Stochastic simulation of spherical growth tessellation models

Approach Using a Collective Rearrangement Algorithm

Nicolas Venkovic nvenkov1@jhu.edu

Kirubel Teferra kteferr1@jhu.edu Lori Graham-Brady Iori@jhu.edu

Johns Hopkins University

January 18, 2015

Some target 2D grain size distributions

Log-normal probability density functions (PDF) of 2D grain size A:

$$f_A(a|\mu,\sigma) = \frac{1}{a\sqrt{2\pi}} \exp\left[-\left(\frac{\log(a)-\mu}{\sqrt{2\sigma^2}}\right)^2\right], \ a \in]0,+\infty[$$

Mean:

$$\mathbb{E}[A] = \exp[\mu + \sigma^2/2]$$

Variance:

$$\mathbb{V}[A] = [\exp(\sigma^2) - 1] \exp[2\mu + \sigma^2]$$

Mode:

$$\widehat{A} = \exp[\mu - \sigma^2]$$

Coefficient of variation:

$$CV = \sqrt{\exp(\sigma^2) - 1}$$

MPP simulation by collective rearrangement Force-bias algorithm, see Bezrukov et al. (2002):

- **1** Draw a realization of a Poisson point process with independent mark realizations drawn after $f_A(a)$.
- 2 Apply these two steps until convergence:
 - 1 uniformly scale all the marks to avoid any contact,
 - move every point after the effect of some prescribed pair potentials.

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x}_{i,0}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x}_{i,0}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

Simulation of the point process

Simulate the point set $\{\vec{x_{i,0}}|i=1,N\}$ in the container of size A_{cont} after a Poisson point process with rate $\lambda=1/\mathbb{E}[A]$.

Simulation of the marks

Simulate the mark set $\{r_{i,0}|i=1,N\}$ independently of the points after the prescribed grain distribution $f_A(a)$ and where $r=\sqrt{a/\pi}$.

Rearrangement of the marked point set

2D adaptation of the force-biased algorithm

```
1. for i = 1. N:
2. (\vec{x}_i; r_i) = (\vec{x}_{i,0}; r_{i,0})
3. \eta = \min_{i \neq i} \{ \|\vec{x}_i - \vec{x}_i\| / (r_i + r_i) \}
4. \rho = 1
5. while \eta < 1:
     for i = 1, N:
6
7.
                   for i \neq i:
                           \vec{n}_{ii} = (\vec{x}_i - \vec{x}_i) / ||\vec{x}_i - \vec{x}_i||
                          p_{ij} = r_i r_j \left[ \frac{\|\vec{x}_j - \vec{x}_i\|^2}{(r_i + r_i)^2} - 1 \right]
9.
                          \vec{F}_{ii} = \varphi \mathbf{1}_{ii} p_{ii} \vec{n}_{ii}
10.
                           \vec{x}_i = \vec{x}_i + \frac{1}{r} \sum_{i \neq i} \vec{F}_{ij}
11.
12. A_{nom} = \sum_{i=1}^{N} \pi r_i^2 / A_{cont}
13. \delta = -\log_{10} \left[ (1 - \eta^2) A_{nom} \right]
14. \rho = \rho - 2^{-\delta}/\tau
15. for i = 1, N:
16.
                    r_i = \rho r_i

\eta = \min_{i \neq i} \{ \|\vec{x}_i - \vec{x}_i\| / (r_i + r_i) \}

17.
```

Size of the container:

 A_{cont}

Indicator function:

$$\mathbf{1}_{ij} \!=\! \begin{cases} 1 \text{ if } b(\vec{x_i}, r_i) \cap b(\vec{x_j}, r_j) \!\neq\! \emptyset \\ 0 \text{ otherwise} \end{cases}$$

Contraction rate:

$$\tau \approx 3000 - 100000$$

Force bias parameter:

$$\varphi \approx 0.3 - 0.6$$

NB: Because $\vec{F}_{ij} \propto \mathbf{1}_{ij} p_{ij} \vec{n}_{ij}$, only repulsive potentials, *i.e.* $p_{ij} < 0$, affect the configuration of the system.

Different ways to handle boundaries

Enforce points to be within the domain:

Different ways to handle boundaries – resulting tessellations

Enforce points to be within the domain:

Different ways to handle boundaries – resulting tessellations

Enforce points to be within the domain:

Effect of boundary grains on the recovered grain size PDF

Enforce points to be within the domain:

Effect of boundary grains on the number of neighbors

Enforce points to be within the domain:

Correllation between number of neighbors and grain size

Yet to investigate:

- \bullet How would these scatters change if convergence of the FBA was stated for a prescribed value of $\eta < 1?$
- How do these scatters evolve as a function of φ and τ ?
- Can we relate the random number of neighbors to the random grain size for a prescribed $f_A(a)$?

