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Presentation outline

1 Introduction,
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Advantage of a parametric representation
Case of the digitalized data set of a sample of polycrystalline nickel
super-alloy IN100 microstructure, see Teferra and Graham-Brady (2015):

Data set from EBSD:

Data consuming;

Finite resolution.

4, 444, 713 parameters

Parameterization by ellispoidal growth tessellation

Less than 2% the
original amount of data;

Infinite resolution
(in theory).

14, 118 parameters
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Ellipsoidal growth structures (EGS) — Definitions
An EGS requires:

1 A non-intersecting closed surface ∂A (or plane curve) with interior A.
2 Two sets ω = {1, ...,N} and Ω = {(xα,Zα) |α ∈ ω} such that:

I every xα is in A,
I xα = xγ if and only if α = γ,
I every Zα ∈ Rd × Rd is such that x · Zα · x > 0 for all x 6= 0.

3 A set of rules after which the EGS is assembled.

xα
uα1
uα2

∂A

We have, Zα =
d∑

j=1

uαj ⊗ uαj
(vαj )2

where vαj is a growth velocity along uαj .
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Ellipsoidal growth structures (EGS) — Definitions
To define curves and points necessary to construct EGS, we introduce

ϕα : S1 × (0,∆)→ Sα ⊂ R2

: (x , t) 7→ xα + t Z−1/2α · x
where (0,∆) is time. Just as ϕα, the inverse

ϕ−1α : Sα → S1 × (0,∆)

: y 7→
(

Z
1/2
α · (y − xα)

‖Z1/2
α · (y − xα)‖

, ‖Z1/2
α · (y − xα)‖

)
is injective and continuously differentiable so that Sα = ϕα(S1 × (0,∆)) is
a diffeomorphic transformation of S1 × (0,∆).

A diffeomorphism ϕα exists for every pair (xα,Zα) in Ω.

For ∆ large enough, Sα ∩ Sγ is non-empty. For every such set, we define
Iαγ ⊂ Sα ∩ Sγ as follows:

Iαγ = {y ∈ Sα ∩ Sγ | f αγ (y) = 0}
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Ellipsoidal growth structures (EGS) — Definitions

Iαγ are common curves and constitute the essential geometrical
components of planar EGS.

f αγ : Sα ∩ Sγ → R is defined after the type of structure wanted for an
implicit representation of Iαγ .

For an explicit representation, we study
ϕ−1α (Iαγ) instead of Iαγ .

We obtain a representation of the form
ϕα ◦ φαγ : (θa, θb)→ Iαγ after 1D
parameterizations φαγ : (θa, θb)→ ϕ−1α (Iαγ)
are constructed.
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Case of tessellation – Local parameterizations
For tessellations, the common curves Iαγ are implicitly defined using

f αγ (y) = τ ◦ ϕ−1α (y)− τ ◦ ϕ−1γ (y)

where τ is a projection on time.

The corresponding spatial projection is

π ◦ ϕ−1α (Iαγ) = {x ∈ S1 | [x − xαγ (t)]⊗
2

: Zαγ = 1, t ∈ (0,∆)}

where xαγ (t) ≡ π ◦ ϕ−1α (xγ) = t−1Z
1/2
α · (xγ − xα) and

Zαγ = Z
−1/2
α · Zγ · Z−1/2α so that π ◦ ϕ−1α (Iαγ) is the set of all the points in

S1 intersected by an ellipse of fixed shape moving towards the center of
the unit circle during the time (0,∆):
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Case of tessellation – Local parameterizations
The local charts

φαγ : (θa, θb)→ V ⊂ S1 × (0,∆)

: θ 7→ (x(θ), ξαγ ◦ x(θ))

are obtained by geometric construction where x(θ) is a curve on S1 and ξαγ
is a contact function given by

ξ
α
γ ◦ x(θ) =

xαγ · Z
α
γ · x

α
γ

x(θ) · Zαγ · xαγ + δ

√(
x(θ) · Zαγ · xαγ

)2
−
(
xαγ · Zαγ · xαγ

) [
x(θ) · Zαγ · x(θ)− 1

] .

