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Motivation, Objective and Approach
Structure - Property Relation

Grain size, shape, boundary
type

Crystallographic orientation

Phase configuration

?	
  
Dissipation mechanism

Strength, ductility

Thermal, electrical conductivity

Objective: Facilitate the development of a better understanding of the
mechanical behavior of polycrystals by means of numerical simulation.

Microstructure simulation
Approach: Enable the simulation of polycrystalline microstructures with

target:

Distribution of morphological features;

and correlation structures.
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Parameterization of polycrystalline microstructures
Polycrystalline microstructures are generally represented as digitalized data
sets; for instance this sample of nickel super-alloy IN100

Data set from EBSD:

Data consuming;

Finite resolution.

4, 444, 713 parameters

Parameterization by ellispoidal growth tessellation

Less than 2% the
original amount of data;

Infinite resolution
(in theory).

14, 118 parameters
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Presentation outline

1 Ellipsoidal growth tessellation: a model for morphologically
anisotropic polycrystals.

2 Tessellation resolution: from numerical to semi-analytical solutions.

3 Transformation of the problem: from growth to collision.

4 Grain boundary resolution: a semi-analytical approach.

5 Morphology characterization: using Minkowski valuations.

6 Stochastic simulation with target morphological features: next steps
and objectives.



Ellipsoidal growth tessellation (EGT) — Definition

Tessellation on Rd : Countable set m ={C̊α} of disjoint and
space-filling cells C̊α ⊂ Rd :

C̊α ∩ C̊γ = ∅ ;
⋃
α

C̊α = Rd ; #{C̊α ∩m | C̊α ∩ B 6= ∅} <∞ ∀B ⊂ Rd

Multiplicatively weighted anisotropic Voronoi tessellation:

Cα = {x ∈ Rd |Tα(x) < Tγ(x) ∀ γ 6= α}

where Tα(x) ≡ (x − xα) · Zα · (x − xα) and

Zα =
d∑

j=1

uαj ⊗ uαj
(vαj )2

while uαj ∈ Rd and vαj ∈ R+ such that every Zα is a second-rank
positive definite tensor.
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Ellipsoidal growth tessellation (EGT) — Definition
Grain growth analogy: Every tensor Z

−1/2
α is a representation of an

ellipsoidal velocity profile with principal component vαj along uαj .

For a cell with velocity profile Z
−1/2
α growing from xα:

I Tα(x) is the time necessary for the cell to reach x ;
I Cα is the set of points x reached first by the cell.
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Ellipsoidal growth tessellation (EGT) — Application

Teferra and Graham-Brady (2015):

Parameterization of an hot-rolled aluminum
microstructure by best-fit EGT.
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Ellipsoidal growth tessellation (EGT) — Application

Stochastic simulation of a functionally graded structure with target
distributions of tessellation parameters.
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Toward a semi-analytical approach — Motivation

Morphology characterization:

The morphology of a cell Cα is completely
defined through its boundary Iα:

Iα = {x ∈ Rd |Tα(x) = Tγ(x) ∀ γ 6= α}

Drawback of a numerical approach:
The accuracy of the estimated shape metrics
depends on the resolution used to solve the
tessellation;

Smoothing is necessary to compute
quadratures on Iα.

Question:

Can we predict the morphology of an EGT model without solving it
numerically for a given set of parameters xα and Zα?
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Evolving morphology of growing cells

To solve for Iα, we introduce the time variable ξ at which all the points
reached by the cell growing from xα lie in

Dα(ξ) = {x ∈ Rd | [x − xα] · Zα · [x − xα] = ξ2}

All the points of the evolving cell boundary Iα(ξ) either lie in Dα(ξ) or in
common curves Iαγ(ξ) given by:

Iαγ(ξ) = {x ∈ Rd |Tα(x) = Tγ(x) < ξ}

Solving for points in Iαγ requires to solve for a distinct quartic equation at
every time ξ. Problems identifying the correct roots for large values of ξ.
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Transformation: from growth to collision
Instead of solving directly for Iαγ(ξ), we apply a transformation:

x ′ = (1/ξ)R · Z1/2
α · (x − xα)

with R =
∑

j=1,d e j ⊗ uαj so that Dγ(ξ) becomes:

D′γ(ξ) = {x ′ ∈ Rd | [x ′ − x ′γ(ξ)] · Z′γ · [x ′ − x ′γ(ξ)] = 1}

where Z′γ = R · Z−1/2
α · Zγ · Z1/2

α · RT .

Hence Dγ(ξ) becomes an ellipse D′γ(ξ) with fixed dimensions moving

along R · Z1/2
α · (xγ − xα) toward the center of the unit circle D′α:
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Transformation: from growth to collision
When two ellipses Dα(ξ) and Dγ(ξ) come into contact, so does D′γ(ξ)
with the centered unit circle D′α:

We note x ′αγ the point at which D′γ(ξ) first comes into contact with D′α.
To solve for x ′αγ we find first the time at which the contact occurs:

ξαγ = min{ξ ∈ R+ | D′α ∩ D′γ(ξ) 6= ∅}

which is equivalent to solving for the smallest real root of a 6-th order
polynomial. The contact point x ′αγ is then calculated using ξαγ .

10 / 15



Condition for ξ to be of the form ξ(θ′)
Every point x of the grain boundary Iα satisfies the equation

x = xα + ξ(x ′, x)Z−1/2
α · RT · x ′ with x ′ · x ′ = 1

where ξ(x ′, x) is the time at which contact happens at x ′ between Dα(ξ)
and the neighboring ellipse Dζ(ξ).
For a 2D cell Cα radially convex at xα, the relation ξ(x ′, x) simplifies to
ξ(θ′) where x ′ = e1 cos θ′ + e2 sin θ′.

Figure : Cα radially convex at xα

The boundary Iα of a cell radially convex at xα can then be reconstructed
from a unit circle using the relation ξ(θ′).
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Resolution of the ξ(θ′) relation

Knowing the velocity at which an ellipse D′γ(ξ) travels through Dα, we can
solve for ξ(θ′) piece by piece, each part corresponding to an arc of the unit
circle (or a distinct common curve of the un-tranformed boundary):
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Resolution of the un-transformed grain boundary
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Resolution of the un-transformed grain boundary

−3 −2 −1 0 1 2 3

θ′ [rad]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ξ

13 / 15
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Resolution of the un-transformed grain boundary
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Resolution of the un-transformed grain boundary
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Resolution of the un-transformed grain boundary
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Morphology characterization — Results

Minkowski valuations are defined as curvature integrals on the boundary of
sets. They allow to quantify the different sorts of anisotropy of a grain.
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Next steps and objectives

Extend the framework to cells Cα which are not radially convex at the
nucleation point xα;

Figure : Cα not radially convex at xα

Develop a simulation strategy of EGT parameters
{(xα,Zα) |α = 1, . . . , nα} for some target Minkowski valuation
distributions and correlators;

Extend the framework to three-dimensional tessellation models.

15 / 15



Questions/Comments


