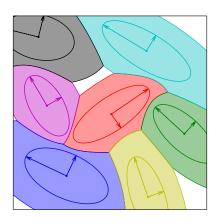
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from $\underline{\mathbf{x}}_{\alpha}$:
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



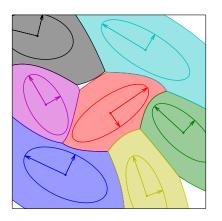
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from $\underline{\mathbf{x}}_{\alpha}$:
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - $ightharpoonup \mathcal{C}_{\alpha}$ is the set of points x reached first by the cell.



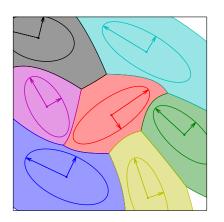
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



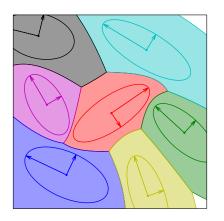
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from x_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



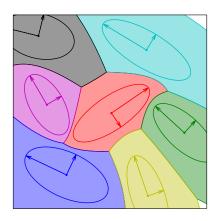
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from x_{α} :
 - $T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - $ightharpoonup \mathcal{C}_{\alpha}$ is the set of points x reached first by the cell.



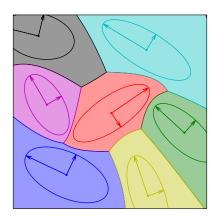
- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.



- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - $ightharpoonup \mathcal{C}_{\alpha}$ is the set of points x reached first by the cell.

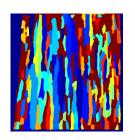


- For a cell with velocity profile $\mathbf{Z}_{\alpha}^{-1/2}$ growing from \underline{x}_{α} :
 - $ightharpoonup T_{\alpha}(x)$ is the time necessary for the cell to reach x;
 - \mathcal{C}_{α} is the set of points x reached first by the cell.

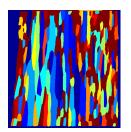
Ellipsoidal growth tessellation (EGT) — Application

Teferra and Graham-Brady (2015):

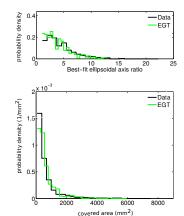
Parameterization of an hot-rolled aluminum microstructure by best-fit EGT.



Experimental data

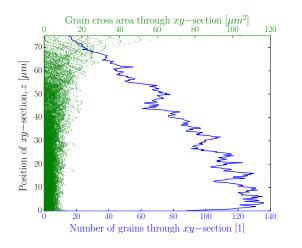


Fitted EGT



Ellipsoidal growth tessellation (EGT) — Application

Stochastic simulation of a functionally graded structure with target distributions of tessellation parameters.



Toward a semi-analytical approach — Motivation

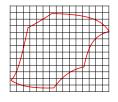
Morphology characterization:

• The morphology of a cell C_{α} is completely defined through its boundary \mathcal{I}_{α} :

$$\mathcal{I}_{\alpha} = \{ \underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) \ \forall \ \gamma \neq \alpha \}$$

Drawback of a numerical approach:

- The accuracy of the estimated shape metrics depends on the resolution used to solve the tessellation;
- Smoothing is necessary to compute quadratures on \mathcal{I}_{α} .



Question:

• Can we predict the morphology of an EGT model without solving it numerically for a given set of parameters \underline{x}_{α} and \mathbf{Z}_{α} ?

Toward a semi-analytical approach — Motivation

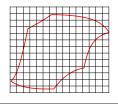
Morphology characterization:

• The morphology of a cell C_{α} is completely defined through its boundary \mathcal{I}_{α} :

$$\mathcal{I}_{\alpha} = \{ \underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) \ \forall \ \gamma \neq \alpha \}$$

Drawback of a numerical approach:

- The accuracy of the estimated shape metrics depends on the resolution used to solve the tessellation;
- Smoothing is necessary to compute quadratures on \mathcal{I}_{α} .



