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Motivation/Objective

* Understand the role of morphology on the mechanical performance
of random polycrystals

Simulation of 7/
Full-field simulation of elastic and Markov marked
elasto-viscoplastic behaviors point processes
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Ellipsoidal Growth
Tessellations

Morphological
characterization

Field-statistics

Explore a potentially
more efficient and
insightful way 2



Ellipsoidal growth structures (EGS)

Ellipsoidal growth structures (EGS) are morphological models
defined with marked point patterns (MPP). Underlying
microstructures are constructed after a rule invoking the MPP.

Example: Tessellations.
* MPP: {(z,Z.)}

* Rule: Q. = {z|argmin (z —z.)-Z, - (z — z,) = o}
Y
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QB Resolution

Every cell (2, with boundary 0f2, can be reconstructed from
common curves Z,~ . Can we solve for Z. ? 3
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EGS — Simulation
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MPP simulation by collective rearrangement

Simulation of the point process

Simulate the point set {X;o|/ =1, N} in the
container of size A.on+ after a Poisson point process
with rate A = 1/E[A].

Simulation of the marks

Simulate the mark set {r;o|/ = 1, N} independently
of the points after the prescribed grain distribution

fa(a) and where r = \/a/m.

Rearrangement of the marked point set
Assuming a pair potential p;; between arbitrary
marked points (X;; r;) and (Xj; rj), modify the
marked point set using the force-biased algorithm.
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EGS — Transformation

Solving for parameterizations of common curves Z,., is difficult.
To circumvent this difficulty, we introduce a diffeomorphic
transformation.

Let every point of a growing ellipse be given by a time-
dependent mapping from a unit circle:

Do @ ST X (0,A) — S, C R?
Sz, t) >z, 122

We let the common curves be

Top = {y € 518, | 12(y) = 0}
with £9(y) = 70 o3 (y) — 70 0T ().

Finding parameterizations ¢35 of ¢, " Zay) , * )
is much easier than parameterizing Z.~ directly. (0a, 6b)

12




EGS — Transformation (illustration)

Solving for charts ¢~ is equivalent . )
to solve for times at which a given o5+ (0a,0p) = 57 x(0,4)
point in S' is intersected by a 0 (2(6),£% 0 z(0))

moving ellipse of fixed dimensions. B T

ig%
N
S

Contact function:
& =

(8 (8% (8
Loy Zv Ly

Q(Q).Zg.zg + 5\/(@(8)-ZO"£BO‘)2 _ (:UO‘-ZO‘-a?O‘) [Q(Q)Z%‘Q(@) _ 1]

Y= — Y=

Still, common points (locations of triple junctions) must be

solved numerically. s
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Ellipsoidal growth structures as microstructure models

For the same definition of common curves, i.e. f5', we try to
generate different types of underlying microstructures by
changing the contact functions.

Space filling models (Tess.):
& =g

(1 common curve per pair of neighbors)

Non-space filling models:
« te!
g i 57

Tory # Toa

(2 common curves per
pair of neighbors)




Space filling EGS — Parameterization (Define )

To solve for a parameterization of the common curve 7., C 7., we
first define the distance d :

Convention for the spectral
decomposition of Z7 :

This distance is given by dS = max 22| 'z Ryya -
zeTops ' (9 (S1,1))

where Ry = u;;” ® u;;” cos0 +¢ji3u; ' @ u; sinf so that Ry - z is

an active counterclockwise 0 rad rotation of z.

We find | d9 = (|22 /(057 g™ - 22)2 + (07w - 22)?.

17




Space filling EGS — Parameterization (Cases w/ 42 >1)

The parameterization of the common curve ia,y strongly depends on
the distance d7 . First, we consider:

o 1 single parameterization
dy > 1 ™ nheeded for Lo

Let *¢2 : (%0,,%6,) = V C S' x (0,A)
0 — (2(6),"¢3 0 2(0)) € (mo vy ("Lan)) = T o (M ay)
such that “Zo, = @ ("¢ ((*04,%65))) and Z,, = Up"Z,..

