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Motivation, Objective and Approach
Structure - Property Relation
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_
@ Grain size, shape, boundary
type

@ Crystallographic orientation

@ Dissipation mechanism
@ Strength, ductility

@ Phase configuration @ Thermal, electrical conductivity

Objective: Facilitate the development of a better understanding of the
mechanical behavior of polycrystals by means of numerical simulation.
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Objective: Facilitate the development of a better understanding of the
mechanical behavior of polycrystals by means of numerical simulation.

Approach: Enable the simulation of polycrystalline microstructures with
target:

@ Distribution of morphological features;

@ and correlation structures.




Parameterization of polycrystalline microstructures

Polycrystalline microstructures are generally represented as digitalized data
sets; for instance this sample of nickel super-alloy IN100

Data set from EBSD:

e Data consuming; g_
. ) o
@ Finite resolution. N

4, 444, 713 parameters

Parameterization by ellispoidal growth tessellation
@ Less than 2% the
original amount of data;

@ Infinite resolution
(in theory).

14, 118 parameters




Presentation outline

@ Ellipsoidal growth tessellation: a model for morphologically
anisotropic polycrystals.

Tessellation resolution: from numerical to semi-analytical solutions.
Transformation of the problem: from growth to collision.
Grain boundary resolution: a semi-analytical approach.

Morphology characterization: using Minkowski valuations.
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Stochastic simulation with target morphological features: next steps
and objectives.



Ellipsoidal growth tessellation (EGT) — Definition

o Tessellation on RY: Countable set m={C,} of disjoint and
space-filling cells C, C RY:

°

Caﬁ@:@ : Uéa:Rd ; #{Coaﬂm]CoaﬁB;é@}<ooVBCRd

o Multiplicatively weighted anisotropic Voronoi tessellation:

Co={xc€ Rd| To(x) < Ty(x) Vv # a}

where T, (x) = (x — x%) - Z, - (x — x%) and

ZgJ ®gj
(a

Jj=1

while u € R and v € R such that every Z,, is a second-rank
positive definite tensor.
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Ellipsoidal growth tessellation (EGT) — Definition

@ Grain growth analogy: Every tensor Z;1/2 is a representation of an
ellipsoidal velocity profile with principal component vaJ‘ along gJ?‘.

@ For a cell with velocity profile Z;l/z growing from x,,:
» T,(x) is the time necessary for the cell to reach x;

» C, is the set of points x reached first by the cell. )
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Ellipsoidal growth tessellation (EGT) — Application

Teferra and Graham-Brady (2015):

Parameterization of an hot-rolled aluminum
microstructure by best-fit EGT.
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Ellipsoidal growth tessellation (EGT) — Application

Stochastic simulation of a functionally graded structure with target
distributions of tessellation parameters.

Grain cross area through xy—section [pim?]
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Toward a semi-analytical approach — Motivation
Morphology characterization:

@ The morphology of a cell C, is completely
defined through its boundary Z,:

To = {x €RY| To(x) = T,(x) Vv # a}

Drawback of a numerical approach:
@ The accuracy of the estimated shape metrics Smmm=

depends on the resolution used to solve the /
tessellation;

@ Smoothing is necessary to compute
quadratures on Z,. m==

Question:

@ Can we predict the morphology of an EGT model without solving it
numerically for a given set of parameters x, and Z,7

/15



Toward a semi-analytical approach — Motivation
Morphology characterization:

@ The morphology of a cell C, is completely
defined through its boundary Z,:

To = {x €RY| To(x) = T,(x) Vv # a}

Drawback of a numerical approach:
@ The accuracy of the estimated shape metrics Smmm=

depends on the resolution used to solve the /
tessellation;

@ Smoothing is necessary to compute
quadratures on Z,. m==

Question:

@ Can we predict the morphology of an EGT model without solving it
numerically for a given set of parameters x, and Z,7

/15



Toward a semi-analytical approach — Motivation
Morphology characterization:

@ The morphology of a cell C, is completely
defined through its boundary Z,:

To = {x €RY| To(x) = T,(x) Vv # a}

Drawback of a numerical approach:
@ The accuracy of the estimated shape metrics EE=S

depends on the resolution used to solve the f
tessellation;

@ Smoothing is necessary to compute
quadratures on Z,.