The specification of x(θ), δ and the ranges of these parameterizations
depend on the pairwise interaction between α and γ characterized by

cαγ = ‖xαγ‖−1
√

(vαγ2 uαγ1 · xαγ )2 + (vαγ1 uαγ2 · xαγ )2

Every parameterization is changed to φ̂αγ : θ 7→ (x̂(θ − ραγ ), ξαγ ◦ x̂(θ − ραγ ))
where x̂(θ) = uα1 cos θ + uα2 sin θ and

U =


[−π, θb + ραγ ) ∪ (θa + ραγ + 2π, π) if θa + ραγ < −π,
[−π, θb + ραγ − 2π) ∪ (θa + ραγ , π) if θb + ραγ ≥ π,

(θa + ραγ , θb + ραγ ) otherwise,

with ραγ = sgn(uα2 · x(0))acos(uα1 · x(0)).
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Definition of the tessellation from cell boundaries

For every α ∈ ω, we define a tessellation cell Cα as the interior of a closed
curve ∂Cα such that ∪α∈ωCα = A and Cα ∩ Cγ = ∅ for every α 6= γ. Every
tessellation cell is simply connected.

1) Radially convex cells (”easy case”): Define prior contact curves as
follows:

∂Cαi =

{
ϕα(x , ξαωα(i)(x)) | x ∈ S1 and ξαωα(i)(x) = min

γ∈ω\α
ξαγ (x)

}
where ωα : {1, . . . , nαc } → ω maps a contact i of the cell α to a
corresponding neighboring cell γ.

The number of prior contacts nαc is the cardinality of ∩n
α
c

i=1π ◦ ϕ−1α (∂Cαi ).

Every prior contact curve ∂Cαi is a subset of a corresponding common
curve Ĩαωα(i).
One neighboring cell can be responsible for more than one contact.
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Definition of the tessellation from cell boundaries
Radially convexity occurs when the set

Kα = {(x , t) ∈ S1 × (0,∆) | (x , t) = ϕ−1α (∂Cαi ) ∩ ϕ−1α (∂Cαj), i 6= j}
has cardinality nαc . Then, a tessellation cell Cα can be defined as the
interior of the Jordan curve with trace

∂Cα =

nαc⋃
i=1

∂Cαi .

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

θ

0

2

4

6

8

10

12

14

ξ
◦x

(θ
)
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Definition of the tessellation from cell boundaries

2) Non-radially convex cells (”difficult case”):

Kα has cardinality lower than nαc , ∂Cα is not a closed curve.

This means there is at least one pair (i , j) such that
π ◦ ϕ−1α (∂Cαi ) ∩ π ◦ ϕ−1α (∂Cαj) 6= ∅ while
τ ◦ ϕ−1α (∂Cαi ) ∩ τ ◦ ϕ−1α (∂Cαj) = ∅.
We say that the cell is not radially convex at xα.
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Examples of space-filling planar EGS – Tessellation 1

Marked point process simulated after a packing algorithm with explicitly
prescribed correlations.
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Examples of space-filling spatial EGS – Tessellation 2

Example of a functionally-graded microstructure realization obtained after
appropriate selection of parameter distributions and correlations.

Marked point process simulated after Teferra and Graham-Brady (2015)
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Other examples of planar EGS

Foam structure: Granular media:

The cells Cα are cellular pores and solid grains, respectively. For each case,
the corresponding contact functions are bounded by 0 < ξ ≤ ξ̃ where ξ̃ is
the corresponding contact function obtained for tessellations.
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Local characterization of a cell boundary
At every non-singular point y of a cell boundary ∂Cα, we have a unit
tangent given by

t(θ) =
∂θϕα ◦ φαγ (θ)

‖∂θϕα ◦ φαγ (θ)‖ =
A(θ)uα1 + B(θ)uα2√

A(θ)2 + B(θ)2

where A and B depend on the locally defined contact function:

A(θ) = vα1

[
ξ̇(θ) cos θ − ξ(θ) sin θ

]
and B(θ) = vα2

[
ξ̇(θ) sin θ + ξ(θ) cos θ

]
.