Let z = u]7v]" cos 0 + uy vy ' sin b,

and solve for /7 (x) such that

xS +z— 05 (z)||lzS || 7T e ST

From the def. of ¢, we find G
that *€2(z) = 2 (22| = £5(2)) 7 [o7 (rlreea T 1)

ADD DETAILS. 18




Space filling EGS — Parameterization (Cases w/ 42 >1)
As a result, we find

‘o 1525 15
v 2
22825 + 40\ /(2-29-25)"  (a5-23-23) [2-2-2 — 1]

where “6 = +1 and z € kﬁ((k@a, “0,)) C S'. For d5 > 1, we have
Tory = '"Toand o =1.Aswelet z: 6 — uj cosf + u, 'sinf, we obtain:

(*0,,10,) = (=7, 7) if v > 05 > 1| ,|(*04,0,) = (—02,0)) otherwise.

u 1all u 1bll




Space filling EGS — Parameterization (Cases w/ 42 <1)
Otherwise, we have:

de < 1 - More than 1_parameterization
Y needed forZ, .

Then the common curve is parameterized with z : 6 — ||z~ Ry -z

and "¢ is defined as previously so that Tory = U™, where & = 2 or
3, 15—1and25—35——1

First, a special case is defined as follows, if v{7 < w5’ < 1:

Ryyo - zllas |~

~

IO‘ _Ui 1k:z.afy
(1(90,719) ( (905 904)

YUY
2 2 o No
( HCU 9) ( 97797)

where 09 = asin(d2).

20



Space filling EGS — Parameterization (Cases w/ d2<1)

-if not(v]” <wvy” <1) and wy” -z >0

Y ~ ~
iow = Uzzlkfm Loy = Ui:lkzow

(0a,60) = (—02, 62) (10a,"05) = (=05,05 — ¥5)

(%00,%0p) = (=02, — 0% — %) (20a,%0p) = (=02, — 0% — )

(0a,%06) = (05 — 45, 65)

all—1
ol

—if 1§f;‘(§o‘) >0 - — otherwise -

R7T/2 ’ @f?”g

o
8
8
o
+

“2blb”

“2bla”

— where éf;‘ = asin(dS) and ¢ = acos(uy” - x|z 7).

21



Space filling EGS — Parameterization (Cases w/ d2<1)

-if not(v]” <wvy” <1) and wy” -2 <0

- if 1Y (—62) > 0:
iow — Uzzlkjow
(*6a,'0) = (=05, 65)
(%04,%60,) = (65 + ¢S — 7,0)
(0a,0p) = (=05, 95 — 62)

n2b2a”

- otherwise:

~

Iow — Uz:1kiory

1 1 _ o a o

( 9&7 eb) T (¢7 o 97797)

2 2 L a Qa no
( 9&7 Hb) — (97 ‘|‘¢7 T Traey)

R,z - 2525~

“2b2b"

— where éf;‘ = asin(dy) and 5

= acos(u;” - 5[z ) -

22



Space filling EGS — Solve for Common Points

We summarize and classify the different types of parameterized
common curves as follows:

Loy
ulan ”2a" u2b1an u2b1bn u2b2bn
u 1bll 112b2 all
‘el 0 1 1 1 0
b «
€y 0 1 1 0 1

where “e7 and beg‘ are defined to solve for common points.

23



Space filling EGS — Solve for Common Points

Given a common point x[t] found at the intersection of two common
curves, we want to find the next common point of the cell boundary:

kt=0,ktt=0
kt=1,ktt=0
kt=0,ktt=1

/] Trial
/[ Trial

// Trial

kt=0

L cmn types[t] [0]=0
cmn types[t] [1]=0

#1 typ0

#2
#3

24



Expressions of Minkowski tensors for EGS

Using the parameterization of the EGS, the following
expressions are obtained:

T r—1 . . 0! o
0 _Z Z i+ j Lo Qup Ouy Ay are from the MPP.
i=0 j=0

r r—1 8§ : :
r,s r S ®T_i_j Oé®8+z_k Oé®j+k i7j7k:7s_k
W= () () ew e

i=0 j=0 k=0

W= () (F)as e w™ T o™ et 3 oy

i=0 =0 k=0

where I/ and I:7*" are
scalar coefficients obtained

by integration of the locally

defined contact functions §. e common points

Effect of

25



Morphological characterization

Single grains are characterized using Minkowski tensors:
Measures of mass distribution:

WS’O:/ 2® dV
Q

(0%

Measures of surface distribution:

Wi = / 2® © [n(2)]®"dS
o0,

Curvature-weighted measures of
surface distribution:

Wy =/a  wle)e® @ nla)) s

Reynolds glyphs of Minkowski tensors \

T r+s=2 r+s==6 cr+s=3 cr+s=7
cr+s=28 T r+s=2>5 cr+s=9
W§7O W£>O Z0




EGS — Resolution

I) Discretize and solve numerically for lists of neighbors.
Compute contact times, attribute pixel, and repeat for each pixel.

