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Motivation/Objective
 Understand the role of morphology on the mechanical performance 

of random polycrystals

Morphological
characterization

Ellipsoidal Growth
Tessellations

Full-field simulation of elastic 
and elasto-viscoplastic behaviors

Field-statistics 

Morphological 
symmetry/anisotropy

On a realization-by-realization 
basis, can we

Define micromechanical 
schemes that use information 

about

Material symmetry and 
constitutive behavior

to  estimate field statistics 
of mechanical behaviors

efficiently and accurately enough?
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Morphological characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:

Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:

Reynolds glyphs of Minkowski tensors
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Lippmann-Schwinger equation for periodic elastic media 
Periodic elastic BVP:      

for all            , with                                                for all                 s.t.

and where                              is a volume average over                            .

Then, as we introduce the polarization field     with reference     ,

where                               , the local statement of equilibrium becomes

with solution

in which                                                          .

Note that for all    , we have 

Disturbance strain field          
with vanishing field average.    
        

Lippmann-
Schwinger 
equation

Periodic Green 
operator for 
strains.
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Hashin-Shtrikman (HS) variational principle 
Multiplying the previous expression by a test field     , we have 

which, after volume averaging over    , becomes

The HS functional is defined as follows by Hashin and Shtrikman (1962):

     admits a stationary state for the equilibrated polarization field    , 
irrespectively of the reference stiffness     . At equilibrium, we also have    
                                               , where          is s.t.                     .

Boundedness conditions of     : 

Searching for polarization fields among richer functional spaces 
guarantees not to deteriorate the quality of the solution if the reference 
medium is chosen properly.  

Differential of the HS 
functional evaluated at 
the equilibrated stress 
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Case of piecewise constant polarization fields, i.e.  

Assume                                        where                                   .     

Then                                                             , where

                                                                         
                                                                                            

so that the HS functional becomes

for which the stationary state                                       is such that

Remark: We want to avoid integrating   . Instead, we want to find a 
relation between        , the Minkowski tensors (which we use to 
characterize morphological anisotropy) of the microstructure, and the 
derivatives of    . 

influence tensors
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Taylor expansion of Green operators (1/2)
To avoid singularities, we introduce                                   and 

                                       for all          so that

where                         . Then for some basis                   we have

and, similarly
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Taylor expansion of Green operators (2/2)
Then we have

that we recast in
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Influence tensors for polarization fields in  
Eventually, we obtain the following n-th order expansion

where                     , which we use to construct the following estimate of 
influence tensors for           :

  

where,                    is the m-th derivative of the Green operator, 
                               i.e. with components                                               , 

                               are “appropriate inner products” for 

 Maxwell-Betti theorem 

        Then, stationarity

However, we don’t know if                                                             is true. 
 To verify, we define a symmetrized expansion, ... 
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Computing components of                       
 The component                                               consists of the sum of 

                      possibly different terms of the form
 

where                    and             .  To account for the repetition of 
combinations of indices, we have

                                                                                                              .

 We recall that the component                                                          of the 
gradients of the Green 
operator for strain are 
stored in                                             if        ,    
or as                                                    if         .

 Then, 
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Influence tensors for polarization fields in  
We define the following symmetrized Taylor expansion:

where                                                                                           ,

which implies

so that we have

leading up to 
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Self-influence tensors for polarization fields in
When           , we refer to        as a self-influence tensor. We then have 

which we recast in

for some           and where                         , so that we obtain 

where                                                             . Using the same Taylor 
series expansion as before, we have

which becomes

where we recall that            is motion covariant and that                          
so that, for i>0, we have

For Minkowski addition:
\usepackage{fdsymbol}
A\cupplus t

Compute these 
for i = 0,…,n
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Influence tensors for polarization fields in  
To summarize, the following estimates of influence and self-influence 
tensors are obtained:

                                                             
which we respectively recast in the following expressions:

 

estimate of the 0-0 influence 
tensor of       over

estimate of the 0-0
self-influence tensor of    
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Piecewise polynomial polarization fields, i.e.  
Assume a trial polynomial 
field of degree     given by                                            
so that we have

Let’s look at 
this term for

where        
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Influence tensors for polarization fields in  
From the previous expression, we want to address the terms with 
components of the form                                              

                                                                with                                       ,  

where we used the same change of variables as previously. Now, from 

we obtain the following estimate of “r-s influence tensor of       over      ”  
   

defined for              and               which we recast as follows:

Change of variable
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Self-influence tensors for polarization fields in  
Similarly as before, we want to address the terms with those components:

  
                                                                  

where, again, we have 

so that an estimate of the “r-s self-influence tensor of     ” is obtained by  
   
       
which we recast in

and in

             .