The corresponding unit normal is

n(θ) = Rt
π/2 · t(θ) =

B(θ)uα1 − A(θ)uα2√
A(θ)2 + B(θ)2

and the signed curvature is

κ(θ) =
ξ2(θ)− ξ(θ)ξ̈(θ) + 2ξ̇2(θ)[

ξ̇2(θ) + ξ2(θ)
]3/2 .
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Local characterization of a cell boundary
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Minkowski tensors of the 0th kind

Minkowski tensors of the 0th kind measure how area is distributed inside
Cα:

W r ,0
0 (Cα) ≡

∫
Cα

x⊗
r
dA

Using our parameterization of ∂Cα, we obtain

W r ,0
0 (Cα) =

r∑
i=0

r−i∑
j=0

(
r

i + j

)
x⊗

r−i−j

α � uα
⊗i

1 � uα
⊗j

2 I i,j0 (Cα)

where the scalar integral I i ,j0 is given by

I i,j0 (Cα) ≡
(
i + j

i

)
(vα1 )i+1(vα2 )j+1

i + j + 2

nα∑
n=1

θb∫
θa

[ξ(θ)]i+j+2(cos θ)i (sin θ)jdθ.

where the terms within the integral are defined locally for every chart.
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Minkowski tensors of the 1st kind

Minkowski tensors of the 1st kind measure how boundary points and their
orientation are distributed in ∂Cα:

W r ,s
1 =

∫
∂Cα

x⊗
r� [n(x)]⊗

s
d`

Using our parameterization of ∂Cα, we obtain

W r ,s
1 (Cα) =

r∑
i=0

r−i∑
j=0

s∑
k=0

(
r

i + j

)(
s

k

)
x⊗

r−i−j

α � uα
⊗s+i−k

1 � uα
⊗j+k

2 I i,j,k,s−k
1 (Cα)

where the scalar integral I i ,j ,k,`1 is given by

I
i,j,k,`
1 (Cα) ≡ (−1)k

(
i + j

j

)
(vα1 )i (vα2 )j

nα∑
n=1

θb∫
θa

[ξ(θ)]i+j (cos θ)i (sin θ)j [A(θ)]k [B(θ)]`{
[A(θ)]2 + [B(θ)]2

} k+`−1
2

dθ.

where the terms within the integral are defined locally for every chart.
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Minkowski tensors of the 2nd kind
Minkowski tensors of the 2nd kind measure how curvature is distributed
along boundary points and their orientation in ∂Cα:

W r ,s
2 ≡

∫
∂Cα

κ(x)x⊗
r� [n(x)]⊗

s
d`+

∑
y∈Kα

Dr ,s(y)

where Dr ,s are contributions due to curvature jumps at common points.

Using our parameterization of ∂Cα, we obtain

Wr,s
2 (Cα) =

r∑
i=0

r−i∑
j=0

s∑
k=0

(
r

i + j

)(
s

k

)
x⊗

r−i−j

α � uα
⊗s+i−k

1 � uα
⊗j+k

2 I
i,j,k,s−k
2 (Cα) +

∑
y∈Kα

Dr,s (y)

where the scalar integral I i ,j ,k,`2 is given by

I
i,j,k,`
2 (Cα) ≡ (−1)k

(
i + j

j

)
(vα1 )i (vα2 )j

nα∑
n=1

θb∫
θa

[ξ(θ)]i+j (cos θ)i (sin θ)j [A(θ)]k [B(θ)]`{
[A(θ)]2 + [B(θ)]2

} k+`−1
2

κ(θ) dθ

where, once again, the terms within the integral are defined locally for
every chart.
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Minkowski tensors of the 2nd kind
Discontinuity terms Dr ,s are obtained using a parallel body construction

18 / 49



Morphological characterization of a planar cell – (Results)
Radial projections of even W r ,0
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Morphological characterization of a planar cell – Results
Radial projections of odd W r ,0
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Morphological characterization of a planar cell – Results
Radial projections of even W0,s
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Morphological characterization of a planar cell – Results
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Morphological characterization of a planar cell – Results
Radial projections of even W r ,0
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Morphological characterization of a planar cell – Results
Radial projections of even W r ,0
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Morphological characterization of a planar cell – Results
Radial projections of odd W r ,0
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Towards a better interpration of Minkowski tensors – W0,s
1

The p.d.f. f of a unit normal m in ∂Cα can be expressed as

f (m) =

∫
∂Cα

δ(m − n(x))d`

which can not be analytically resolved even from our parameterization of
∂Cα. Similarly, the Minkowski tensors W0,s

1 can be considered as moments
of this distribution

W0,s
1 =

∫
∂Cα

[n(x)]⊗
s
f (n(x))d`.