Get list of neighbors

IT) Solve for common points with parameterizations of common curves.

Solve for common select & bound local and repeat for each
point, charts, neighbor.

“o N

Get atlas of
cell boundary.




Enriched Marching Squares (EMS)

Obijective: Approximate Minkowski tensors with higher
accuracy from coarse resolution of tessellations

Method: Use our parametric representation of grain
boundaries to derive a more efficient Marching square
algorithm:

A3 0 A2 SR RIAD

Minkowski tensors of n-polytopes

n r+1 2 i
o r+1 (—1)" 77 Ly r1-j j
- S () o
k:le ) =0
(1)
7,,8 1 n T 7 . (_1)?,—ij r—j j s
VAGEEDS ()(3) Ve ougl onf, 2)
k=1 1:=0 53=0

TS 1 n S 7 i (_1)i—j ®i_ ®_|_] °= )
W _I;z: 0 =0 j) I e e om

)}

TN (AG) (3)

28



Application #1 / Viscoplastic matrix with random defects

Quantify the morphological uncertainty of plastic regions
* Constitutive model: o(t) =L : [é(t) —&P(t)] | »ICs: o(0) =0, €P(0) =0

£(t) = Is(0)]| - o ;
s(t) = devapo(t), ||EP]|(t) = 1 [(HS(t)‘) _ 1}

T S0
* Loading: Mean constant strain rate, (e)(t) = téRg-(e; ® e; + ae, @ e5)-R
* Material properties: 2D isotropic stiffness; k2p = 2u2p, p2p = 10%sg, € = .5

* Sources of randomness:  « Quantity of interest: Porous-plastified zone
— Size, aspect-ratio r Qi ¥ at a given (¢)
orientation and position »

of defects

( er =01 a=160=0 t
.

ér =10, a =1, 8 =0
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Lippmann-Schwinger equation for periodic elastic media

Periodic elastic BVP:
o(z) =L(z):e(z), V.o(z)=0, e(z) = {Vu(z)}sym

for all z € R*, with L(z + (ne; + me,)L) = L(z) forall n,m e Z s.t.

u(z + (ne; +mey)L) = u(z) + LE - (ne; + mey)

o(x+ (ney +mey)) e, =0o(x)- e fork=1,2
1
and where o := 73 / o(z)dv, is a volume average over Q:=[0, L] x [0, L].
Q

Then, as we introduce the polarization field = with reference L,

T7(z) == o(z) — L' : e(z) = AL(2) : e(z)
where AL(z):= L(z) — LY, the local statement of equilibrium becomes

0. . Disturbance strain field &(x)
Veor(z)+V-[L":e(z)] =0 with vanishing field average.

x)=¢—Cx7(x)=—-Tx*[AL : e(z)]

Lippmann-
Schwinger
equation

with solution

Yo

€

Periodic Green
in which I x 7(z) := / T(z' —z):7(z") dvy.  operator for

R2 \ strains.

Note that for all z, we have € = [AL(2)] ' : 7(2) + T * 7(z)
32



Hashin-Shtrikman (HS) variational principle

Multiplying the previous expression by a test field 7', we have
T'(2) :€=7'(2) : [AL(2)] " : T(2) + 7'(2) : (T 7)(2)

which, after volume averaging over (2, becomes Differential of the HS
— _ ; T ; functional evaluated at
T'ie=17 ALt 17+ 7" (F * T ) the equilibrated stress T

The HS functional is defined as follows by Hashin and Shtrikman (1962):
H(T)i=7":e-1/27" : (AL)"t: 7/ —1/27" : (T x 7/)

H admits a_stationary state for the equilibrated polarization field 7,
irrespectively of the reference stiffness 1.°. At equilibrium, we also have
H(t) =1/28 : (L) — LY : &, where L¢// isst. ¢ =1L/ g

Boundedness conditions of H.:

AL(z) PSD for all z implies V1 C Vo, CV = supH <supH < supH = H(T)

V1 Vo V
AL(z) NSD for all z implies V; CV, CV — 111}1f7-l>1\1;1f7-[>1nf7-[ H(T)