Change of variable
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Self-influence tensors for polarization fields in  
… so that

Note that                                                        refers to the components of

Eventually, we obtain the following estimates of the “r-s self-influence 
tensor of     ”:  

             

Requires to know

Most likely,                                                                                     . Consider having a symmetric estimate     
                                                                                                                                               .
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What about local equilibrium of the polarization field?  
 For a piecewise polynomial trial field given by

where                     .

 A local error in equilibrium is given by                                          . We get  

                      
    

so that … 

tau(  ,&tau0,&tau_grads,dx1,dx2): 

tau=tau0[3  … 3(  +1)-1]
for k in [1… p]:
   istart=3n ((k-1)2+3(k-1))/2
   for i in [0… k]:
      if i%2==0: ni1=k-i/2     ; ni2=k-ni1
           else: ni2=k-(i-1)/2 ; ni1=k-ni2
      tau+=sqrt(Binom(k,ni1))*tau_grads[istart+3 (k+1)+3i… istart+3 (k+1)+3(i+1)-1]*dx1ni1*dx2(k-ni1)

tau[2]/=sqrt(2)

In Mandel
representation



                                   19

What about local equilibrium of the polarization field?  
… we have the following components

and

and the following is implemented:  

                      
    

div_error(  ,&tau0,&tau_grads,dx1,dx2): 

div_tau=[0,0]
for k in [1… p]:
   istart=3n ((k-1)2+3(k-1))/2
   for i in [0… k]:
      if (i%2==0): ni1=(k-1)-i/2     ; ni2=k-ni1
             else: ni2=(k-1)-(i-1)/2 ; ni1=k-ni2
      if (ni1>0):
         fac=Binom(k-1,ni1-1)/sqrt(Binom(k,ni1))
         div_tau[0]+=fac*k*tau_grads[i_start+al*(k+1)*3+i*3]*dx1**(ni1-1)*dx2**ni2
         div_tau[1]+=fac*k*tau_grads[i_start+al*(k+1)*3+i*3+2]/sqrt(2)*dx1**(ni1-1)*dx2**ni2
      if (ni2>0):
         fac=Binom(k-1,ni2-1)/sqrt(Binom(k,ni1))
         div_tau[0]+=fac*k*tau_grads[i_start+al*(k+1)*3+i*3+2]/sqrt(2)*dx1**ni1*dx2**(ni2-1)
         div_tau[1]+=fac*k*tau_grads[i_start+al*(k+1)*3+i*3+1]*dx1**ni1*dx2**(ni2-1)
return sqrt(div_tau[0]**2+div_tau[1]**2)
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What about local equilibrium of the polarization field?  
 For a piecewise polynomial trial field given by

where                     . Then, 

so that we have                         ∙ Due to continuity of polarization field, we  
                                                     have                                   for every           
                                                     permutation                    of

                                                   ∙ Then, we enforce equilibrium as follows:  
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What about local equilibrium of the polarization field?  
 Consequently, we intend to compute 

by solving for a stationary state of the HS functional, and...

 Compute

from local equilibrium constraints (see previous slides).
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 HS functional for trial fields in      (derivation)   
From our definition of the estimates of influence tensors, we obtain         
                                 

        which we recast in

The other term,                                can be calculated exactly:
After change of variables, we have:
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HS functional for trial fields in  
… which we recast in  
                                           

where                              so that the following estimate of the HS 
functional is obtained

so that we have

Now, we want to solve for the stationary state of the functional, i.e. find  
                                for all     s.t.             is optimized.   
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2D Formalism 
 Generalized Mandel notation
 Solution of global stationarity equations
 2D Stroh formalism
 2D integral Barnett-Lothe formalism
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of         are stored into vectors of the form
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of                     are stored into vectors of the form
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of         are stored into vectors of the form

                                                                                                        

                                                         

Gradient components of the shear trial 
field are enforced through constraints 
derived from local equilibrium.
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations (tri)  

The components of                     are stored into vectors of the form
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

Compliance matrices are defined as follows

so that the components of                    are stored into matrices                      defined by    
              

                    

                                                                                                        

                                                         

dMW_local(  ,s=1,r=2,I=6…8,J=0…3)
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

so that the components of                    are stored into matrices                      defined by   

              

and global Minkowski-weighted compliance matrices are constructed as follows

                                                         and

                                                                          (for r>0 and s>0).                      

