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Motivation and objective

* Identify best idealization Numerical
> f homogenization
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Outline

* Morphological characterization of single grains
* Numerical homogenization

* Self-consistent homogenization

* Shape idealization

* Comparison of SC estimates of elastic stiffness



Single grain morphology characterization

Single grains are characterized using Minkowski tensors:

Measures of surface distribution:

Wi =/ 2% © [n(z)]® dS
0,

Measures of mass distribution:

W{;’O:/ ® dV
Q
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Curvature-weighted measures of

surface distribution:




Single grain morphology characterization

For a single grain, there are many different Minkowski tensors
of a given order, most of which are independent.

Example: Reynolds glyphs of curvature-weighted tensors W, v,
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Question: What types and orders of Minkowski tensors are
relevant and sufficient metrics for a grain?



Classic FFT solver

Following Moulinec and Suquet (1998), we have:

1 N(k) = [kCok]™" VEk#0
2 T(k)=koN((k) 0k VYk#0,T0) =0
3 %(y) = (&), "o(y) =Cly) : (y)

4 m=0, €= 2¢

5 while € > € :
6 "7 (y)

7 mAE(k) = —T(k) : F{"r(y)} (k)

8 mHle(y) = (e) + FH{"AR(K)}H(y)

9  "™lo(y)=Cly): "e(y)

10 e =""Mtle Version 1

Discrete system:
r1 = {il,/N,|i=0,...
xo = {iLy/N,|i=0,...

7Nx_1}
7Ny_1}

?:_NCUQ .

k]_:{ Lx/ /I/:O,...7Nx_1}
A

k’2: L_y ’L:O,...,Ny/Q

Error in equilibrium:

[ {75 k) k%) ]“2
m5(0) : "5 (0)

(1) Convergence depends on contrast between phases, and C.
(2) Can not solve for infinite contrasts, i.e. rigid/compliant phases.
(3) Numerical homogenization requires several numerical tests.

6



Convergence — Issues encountered

1) Increasing error vs number of iterations (also observed by
Lebensohn, 2001).
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2) Some cases of instability, e.g. isotropic matrix-fiber w/ much
stiffer fiber.



Numerical homogenization (strain-based)

We solve for C such that (o) = C : (¢). From the Hill-Mandel
principle, we have:

(o:€) = 51111<€11>2 + 52222<€22>2 - 45’1212<€12>2
+2C1122(611) (€22) + 4C1112(e11) (E12)
+462212<522><612>
Consider three mean-field loading cases:

(er) = (e11)e; ® ey (emr) = (€22)es D €y

O III, 11T g



Numerical homogenization (strain-based)

Then, from these three loading cases, we have:

52222 _ <UII : €II> 5,1212 _ <UIII : €III>
(€11)? (€22)2 4(e12)?

Also, by superposition, we have:

((or+om):(er+em)) — 51111<€11>2 — 62222<€22>2

Cligo =
1122 2(ers) (o)
o _\ortom):(er+em)) - Chi11(e11)? — 4C1912(e12)?
1112 =
A(e11)(e12)
O _ (o +omr): (ex +emr)) — 62222<€22>2 — 451212<€12>2
2212 =

4(e22)(€12)



Moduli for elastic anisotropy

Following Hayes (1972), we have the following moduli:
E(0) = ([m(0) @ m(0)] : C™" : [m(0) @ m(0)]) ™"

F(0) = (4m(0) @ p(0)] : C™ = [m(0) @ p(0)])

and Poisson's ratio: ~
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Mean-field elastic self-consistent homogenization

The following interaction law is assumed between the overall
mean strain state (¢) and each local mean field (€)., :

(€)a =Ta: (€)
where T, is a strain concentration tensor given by

AN

T, =[I+P*: (C,—C) "

The Hill-polarization tensor [P, is computed after the assumption
that €, is idealized as an ellipsoid €2, :

br =P = [ F{E0kEY 0t} @y,

| o,
Computed after Masson (2008)

The apparent stiffness is solved for iteratively from:
n

@:ZCQCQ:@Q

a=1

An arbitrary (2, can be idealized by many different ellipsoids Qa.

What morphological idealization gives best estimates C? "



Different morphological idealizations
From each characterization with 2™ order Minkowski tensors:




Comparison of SC-based elastic stiffness estimates
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Comparison of SC-based elastic stiffness estimates
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Comparison of SC-based elastic stiffness estimates
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Conclusion

* Morphological characterization of single grains
* Numerical homogenization

* Self-consistent homogenization

* Shape idealization

* Comparison of SC estimates of elastic stiffness
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