Following Katani (1984), possible ansatz for models of such random
normal distributions are

F (m) = C + C ·m + C : (m ⊗m) + m · C : (m ⊗m) + . . .

F (m) = [C + C ·m + C : (m ⊗m) + m · C : (m ⊗m) + . . . ]2

F (m) = exp[C + C ·m + C : (m ⊗m) + m · C : (m ⊗m) + . . . ]

where C , C , C, ... are yet to be defined.
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Towards a better interpration of Minkowski tensors – W0,s
1

Still following Katani (1984), for a given ansatz and error norm to
minimize between f (n) and F (x), one can derive expressions for C , C , C,
... in terms of W0,s

1 ’s.

For example, minimizing the least square error for the first symmetric
(F (−n) = F (n)) ansatz up to order 4 leads up to

F (n) =
1

2π
[1 + 4(W0,2

1 − 1/2) : (n ⊗ n)]

+ 16(n ⊗ n) : [W0,4
1 − 1�W0,2

1 + 1� 1/8] : (n ⊗ n)

where we recall that W0,2
1 = 1 : W0,4

1 .

Remarks:
- Considering tensors of odd orders could yield non-symmetric distribution,
- Such methods can be applied to the whole EGS with W0,s

1 (∩α∂Cα), ...
- Similar random models are used in plastic flow rules and hardening of
granular media as well as elastic stiffness prediction of generic porous
media – see works of Cowin, Mehrabadi, Nemat-Nasser, ...
- Can we apply similar procedures to other Minkowski tensors?
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Eshelby problem and disturbance fields
Let’s isolate a grain Cα from a tessellation and see how it reacts to a
uniform eigenstrain ε0 when embedded in a uniform neighborhood:

Assuming an elastic medium under small def., the eigenstrain maps linearly
to a disturbance field:

ε(y) = S(y) : ε0.

For R →∞, this is the Eshelby problem and S(y) is the Eshelby tensor
field. For highly symmetric grains in infinite neighborhood, the Eshelby
tensor field is uniform inside the inclusion.

Solutions to this problem are a fundamental result as they are commonly
invoked to develop both, linear and nonlinear homogenization schemes of
heterogeneous media.
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Computation of Eshelby tensor fields

In the general case of a finite neighborhoods, S(y) is decomposed in

S(y) = S∞(y) + Sb(y)

where Sb vanishes as R →∞.
The ”inifite contribution” can be expressed as:

S∞(y) = S0χα(y) +
κ− 1

κ+ 1
1⊗ d∞(y) + 2

d∞(y)⊗ 1

κ+ 1
+ 4

D∞(y)

κ+ 1

where χα is the indicator function of the cell and S0 is the isotropic part of
S∞ given by:

S0 = uα
⊗4

1 + uα
⊗4

2 +
κ− 1

2(κ+ 1)
(uα1 � uα2 )⊗

2 − κ− 1

2(κ+ 1)
1⊗ 1− <{(u

α
1 + iuα2 )⊗

4}
2(κ+ 1)

κ is the Kolosov’s constant.
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Computation of Eshelby tensor fields – Infinite contribution
d∞ and D∞ are given by

d•◦y(r , ϑ) = <{γα,•2 (r , ϑ)}<{(uα1 +iuα2 )⊗
2}+={γα,•2 (r , ϑ)}={(uα1 +iuα2 )⊗

2}

D•◦y(r , ϑ) = <{γα,•4 (r , ϑ)}<{(uα1 +iuα2 )⊗
4}+={γα,•4 (r , ϑ)}={(uα1 +iuα2 )⊗

4}
where y(r , ϑ) = rx(ϑ) with x(θ) = uα1 cos θ + uα2 sin θ.

