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   Outline of methodology
Development of 

microstructure models

Simulation 
of mechanical behaviors

Simulation 
of random microstructures

Characterization of
morphological anisotropy

&
Part I. ~80% completed

Part II. ~40% completed

Part III. ~10% completed

Technical objective: Reduce algorithmic complexity

Technical objective: Reduce algorithmic complexity

Technical objective: Identify and calibrate marked point processes (MPP)

Part I Part I

Parametric representation Digital microstructure

Grain shape
characterization

Numerical 
resolution

Construct approximation 
scheme specific for 

polycrystaline 
microstructures System size scaling with 

number of grains



Part I. Parametric representation
Consider a pattern of      marked points             
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Part I. Parametric representation
Consider a pattern of      marked points             

The underlying microstructure              is a partition of space 
into      cells (or grains)   

Every cell      has a boundary         partitioned into common 
curves        shared with neighbors its      . 
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Part I. Morphological characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:

Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:

Examples of projection up to order 8



Part I. Numerical resolution – naive approach
1) Discretize the domain into n pixels
2) Proceed as follows pixel-by-pixel

    Resulting algorithm has complexity        . How large need n be? 

 

Compute contact times, attribute pixel, 

Small n Large n
MislabelingPoor boundary resolution

Small n Actual boundary

obtained by Marching squares



Part I. Transformation of the problem
Instead of discretizing the plane and solving for approximations 
of      , we transform the problem as follows 

and try to solve for the curves                  .  
    

is given in terms of       and   
  .   

Solving for the transformed problem is
equivalent to solve for the overlay of the 
functions     of the neighbors      of      . 

But, what are the neighbors of      ? 



Part I. Enriched Marching Squares (EMS)

Using our analytical solution for the grain 
boundary, we obtain an enriched MS (EMS) 

Expressions of Minkowski tensors:

Digital 
microstructure

Marching square (MS)
algorithms

Approximate 
grain boundaries

  MS
EMS



Part I. Expressions of Minkowski tensors
If the expressions of the common curves and the common points 
are known, there is no need to approximate the 
boundaries using an MS algorithm. We have

where       and           are 
scalar coefficients obtained 
by integrating the functions 
    defined for the neighbors 
     of      . 

Effect of 
common points



Part II. Periodic Lippmann-Schwinger problems 
      Periodic elastic Cauchy-Navier problem:      

           with                                              for all            and               ,           
           and                                                         ,
           subjected to           . 

where                              and                            .

Introduce a polarization field     with reference    ,

leads to a Periodic elastic Lippmann-Schwinger problem:

with solution

where                                                            is a convolution of            .

Periodic Green 
operator for strains.

Original pb.

Auxiliary pb.



Part II. Basic approximation scheme
FFT-based iterative scheme:      

  

                          

Instead, we want a scheme that
– is especially tailored to 

polycrystalline microstructures,
– has complexity governed by

the number of grains
– carries information about the 

morphology
– is easy to post-process.

Cons:
 - Uses a lot of memory,
 - Post-processing is data intensive,
 - No explicit insight about morphology,
 - Complexity is                per iteration,
    for n pixels.

Pros:
 - Easy pre-processing,
 - Compatible with anelastic eigenstrain
   formulations. 

How large need n be? 
How many iterations are enough?



Part II. Hashin-Shtrikman variational principle
Consider the Hashin-Shtrikman (HS) functional given by 

                                   
(1) Assuming an equilibrated polarization, i.e.                                , 
               is stationary at                            , irrespectively of      : 
       The solution to the Lippmann-Schwinger problem is a stationary
       point of the HS functional.
(2) Hashin and Shtrikman (1962) proved that  

Okay. Then, let’s consider a piecewise polynomial ansatz

for some p and solve for the minimizer                           of             . 

Symmetric tensor
of order k+2



Part II. Implementation & validation
Note that              is a quadratic form. Consequently, the minimizer  
                          is solution of the linear system

in which

So that the same       can be used for several realizations of            .  

 

1D validation:

(part I)
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Extra-Slide #2 – Transform the problem 
Solving for parameterizations of common curves        is difficult. 
To circumvent this difficulty, we introduce a diffeomorphic 
transformation.

Let every point of a growing ellipse be given by a time-
dependent mapping from a unit circle: 

We let the common curves be

with                                                   .

Finding parameterizations      of
is much easier than parameterizing        directly.  



Extra-slide #1 – Viscoplastic polycrystal model
 Constitutive model:           

 

                            

–                                                      ,
                                                           

 Loading: Mean constant strain rate, 

 Material properties: 2D isotropic stiffness; 
 Sources of randomness:             ∙ Quantity of interest:  

– Grain morphology,
lattice misorientation



Part III. Realization dependent conditional intensity
Markov Marked point processes are an ideal choice of model.
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