NB: The results presented are for the bulk grains in simulations where the points only are constrained to be within the domain.

Computation time

MPP simulation

- serial implementation
- ullet convergence at $\eta=1$
- $\varphi = 0.5$, $\tau = 40000$

SGT model resolution

- parallel implementation: 6 threads
- $\Delta x = 0.01 \ \mu m$

Target, $f_A(a \widehat{A}=1 \ \mu m^2)$		SGT	
$CV = 0.1$, $A_{cont} = 20 \times 20 \ \mu m^2$	67 s (5950 it.)	29 s	96 s
$CV = 0.4$, $A_{cont} = 25 \times 25 \ \mu m^2$	132 s (6172 it.)	63 s	195 s
$CV = 0.8$, $A_{cont} = 30 \times 30 \ \mu m^2$	85 s (5596 it.)	90 s	175 s

NB: The results presented are only for points constrained to be within the domain. MPP simulations enforcing particles to be within the domain are more time-consuming. The simulation times for SGT might be underestimated.

Some bimodal target 2D grain size distributions

Bimodal log-normal PDF of 2D grain size A:

$$f_A(a|\mu_1,\sigma_1,\mu_2,\sigma_2,c_1) = c_1 f_A(a|\mu_1,\sigma_1) + (1-c_1) f_A(a|\mu_2,\sigma_2), \ a \in]0,+\infty[$$

Different ways to handle boundaries

Enforce points to be within the domain:

Different ways to handle boundaries – resulting tessellations

Enforce points to be within the domain:

Different ways to handle boundaries – resulting tessellations

Enforce points to be within the domain:

Effect of boundary grains on the recovered grain size PDF

Enforce points to be within the domain:

Effect of boundary grains on the number of neighbors

Enforce points to be within the domain:

Correllation between number of neighbors and grain size

Yet to investigate:

- \bullet How would these scatters change if convergence of the FBA was stated for a prescribed value of $\eta < 1?$
- How do these scatters evolve as a function of φ and τ ?
- Can we relate the random number of neighbors to the random grain size for a prescribed $f_A(a)$?

NB: The results presented are for the bulk grains in simulations where the points only are constrained to be within the domain.

Computation time

MPP simulation

- serial implementation
- ullet convergence at $\eta=1$
- $\varphi = 0.5$, $\tau = 40000$

SGT model resolution

- parallel implementation: 6 threads
- $\Delta x = 0.02 \ \mu m$

Target, $f_A(a \widehat{A}=1 \ \mu m^2)$	MPP	SGT	Total
$\widehat{A}_2 = 4 \ \mu m^2, \ A_{cont} = 30 \times 30 \ \mu m^2$	66 s (5265 it.)	25 s	91 s
$\widehat{A}_2 = 7 \ \mu m^2$, $A_{cont} = 40 \times 40 \ \mu m^2$	85 s (4826 it.)	57 s	142 s
$\widehat{A}_2 = 9 \ \mu m^2$, $A_{cont} = 50 \times 50 \ \mu m^2$	157 s (5596 it.)	109 s	266 s

NB: The results presented are only for points constrained to be within the domain. MPP simulations enforcing particles to be within the domain are more time-consuming. The simulation times for SGT might be underestimated.

A target 2D grain size PDF of nanoengineered material

Bimodal log-normal PDF of 2D grain size A:

$$f_A(a|\mu_1,\sigma_1,\mu_2,\sigma_2,c_1) = c_1 f_A(a|\mu_1,\sigma_1) + (1-c_1) f_A(a|\mu_2,\sigma_2), \ a \in]0,+\infty[$$

Volume fractions:

$$\phi_1 = \frac{c_1 \hat{A}_1}{c_1 \hat{A}_1 + (1 - c_1) \hat{A}_2 \exp(CV_2^2 - CV_1^2)}$$

$$\phi_2 = 1 - \phi_1$$

Ratio of modes:

Points and questions to address

- Can we fit a inhomogeneous rate of Poisson process onto such results? If so, what about the marks?
- Improve the efficiency of the current force-biased algorithm implementation

References I

- Bezrukov, A., Bargiel, M., and Stoyan, D. (2002). Statistical analysis of simulated random packings of spheres. *Particle and Particle Systems Characterization*, 19(2):111–118.
- Teferra, K. and Graham-Brady, L. (Under review). Grain growth tessellation models for polycrystalline microstructures. *Computational Materials Science*.