Using our parametrization of ∂Cα and following Zou et al. (2010), the
complex potentials γα,∞2 and γα,∞4 can be recast in

γα,∞2 (r , ϑ) =
1

4πi

∫
∂Cα

[ξ̇(θ)x(θ) + ξ(θ)ẋ(θ)] · Z−1/2α · (uα1 + iuα2 )

[xα + ξ(θ)Z
−1/2
α · x(θ)− rx(ϑ)] · (uα1 − iuα2 )

dθ

and

γ
α,∞
4 (r, ϑ) =

1

16πi

∫
∂Cα

{
[xα + ξ(θ)Z

−1/2
α · x(θ)− rx(ϑ)]⊗ [ξ̇(θ)x(θ) + ξ(θ)ẋ(θ)] · Z−1/2

α

}
: (uα1 + iuα2 )⊗

2

{[xα + ξ(θ)Z
−1/2
α · x(θ)− rx(ϑ)] · (uα1 − iuα2 )}2

dθ
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Computation of Eshelby tensor fields – Bounded
contribution

Following Zou et al. (2012), we use the following expression for Sb(y):

Sb(y) = <{cα,b0 (y)}
κ− 1

κ + 1
1⊗ 1 +

2<{cα,b1 (y)}

κ + 1
<{(uα1 + iuα2 )⊗

4
} +

4<{cα,b1 (y)}

κ + 1
(uα1 � uα2 )⊗

2
+
κ− 1

κ + 1
1⊗ db1 (y)

+
2

κ + 1
db2 (y)⊗ 1 +

2={cα,b1 (y)}

κ + 1
={(uα1 + iuα2 )⊗

4
} −

4={cα,b1 (y)}

κ + 1
uα1 � uα2 ⊗ (uα1 ⊗ uα1 − uα2 ⊗ uα2 )

where cα,b0 , cα,b1 , db1 and db2 can also be recast in terms of complex
integrals specific to our parameterization of ∂Cα.

We isolate analytically the respective real and imaginary part of each of
these expressions and perform integrals numerically for a grain.

Remark: To compute the integrals corresponding to the bounded
contribution, the type of boundary condition (traction or
displacement-free) must be specified. Here, we consider traction free.
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Computation of Eshelby tensor fields – Results for S(r |ϑ)
Projections along uα1 with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S∞(r |ϑ)
Projections along uα1 with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S(r |ϑ)
Projections along

√
2/2(uα1 + uα2 ) with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S∞(r |ϑ)
Projections along

√
2/2(uα1 + uα2 ) with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S(r |ϑ)
Projections along uα2 with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S∞(r |ϑ)
Projections along uα2 with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S(r |ϑ)
Projections along

√
2/2(uα2 − uα1 ) with basis {uα1 , uα2 }:
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Computation of Eshelby tensor fields – Results for S∞(r |ϑ)
Projections along

√
2/2(uα2 − uα1 ) with basis {uα1 , uα2 }:
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Stochastic simulation of disturbance fields due to random
uniform eigenstrain states
We assume a random uniform eigenstrain state within Cα given by

ε0 = ε0Rt
θ · [uα1 ⊗ uα1 + buα2 ⊗ uα2 ] · Rθ

where
ε0 ∼ U(0, 10−4) , θ0 ∼ U(0, 2π) , b ∼ U(−1, 1)

so that the moments of ε0 are isotropic, i.e. E[ε0] ∝ 1, V[ε0] ∝ 1,...

We are then interested in the field of energy density of in-plane distortion

wd(y) = µ[ε(y)− tr(ε(y))1/2] : [ε(y)− tr(ε(y))1/2]/2,

its statistical characterization and sensitivity to the morphological metrics
of a random Cα.

For the finite neighborhood case, estimates of the Eshelby tensor field
require to specifiy a type of boundary condition (traction or
displacement-free). We only consider the traction-free case, i.e. η = −1.
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Expected in-plane distortion energy density – E[w d(r |ϑ)]
Estimate from 50x50x50 realizations along uα1 :
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Expected in-plane distortion energy density – E[w d(r |ϑ)]
Estimate from 50x50x50 realizations along 1/

√
2(uα1 + uα2 ):
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Expected in-plane distortion energy density – E[w d(r |ϑ)]
Estimate from 50x50x50 realizations along uα2 :
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Expected in-plane distortion energy density – E[w d ,∞(r |ϑ)]
Estimate from 50x50x50 realizations along 1/

√
2(uα2 − uα1 ):
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Expected in-plane distortion energy density – summary
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Shape idealization for mean field and 2nd order methods
Eshelbian MF methods rely on an idealization of inclusions as ellipsoids for
which interior Eshelby tensors are uniform.