Question:

• Can we predict the morphology of an EGT model without solving it numerically for a given set of parameters \underline{x}_{α} and \mathbf{Z}_{α} ?

Toward a semi-analytical approach — Motivation

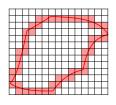
Morphology characterization:

• The morphology of a cell C_{α} is completely defined through its boundary \mathcal{I}_{α} :

$$\mathcal{I}_{\alpha} = \{ \underline{x} \in \mathbb{R}^d \mid \mathcal{T}_{\alpha}(\underline{x}) = \mathcal{T}_{\gamma}(\underline{x}) \ \forall \ \gamma \neq \alpha \}$$

Drawback of a numerical approach:

- The accuracy of the estimated shape metrics depends on the resolution used to solve the tessellation;
- Smoothing is necessary to compute quadratures on \mathcal{I}_{α} .



Question:

• Can we predict the morphology of an EGT model without solving it numerically for a given set of parameters \underline{x}_{α} and \mathbf{Z}_{α} ?

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

To solve for \mathcal{I}_{α} , we introduce the time variable ξ at which all the points reached by the cell growing from \underline{x}_{α} lie in

$$\mathcal{D}_{\alpha}(\xi) = \{\underline{x} \in \mathbb{R}^d \, | \, [\underline{x} - \underline{x}_{\alpha}] \cdot \mathbf{Z}_{\alpha} \cdot [\underline{x} - \underline{x}_{\alpha}] = \xi^2 \}$$

All the points of the evolving cell boundary $\mathcal{I}_{\alpha}(\xi)$ either lie in $\mathcal{D}_{\alpha}(\xi)$ or in common curves $\mathcal{I}_{\alpha\gamma}(\xi)$ given by:

$$\mathcal{I}_{\alpha\gamma}(\xi) = \{\underline{x} \in \mathbb{R}^d \mid T_{\alpha}(\underline{x}) = T_{\gamma}(\underline{x}) < \xi\}$$

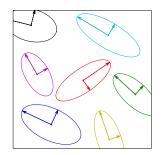
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

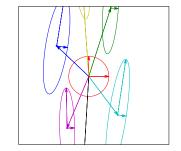
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





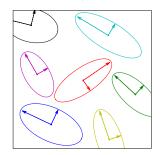
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

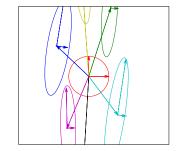
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R}=\sum_{j=1,d}\underline{e}_j\otimes\underline{u}_j^{lpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





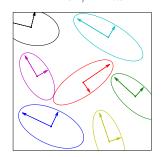
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

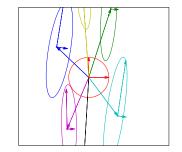
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





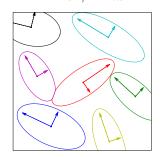
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

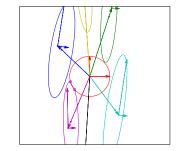
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





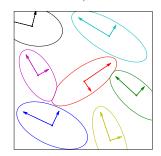
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

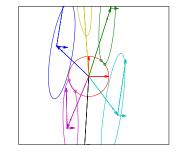
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





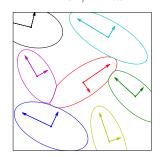
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

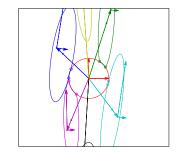
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R}=\sum_{j=1,d}\underline{e}_j\otimes\underline{u}_j^{lpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





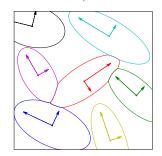
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

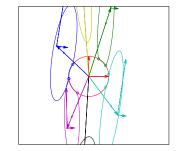
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





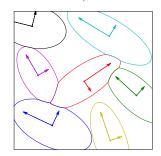
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

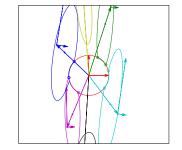
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





