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Motivation and objective

 Identify best idealization

Full-field simulation

Morphology 
idealization

Mean-field
self-consistent
homogenization

Numerical
homogenization
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Outline

 Morphological characterization of single grains
 Numerical homogenization
 Self-consistent homogenization
 Shape idealization
 Comparison of SC estimates of elastic stiffness
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Single grain morphology characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:
Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:
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Single grain morphology characterization
For a single grain, there are many different Minkowski tensors 
of a given order, most of which are independent.

Example: Reynolds glyphs of curvature-weighted tensors         :

Question: What types and orders of Minkowski tensors are 
relevant and sufficient metrics for a grain?  
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Classic FFT solver
Following Moulinec and Suquet (1998), we have:

1                                                                  Discrete system:

2                                                                  

3

4

5

6

7

8                                                                  Error in equilibrium:

9
10

(1) Convergence depends on contrast between phases, and     . 
(2) Can not solve for infinite contrasts, i.e. rigid/compliant phases.
(3) Numerical homogenization requires several numerical tests.

Version 1
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Convergence – Issues encountered
1) Increasing error vs number of iterations (also observed by 
Lebensohn, 2001).

2) Some cases of instability, e.g. isotropic matrix-fiber w/ much 
stiffer fiber.



                                   8

Numerical homogenization (strain­based)
We solve for      such that                       . From the Hill-Mandel 
principle, we have:

Consider three mean-field loading cases:
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Numerical homogenization (strain­based)
Then, from these three loading cases, we have:

Also, by superposition, we have:
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Moduli for elastic anisotropy
Following Hayes (1972), we have the following moduli: 

and Poisson's ratio:
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Mean­field elastic self­consistent homogenization
The following interaction law is assumed between the overall 
mean strain state       and each local mean field         : 

where       is a strain concentration tensor given by

The Hill-polarization tensor       is computed after the assumption 
that        is idealized as an ellipsoid       :

The apparent stiffness is solved for iteratively from:

An arbitrary       can be idealized by many different ellipsoids      .

What morphological idealization gives best estimates    ?

Computed after Masson (2008)
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Different morphological idealizations
From each characterization with 2nd order Minkowski tensors: 
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Comparison of  SC­based elastic stiffness estimates

Grain orientation 
realization #1

local grain
stiffness
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Comparison of  SC­based elastic stiffness estimates

Grain 
orientation 
realization #2

local grain
stiffness
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Comparison of  SC­based elastic stiffness estimates

Grain orientation 
realization #3

local grain
stiffness
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Conclusion

 Morphological characterization of single grains
 Numerical homogenization
 Self-consistent homogenization
 Shape idealization
 Comparison of SC estimates of elastic stiffness
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