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Some target 2D grain size distributions

Log-normal probability density functions (PDF) of 2D grain size A:
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MPP <imulation hv collective rearrancement
Force-bias algorithm, see Bezrukov et al. (2002):

© Draw a realization of a Poisson point process with independent mark
realizations drawn after f4(a).
@ Apply these two steps until convergence:

@ uniformly scale all the marks to avoid any contact,
@ move every point after the effect of some prescribed pair potentials.
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MPP simulation by collective rearrangement

Simulation of the point process

Simulate the point set {X;o|/ =1, N} in the
container of size Acon: after a Poisson point process
with rate A = 1/E[A].

Simulation of the marks

Simulate the mark set {rjo| i = 1, N} independently
of the points after the prescribed grain distribution

fa(a) and where r = \/a/7.

Rearrangement of the marked point set
Assuming a pair potential p;; between arbitrary
marked points (Xj; r;) and (Xj; r;), modify the
marked point set using the force-biased algorithm.
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2D adaptation of the force-biased algorithm

1.
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fori=1,N:
(X 1) = (X0 ri0)
n = miniz {[X — Xi|/(ri + 1)}
p=1
while n < 1:
for i =1, N:
for j # i:

iy = (X = %)/ 1% = %

R T 1LY
Pi = 10 | G2
Fij = ¢1;pij
Anom = Z,N:]_ 7rr,'2/Acont
§ = —logyg [(1 - 7]2)Anom}

p=p—27"/r
fori=1,N:
ri = prio

1 = miniz {5 = xil/(ri + r;)}

Size of the container:

Acont
Indicator function:

[ B 1) 1 b5 ) £0
Y771 0 otherwise

Contraction rate:
T ~ 3000 — 100000

Force bias parameter:
p~03-0.6

NB: Because l-:;-j o< 1;ipjini, only
repulsive potentials, i.e. p;j <0,
affect the configuration of the
system.
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Different ways to handle boundaries

Enforce points to be within the domain:
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Different ways to handle boundaries — resulting tessellations




Different ways to handle boundaries —
Enforce points to be
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Effect of boundary grains on the recovered grain size PDF

Enforce points to be within the domain:

Probability density, f4(a) [1]
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Effect of boundary grains on the number of neighbors

Enforce points to be within the domain:
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Correllation between number of neighbors and grain size

Yet to investigate:

@ How would these scatters change if convergence of the FBA was
stated for a prescribed value of n < 17

@ How do these scatters evolve as a function of ¢ and 77

@ Can we relate the random number of neighbors to the random grain
size for a prescribed fa(a)?
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NB: The results presented are for the bulk grains in simulations where the
points only are constrained to be within the domain.
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Computation time

MPP simulation SGT model resolution
@ serial implementation @ parallel implementation: 6
@ convergence at =1 threads
e ¢ =0.5, 7= 40000 ® Ax =0.01 um
Target, fa(alA =1 um?) MPP SGT Total

CV =0.1, Aconr = 20 x 20 um?> 67 s (5950 it.) 29s 96s
CV =04, Acont =25 x 25 pm? 1325 (6172it.) 63s 195s
CV =0.8, Acont =30 x 30 um?® 855 (5596it.) 90s 175s

NB: The results presented are only for points constrained to be within the
domain. MPP simulations enforcing particles to be within the domain are
more time-consuming. The simulation times for SGT might be
underestimated.
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Some bimodal target 2D grain size distributions

Bimodal log-normal PDF of 2D grain size A:
fa(alp, 01, 12,02, c1) = cifa(alpa, o1) + (1 — c)fa(alp2, 02), a €10, +OO[J
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Different ways to handle boundaries

Enforce points to be within the domain:
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Different ways to handle boundaries — resulting tessellations

Enforce points to be within the domain:
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Different ways to handle boundaries — resulting tessellations

Enforce points to be within the domain:
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Effect of boundary grains on the recovered grain size PDF

Enforce points to be within the domain:
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Effect of boundary grains on the number of neighbors

Enforce points to be within the domain:
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Correllation between number of neighbors and grain size

Yet to investigate:

@ How would these scatters change if convergence of the FBA was
stated for a prescribed value of n < 17

@ How do these scatters evolve as a function of ¢ and 77

@ Can we relate the random number of neighbors to the random grain
size for a prescribed f4(a)?
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NB: The results presented are for the bulk grains in simulations where the

points only are constrained to be within the domain.
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Computation time

MPP simulation SGT model resolution
@ serial implementation @ parallel implementation: 6
@ convergence at n =1 threads
e ¢ =0.5, 7= 40000 o Ax =0.02 pm
Target, f4(alA =1 um?) MPP SGT Total

Ay =4 um?, Acont =30 x 30 um? 66 s (5265it.) 25s 9ls
Ay =7 um?, Acont = 40 x 40 um? 855 (4826it.) 57s 142s
Ay =9 um?, Acont = 50 x 50 um? 157 s (5596 it.) 109's 266 s

NB: The results presented are only for points constrained to be within the
domain. MPP simulations enforcing particles to be within the domain are
more time-consuming. The simulation times for SGT might be
underestimated.
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A target 2D grain size PDF of nanoengineered material

Bimodal log-normal PDF of 2D grain size A: J

fa(alpa, o1, p2, 02, c1) = cifa(alps, o1) + (1 — c1)fa(alpe, 02), a €10, +o0]
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Points and questions to address

@ Can we fit a inhomogeneous rate of Poisson process onto such
results? If so, what about the marks?

@ Improve the efficiency of the current force-biased algorithm
implementation
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