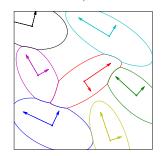
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

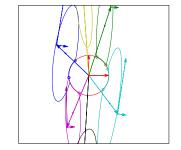
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





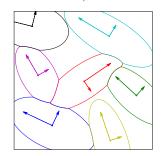
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

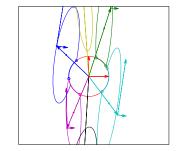
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R} = \sum_{j=1,d} \underline{e}_j \otimes \underline{u}_j^{\alpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





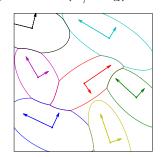
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

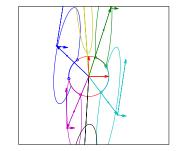
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R}=\sum_{j=1,d}\underline{e}_j\otimes\underline{u}_j^{lpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





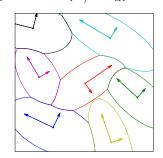
Instead of solving directly for $\mathcal{I}_{\alpha\gamma}(\xi)$, we apply a transformation:

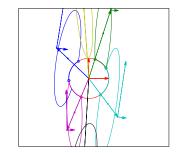
$$\underline{x}' = (1/\xi)\mathbf{R} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot (\underline{x} - \underline{x}_{\alpha})$$

with $\mathbf{R}=\sum_{j=1,d}\underline{e}_{j}\otimes\underline{u}_{j}^{lpha}$ so that $\mathcal{D}_{\gamma}(\xi)$ becomes:

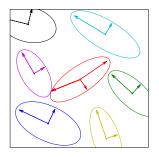
$$\mathcal{D}_{\gamma}'(\xi) = \{\underline{x}' \in \mathbb{R}^d \mid [\underline{x}' - \underline{x}_{\gamma}'(\xi)] \cdot \mathbf{Z}_{\gamma}' \cdot [\underline{x}' - \underline{x}_{\gamma}'(\xi)] = 1\}$$

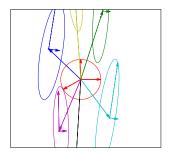
where $\mathbf{Z}'_{\gamma} = \mathbf{R} \cdot \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{Z}_{\gamma} \cdot \mathbf{Z}_{\alpha}^{1/2} \cdot \mathbf{R}^{T}$.





When two ellipses $\mathcal{D}_{\alpha}(\xi)$ and $\mathcal{D}_{\gamma}(\xi)$ come into contact, so does $\mathcal{D}'_{\gamma}(\xi)$ with the centered unit circle \mathcal{D}'_{α} :





We note $\underline{x}'_{\alpha\gamma}$ the point at which $\mathcal{D}'_{\gamma}(\xi)$ first comes into contact with \mathcal{D}'_{α} . To solve for $\underline{x}'_{\alpha\gamma}$ we find first the time at which the contact occurs:

$$\xi_{\alpha\gamma} = \min\{\xi \in \mathbb{R}^+ \,|\, \mathcal{D}'_\alpha \cap \mathcal{D}'_\gamma(\xi) \neq \emptyset\}$$

which is equivalent to solving for the smallest real root of a 6-th order polynomial. The contact point $\underline{x}'_{\alpha\gamma}$ is then calculated using $\xi_{\alpha\gamma}$.

Condition for ξ to be of the form $\xi(\theta')$

Every point \underline{x} of the grain boundary \mathcal{I}_{α} satisfies the equation

$$\underline{x} = \underline{x}_{\alpha} + \xi(\underline{x}', \underline{x}) \mathbf{Z}_{\alpha}^{-1/2} \cdot \mathbf{R}^{T} \cdot \underline{x}' \text{ with } \underline{x}' \cdot \underline{x}' = 1$$

where $\xi(\underline{x}',\underline{x})$ is the time at which contact happens at \underline{x}' between $\mathcal{D}_{\alpha}(\xi)$ and the neighboring ellipse $\mathcal{D}_{\zeta}(\xi)$.