                                                                                                        

                                                         

dMW_local(  ,s=2,r=3,I=3…5,J=0…3)



                                   31

“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

 The components of the influence tensors          are stored into matrices of the form  /       
                

The components of the influence tensors          are stored into matrices of the form  /

                                                         T_local(  ,  ,s=2,r=1,I=4,J=1) = T_sym_infl(  ,  ,ns1=2,ns2=0,ijkl=2222,nr1=1,nr2=0)

ki=I%3, i=(I-ki)/3, if i%2==0: nr1=r-i/2
          else: nr2=r-(i-1)/2

kj=J%3, j=(J-kj)/3, if j%2==0: ns1=s-j/2
          else: ns2=s-(j-1)/2

= T_sym_infl(  ,  ,nr1=1,nr2=0,ijkl=2222,ns1=2,ns2=0) list_of_ijkl=[[1111,1122,1111],[2211,2222,2212],
                               [1211,1222,1212]]
ijkl=list-of_ijkl[ki][kj]
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of the influence tensors          are stored into matrices of the form  /       
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of the influence tensors          are stored into matrices of the form  /       
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of the influence tensors          are stored into matrices of the form  /       
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of the influence tensors          are stored into matrices of the form  /       
               

                                                                                                        

                                                         



                                   36

“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

The components of the influence tensors          are stored into matrices of the form  /       
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“Generalized Mandel representation” for assembly of a
global system of stationarity equations  

 Global influence matrices are assembled as follows,                             

Remarks on symmetry:  

 Recall the global Minkowski weighted
compliance matrices

Remarks on symmetry:  

 We define                              and pose the “r stationarity equations” in 
matrix form,

                                                         

Generally not
symmetric T_global(s,r,I=3(2)(r+1)… 3(2+1)(r+1)-1,

             J=3(1)(s+1)… 3(1+1)(s+1)-1)

T_local(  ,  ,s=2,r=1,ki,kj) 

ddim_i=3(r+1), ki=I%ddim_i,   =(I-ki)/ddim_i
ddim_j=3(s+1), kj=J%ddim_j,   =(J-kj)/ddim_j

for I in [0… 3(r+1)n -1]:
   for J in [0… 3(s+1)n -1]:

T_sym_infl(  ,  ,ns1,ns2,ijkl,nr1,nr2)

T_sym_infl(  ,  ,nr1,nr2,ijkl,ns1,ns2)
=

dMW_local(  ,s,r,ki,kj) M_global(s,r,I=3(1)(r+1)… 3(1+1)(r+1)-1),
             J=3(1)(s+1)… 3(1+1)(s+1)-1))

ddim_i=3(r+1), ki=I%ddim_i,   =(I-ki)/ddim_i
ddim_j=3(s+1), kj=J%ddim_j

True if 
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“Generalized Mandel representation” for assembly of a global 
system of stationarity equations  We want to solve the system

which we recast in                             

 

                                                                                 

                                                         

D_mat_assemble() 

for r in [1… p]:
   for s in [1… p]:
      for i in [0… 3(r+1)n  -1]:
         for j in [0… 3(s+1)n  -1]:

M_global(s=3,r=2,I=0… 3(2+1)n  -1,
                 J=0… 3(3+1)n  -1)
+
T_global(s=3,r=2,I=0… 3(2+1)n  -1,
                 J=0… 3(3+1)n  -1)

D[3n ((r-1)2+3(r-1))/2+i][3n ((s-1)2+3(s-1))/2+j] = 
          T_global(s,r,i,j) + M_global(s,r,i,j)
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2D Stroh Formalism
 After Eshelby et al. (1953), Stroh (1958,1962) established the following 

framework to solve for displacement fields in 2D elastic anisotropic 
media. Assuming a superposition of solutions of the form        

                                             where                 with     complex,
we have

so that the local statement of equilibrium becomes

      

 Non-trivial solutions then satisfy                                                   

2D Stroh eigensystem

(Not a regular eigenvalue problem)
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2D Stroh Formalism
 For non-degenerate material symmetries, i.e. with independent Stroh 

eigenvectors, complete solutions for the displacement take the form

where     are arbitrary functions (depending on BCs) and                    .
 By linear elasticity, we have                                                               .
 Since local equilibrium requires                                        

                                                                                            , 
we have                                and                                 

which we recast in                                                                             
 Then, stress functions                  are such that

                                                                          and
 Still under the assumption of non-degenerate symmetry, 

we have                                                        .
 Solutions of the form                                          are used.

 Since                                                 we have

 If    is replaced by      , 
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2D Stroh Formalism
 The function             and the complex coefficients     for            are solved 

for specific boundary conditions.
 To solve for Green 

functions,  

 Let                               with                        so that

 Redefine    s.t.                                            and  

then 

               

and                                                                                              .
 Similarly, by compatibility, we have:

                                                                                                     .