Question: For a given non-ellipsoidal grain Cα, what ellipsoidal idealization
will minimize deviations from the actual disturbance field?

At first, 〈S∞(y)〉Cα may seem to be a good estimate

∆̃ ≡
√
〈[S∞(y)− 〈S∞(y)〉Cα ] :: [S∞(y)− 〈S∞(y)〉Cα ]〉Cα

〈S∞(y)〉Cα :: 〈S∞(y)〉Cα
but for arbitrary Cα, 〈S∞(y)〉Cα is less symmetric than the Eshelby tensor
of an ellipsoid. Alternatively, we consider ellipsoids of 2nd order Minkowski
tensors

∆∞,r ,sν ≡
√
〈[S∞(y)− S∞,r ,sν ] :: [S∞(y)− S∞,r ,sν ]〉Cα

S∞,r ,sν :: S∞,r ,sν

To do: Investigate ∆∞,r ,sν for arbitrary Poisson’s ratios and identify the
best fitting 2nd order Minkowski tensor ellipsoid.
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Shape idealization for mean field and 2nd order methods
Eshelbian MF methods rely on an idealization of inclusions as ellipsoids for
which interior Eshelby tensors are uniform.

Question: For a given non-ellipsoidal grain Cα, what ellipsoidal idealization
will minimize deviations from the actual disturbance field?

At first, 〈S∞(y)〉Cα may seem to be a good estimate

∆(〈ε〉Cα , E) =

√
[〈ε〉E − 〈ε〉Cα ] : [〈ε〉E − 〈ε〉Cα ]

〈ε〉Cα : 〈ε〉Cα
but for arbitrary Cα, 〈S∞(y)〉Cα is less symmetric than the Eshelby tensor
of an ellipsoid. Alternatively, we consider ellipsoids of 2nd order Minkowski
tensors

∆(〈ε⊗ ε〉Cα , E) =

√
[〈ε⊗ ε〉E − 〈ε⊗ ε〉Cα ] :: [〈ε⊗ ε〉E − 〈ε⊗ ε〉Cα ]

〈ε⊗ ε〉Cα :: 〈ε⊗ ε〉Cα
To do: Investigate ∆∞,r ,sν for arbitrary Poisson’s ratios and identify the
best fitting 2nd order Minkowski tensor ellipsoid.
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Effect of shape idealization on nonlinear homogenization
Whether they use Eshelby tensors or not, most of the nonlinear
homogenization scheme rely on ellipsoidal shape idealization:

Affine procedures (AFF): Zaoui and Masson (1998), Masson et al.
(2000)
Transformation field analysis (TFA): Dvorak and Rao (1976), Dvorak
et al. (1988), Dvorak and Benveniste (1992)
Generalized transformation field analysis: Michel and Suquet (1997),
Moulinec and Suquet (1998)
Nonlinear Hashin-Shtrikman-based approach: Michel and Suquet
(1997), Moulinec and Suquet (1998)
Optimized linear comparison composites (LCC): Ponte-Castaneda
(1991), Suquet (1993)
2nd order comparison composites: Ponte-Castaneda (1996), Suquet
and Ponte-Castaneda (1993),

Question: For a given non-ellipsoidal grain Cα, what ellipsoidal idealization
will minimize the deviations of homogenization-based predictions from
full-field-based predicted?
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Questions/Comments



Sensitivity analysis of energy distortion fluctuations to
morphological characteristics of random grains

For this simple mechanical problem, we want to understand what types
and orders of morphological metrics of a random grain Cα plays a
significant role on localization.

We define measures of fluctuation of energy distortion such as:

〈E[wd(y)]− 〈E[wd(y)]〉Cα〉Cα and 〈E[wd(y)]− 〈E[wd(y)]〉Cα〉Cα
〈(E[wd(y)]− 〈E[wd(y)]〉Cα)2〉Cα and 〈(E[wd(y)]− 〈E[wd(y)]〉Cα)2〉Cα

where Cα = B(xα,R) \ Cα to quantify localization outside and within a
grain subjected to a uniform eigenstrain.

Then, we simulate realizations of random grains Cα and we investigate
correlations with W0/R

2, W1/R, W2R, I2(W2,0
0 )/R4, I2(W2,0

1 )/R2,

I2(W2,0
1 )R2, ...
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