Question:

@ Can we predict the morphology of an EGT model without solving it
numerically for a given set of parameters x, and Z,7

/15



Evolving morphology of growing cells

To solve for Z,, we introduce the time variable £ at which all the points
reached by the cell growing from x,, lie in

Do(€) = {x € RY|[x — xo] - Zor - [x — xo] = €2}

All the points of the evolving cell boundary Z, (&) either lie in Dy () or in
common curves Z,~ (&) given by:

Toy(€) = {x € RY| Ta(x) = T, (x) <&} B@S
S

Solving for points in Z,. requires to solve for a distinct quartic equation at
every time £. Problems identifying the correct roots for large values of &.
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Evolving morphology of growing cells

To solve for Z,, we introduce the time variable £ at which all the points

reached by the cell growing from x,, lie in
Da(g):{KERdHﬁ_KQ]’Za'[ﬁ a]_£2 &
All the points of the evolving cell boundary Z,(§) either lie in Dy (&) or in

common curves Z,~ (&) given by: &—

Ton(§) = {x € RY| Tu(x) = T, (x) < &} W

Solving for points in Z,. requires to solve for a distinct quartlc equation at
every time £. Problems identifying the correct roots for large values of &.
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Transformation: from growth to collision

Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
— d —
D) ={x eR|[x' =X (O] - Z), - [x' — X, (&) = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.

Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

5%
S Ne

15



Transformation: from growth to collision

Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
— d —
D) ={x eR|[x' =X (O] - Z), - [x' — X, (&) = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.

Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

0y

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

&y

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision
Instead of solving directly for Z. (&), we apply a transformation:
X' = (1R 23/ - (x — x,)
with R=3", ; ;& ® uf so that D,({) becomes:
D(€) = X e RY|[X' = x{()]- Z) - [X' = X, ()] = 1}
where Z/, =R-Z,"*.Z,.Z2/* .RT.
Hence D, (£) becomes an ellipse D’ (&) with fixed dimensions moving

along R - zl/?. (x, — x,) toward the center of the unit circle Dj,:

15



Transformation: from growth to collision

When two ellipses D, (£) and D,(£) come into contact, so does D/(§)
with the centered unit circle D.:

I

We note x;,, the point at which D (¢) first comes into contact with D,

To solve for gfw we find first the time at which the contact occurs:

€ay = min{¢ € RT | D, N (€) # 0}

which is equivalent to solving for the smallest real root of a 6-th order
polynomial. The contact point gfw is then calculated using &q~.

10/15



Condition for ¢ to be of the form £(¢')
Every point x of the grain boundary Z, satisfies the equation
X =x,+E(x,x)Z5Y2 RT - X with x'-x' =1

where £(x’, x) is the time at which contact happens at x’ between D, ()
and the neighboring ellipse D¢(§).

For a 2D cell C, radially convex at x,,, the relation £(x’, x) simplifies to
&(0') where x' = e; cos#’ + e, sin .

Figure : C,, radially convex at x,,

The boundary Z,, of a cell radially convex at x,, can then be reconstructed
from a unit circle using the relation £(¢’).
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Resolution of the £(6') relation

Knowing the velocity at which an ellipse D/ (€) travels through D,, we can
solve for (") piece by piece, each part corresponding to an arc of the unit
circle (or a distinct common curve of the un-tranformed boundary):
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Resolution of the un-transformed grain boundary
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Morphology characterization — Results

Minkowski valuations are defined as curvature integrals on the boundary of
sets. They allow to quantify the different sorts of anisotropy of a grain.
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Next steps and objectives

o Extend the framework to cells C, which are not radially convex at the
nucleation point x,,;

Figure : C, not radially convex at x,,

@ Develop a simulation strategy of EGT parameters
{(x,sZa) | =1,...,n,} for some target Minkowski valuation
distributions and correlators;

@ Extend the framework to three-dimensional tessellation models.
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Questions/Comments