- All free bodies containing the 
material point of application of 
the concentrated force     are 

in equilibrium,
- The medium is an infinitely    
large traction-free plane.          

                       

A concentrated force   
is applied at         .       

Orthogonality (Ting, 1996)
for non-degenerate symmetries
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2D Barnett-Lothe integral formalism
 For degenerate symmetries, the proposed solution is incomplete. The 

displacement field needs to be adjusted (not done here). 
 Alternatively, Barnett and Lothe (1973) developed a solution which 

remains valid irrespectively of the type of anisotropy:

where the incomplete Barnett-Lothe integrals are  

                                 and                              where

with                              and                              ,

while                                                                   so that

 The 2D anisotropic Green functions then take the form

                                                                                        .

 Next, we find expressions for the incomplete Barnett-Lothe integrals in 
the case of specific material symmetries.

Active clockwise rotation of n, ok?
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2D Barnett-Lothe integral formalism
 The gradients of the resulting Green functions 

are obtained as follows, independently of material symmetries:

where

so that

           where
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2D Barnett-Lothe integral formalism
  Similarly, we have

             where

 And

            where 



                                   45

2D Barnett-Lothe integral formalism
  Again,

             where

 More generally, for       , we have the following recurrence relations

Requires evaluation of
and              

           for                           
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Drawback of a simple recursive implementation

Need for dynamic 
programming (DP)

 Computing the n-th derivative of an anisotropic Green’s function at a 
location       leads up to the following recurrence tree: 

is computed xx times when evaluating

Number of components of the derivatives of the
Green operator needed to compute estimates of

influence tensors based on a n-th order Taylor 
expansion for a polycrystal with      grains:

Height of 
recursion tree
for                       :
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A bottom-up DP algorithm
  We derive the following bottom-up DP algorithm to compute               :

- From exponential to 
  linear computing time

- More than 200 times  
  quicker for n=8
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2D Anisotropy 
 Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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2D Orthotropy 
 Polar representation of 2D orthotropic stiffnesses, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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2D R0-orthotropy 
 Polar representation of 2D R0-orthotropic stiffnesses (Vannucci, 2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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2D square symmetry 
 Polar representation of 2D square symmetry, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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2D Isotropy 
 Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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Green operator for strains 
 So far, we computed gradients of the Green’s function away from the 

origin, i.e. with r>0. By continuity, we have

for every permutation              of              .

 The “Green operator for strain” is then defined by

so that        is minor and major symmetric.
 The gradients/derivatives of the operator are then given by

 Consequently, for r>0, we have
–                                             for every permutation              of              ,

–                                             and

–                                                                                           .

 Also, we recall that                                                      .
 Given those symmetries, we want to minimize the amount of computation
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Table of gradient components of Green operators  
 For some given n, we need to compute

for every pair             of grains with         .   
 For all            such that         :

– For all                                                     : 
• For all            :

– For all             :
» Compute  

 All necessary components of the derivatives
can be obtained by symmetry from the values stored in    .

 Number of components 
                    to compute: 

min_diff(x_gamma, x_alpha, L):

   dx = x_alpha - x_gamma

   if (dx[0] > L/2):
      dx[0] = -(L - dx[0])
   else if (dx[0] < -L/2):
      dx[0] = L+dx[0]

   if (dx[1] > L/2):
      dx[1] = -(L - dx[1])
   else if (dx[1] < -L/2.)
      dx[1] = L+dx[1]

   return dx;

Adjust for
periodicity

Q: For some fixed n, can we take
     less interactions into account
     i.e. compute influence tensors 
     based on some                 ?
  Idea of “k-fold neighborhoods”
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Base case for verification and validation
 As a first application, we consider a 2D periodic array of anisotropic 

squares. The corresponding Minkowski tensors of interest have 
components 

Polar diagram of generalized moduli
Reynolds glyphs of normalized 
Minkowski tensors        for       
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Extra-computation required for the evaluation 
of self-influence tensors

 The computation of the components               requires to know              for   
i=0, …, n for some fixed          . We have

where     

 Similarly, the computation of the components                             requires to 
know                for s=0, …, p and i=0, …, n with some fixed          . 
We have
where
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Post-processing  
 Once an estimate of the polarization stress field is obtained, there are 

different ways to obtain the corresponding strain field

– First, from the very definition of the polarization, we have

If so, we can recover closed form expressions of the corresponding 
piecewise polynomial strain and strain fields:

      
          
          and

However, as we do so, we note that the “prescribed” mean strain state 
is not recovered.