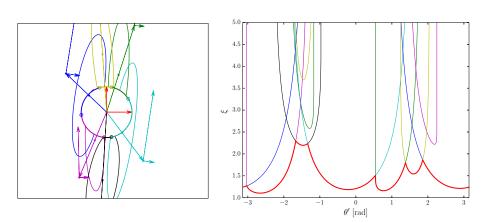
For a 2D cell \mathcal{C}_{α} radially convex at \underline{x}_{α} , the relation $\xi(\underline{x}',\underline{x})$ simplifies to $\xi(\theta')$ where $\underline{x}' = \underline{e}_1 \cos \theta' + e_2 \sin \theta'$.

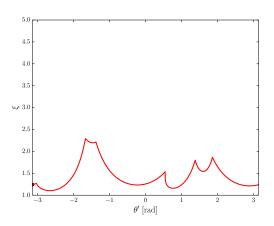
Figure : \mathcal{C}_{α} radially convex at \underline{x}_{α}

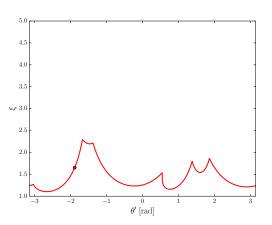
The boundary \mathcal{I}_{α} of a cell *radially convex* at \underline{x}_{α} can then be reconstructed from a unit circle using the relation $\xi(\theta')$.

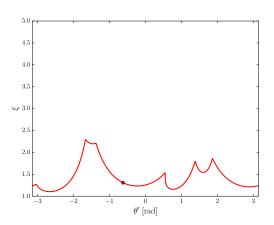
Resolution of the $\xi(\theta')$ relation

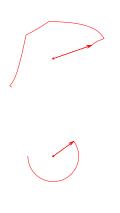
Knowing the velocity at which an ellipse $\mathcal{D}'_{\gamma}(\xi)$ travels through \mathcal{D}_{α} , we can solve for $\xi(\theta')$ piece by piece, each part corresponding to an arc of the unit circle (or a distinct common curve of the un-tranformed boundary):

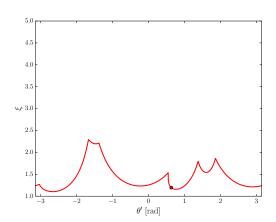


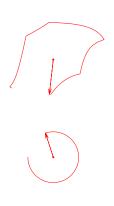


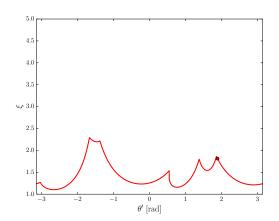


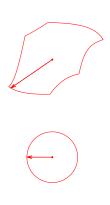


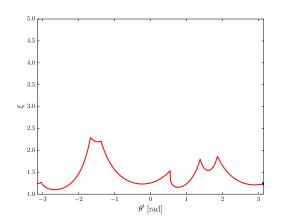






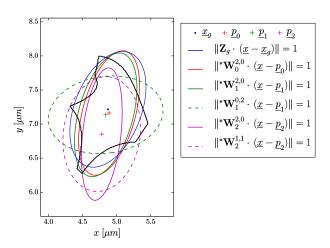






Morphology characterization — Results

Minkowski valuations are defined as curvature integrals on the boundary of sets. They allow to quantify the different sorts of anisotropy of a grain.



Next steps and objectives

• Extend the framework to cells C_{α} which are *not* radially convex at the nucleation point \underline{x}_{α} ;

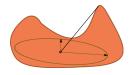


Figure : \mathcal{C}_{α} not radially convex at \underline{x}_{α}

- Develop a simulation strategy of EGT parameters $\{(\underline{x}_{\alpha}, \mathbf{Z}_{\alpha}) \mid \alpha = 1, \dots, n_{\alpha}\}$ for some target Minkowski valuation distributions and correlators;
- Extend the framework to three-dimensional tessellation models.

Questions/Comments