– Another possibility is to exploit the following form of the Lippman-
Schwinger equation 

       for which derivations as the ones carried over for the definition of the
       influence tensors is needed.
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Post-processing  
 Once an estimate of the polarization stress field is obtained, there are 

different ways to obtain the corresponding strain field

– First, from the very definition of the polarization, we have

If so, we can recover closed form expressions of the corresponding 
piecewise polynomial strain and strain fields:

      
          
          and

However, as we do so, we note that the “prescribed” mean strain state 
is not recovered.

– Another possibility is to exploit the following form of the Lippman-
Schwinger equation 

       for which derivations as the ones carried over for the definition of the
       influence tensors is needed.

Work in progress
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Results
 Uniaxial average strain,
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Fixing the method 
 Currently, the method does not work. 
 Possible sources of error:

– Inaccuracy of the Taylor expansion of the Green operator for strains.
– Singularity in the integral equations for the influence tensors are not taken into 

account.

 Problems identified:
– The Taylor expansion                                  of the Green operator                                  

is very inaccurate for           away from              . 

Example: Let                      and                                  with                             and        
                                              so that                      . Then we have 

Generalized moduli 
of the reference 

stiffness
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Fixing the method 
 Problems identified:

– So far, we were only considering                 for                . Following the formalism of 
Torquato (1997), this is equivalent to say that we were only considering                 in

where                                        for star-convex              . 

Then, we have                                             if           and 0 otherwise. 

In summary, we were computing integrals of                 with an inaccurate estimate of  
                while
                           1) Neglecting the non-vanishing contribution of         . 
                           2) Ignoring that some integral expressions of                  are zero.

 Solving the problem:
– From Torquato (1997), we have

where                                          so that                                                                      .

 To enforce minor symmetry, we have
(To enforce major symmetry, we have                                      )

Q: Should we major 
 symmetrize A?
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Fixing the method 
 … solving the problem. Let’s get back to our integral expressions for the influence tensors.

– First, we have

where

so that                                           . Also, we have                                                            

which implies 
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Influence tensors
 We want to compute                           in which the convolution 

is expressed as follows to handle the singularity of the Green operator for strains:

where     is the Hill polarization tensor of a ball embedded in a medium with reference 
stiffness     , and     is the regular part of the Green operator for strains.

 Note that we have                                                  for all              radial at    .

 Case of piecewise constant trial fields, i.e.                                 :  

                                                                                                               where

 Case of piecewise polynomial trial fields, i.e.                                                                          :

The convolution becomes

where                           .
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Influence tensors
 Recall that we have

where                                       with                                       and              .

Let                                                                                          so that                                      

 We are particularly in the following summand of the convolution:

with components 

– Let’s use a first change of variable                        such that       is radial at      . Then 
we have

where      is assumed to have a boundary traced by the curve 
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Fix the method! (1) 
 Is the Taylor series expansion given by

a good estimate of                          for                           . 

 Let                      and                                 with                             and                               so 

that                       .

 Similarly as before, we assume an anisotropic 
stiffness with normalized generalized moduli given by

 Then, we have
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Fix the method! (2) 
 A property of the convolution operator is that, when applied to the polarization field, it returns a 

disturbance strain with vanishing field average, namely                     . Similarly, for piecewise 
polynomial trial, we expect to have

which can be recast in

Thus, we expect the estimates of the influence tenors to be such that
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1D variational attempt 
 First. Heterogeneous medium with stiffness

 Second. Comparison medium with homogeneous stiffness

 Then, introduce a polarization field given by

and the disturbance strain given by

                                                       .

 We have                       . 
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1D variational attempt 
 Look at the term
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1D HS principle for piecewise polynomial polarization
 Look at the term

where

then

  in which                      
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To do list & Questions  
 To do:

– Enforce local equilibrium on the system
– Verify numerical results of D/T for array of squares // (anti-)symmetry
– Verify prescribed average strain is recovered

Questions:
 Are the global systems ever singular?
 What is the effect of truncation of the expansion of the Green operator, i.e. n?
 Can we truncate the level of interaction by neglecting influence tensor components of remote 

inclusions?
 What about nonlinear behaviors? For r>0, the compliance moduli will not be uniform within 

inclusions? What are the consequences on the method?
 Nonlinear HS variational principle, see Talbot and Willis (1985)

General remarks:
 Brisard (2011) p. 45:

– Are you posing the system correctly for p>=1?
• D.6c
• 2.6b, 2.12

 Brisard (2011) p.45: 
– Method of equivalent inclusion vs method of polarized inclusions
– What we do is analogous to the method of polarized inclusions
– Convergence guaranteed for the method of polarized inclusions

 Brisard et al. (2014) is key in stating convergence properties of the method using a variational 
formulation
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