Searching for polarization fields among richer functional spaces
guarantees not to deteriorate the quality of the solution if the reference

medium is chosen properly.
33



Piecewise polynomial polarization fields, i.e. V"

We assume a trial polynomial field of degree p given by

Thp<w>=z<’<a @)Y (70 e >>

(0%

The term +#» . (T « r#») then invokes components of the form

/ / try = 22) . (@, — 22 )it (& — 1) (Ger — 1) - (45, — 22, )y,

which we reformulate by changes of variables and using a Taylor
expansions of the Green operator,

k—1 1
"T(x—y+z,,) =Tz, + E g E— i) 'z <I‘(k’)( Too); z®  ®@y® >k for all (z,y) € Q, x
k=1 1=0

The resulting expression contains the following estimates of “r-s
influence tensors of ., over Q"

xva)[WOS’O(ny)]Sl.--ss

—1) k T 1, i+s,
( )) 'Fz(jlilkl 0 11/ (00 PR e (10 | P s

Special treatment required for v = o 34



HS functional for trial fields in V* (derivation)
From our definition of the estimates of influence tensors, we obtain

ﬁ
I
—
(V)
I
—

p p
P g+ Y0 (0 (T Tvas>s+2>r+2]

where AM® := (L* — L")~! so that the following estimate of the HS
functional "H (") := 7h» : 8 — 1/27h : (AL)~! : 7he — 1/27he . n(T % 7he) 1S

o r=1
p p
_% Z AM® <Ca7'a ® T+ Z Z <Taar’ <W5+8’0(Q/a)a 887a> > )
N r=1s=1 o
p p
_% Z Z <7_a : nTg”(Y) i LA Z Z <8r7'a7 <nT?,277'788>5—|—2> _|_2>
o« A r=1s=1 '

35



Stationarity conditions for trial fields in V"
The stationary state of the functional is such that
— First, let 9,"H = 0 for all « :
After using ("7¢ g )ijre = ("Ty g Jxii; for v £ o and

symmetrizing our estimates of self-influence tensors "T¢¢ , we obtain

Co,€ = Co AM® @ 7% + Z RTS‘]) 77 | for all a.

Second, let Oragr"H =0forall a,rs.t. 1 <r <p:

Similarly, after using ("70 0 )r1...rvijkiss...ss = ("10.0)s1...s0klijr...r TOr ¥ 7 & and

symmetrizing our estimates of self-influence tensors npoa , We obtain

p

p
EWpO () =AM Y (70t W) + 303 (0t ),

s=1 v s=1

forall a,rst. 1 <r<p:

36



“Generalized Mandel representation” for assembly of a global

We want to solve the system system of stationarity equations
r=0 — (&} = [Df){r}
Ingx1 INgX3ng 3nagXx1 3(p+ 1)nax1
r=1 — {&'} = [D{or} + [Dz{8"7} + [D3]{8°T} + - + [D, {87}
6nax1 6naXxbng 6neXx1 6nax9n, Inex1 6nax12n, 12n,x1 6nax3(p + 1)ng
3(p+ 1)nex1
r=2 —{&%) = [Di{o7} + D37} + DI’} + - + [DI{O" 7}
Ingx1 IMX6bng 6Myx1 IMX9g Ingx1 IMXx12n, 12n,x1 IMaX3(p+ 1)ng

3(p+ nex1

r=3 = {g" = Di}or} + DI{O°T} + DIHO' T} + -+ Df){O'™)

12n,x1 12n,,% 61, 6n4x1 12nx 914 9ngx1 12n,,x 1204 12n,x1 12n,X3(p + 1)nq
6nax 1 IMgx1 12n,x1 .3(p + 1)ngx1
r=p — {&"} = D7} + [DE{O°T} + [DED* 7} + - - + [DL]{9" T}
Wh]_Ch we recast ]_n 3(p+ nex1 3(p+ 1)nex6n, 3(p+ Dnax9ng 3(p + 1)nax12n, 3(p+ 1)nax3(p+ 1)ng
— - - where
@ el ooy - o e T e
{52} []D)Z] [DQ] []D2] [DQ] {827'} [ s] T [ 3,7’] + [ 377“]
=2 21% ]D‘%’ D% o ]D>§ 3
JETY = (D] [D3]  [D3] D] [{ {0 T} Assembly of components of

compliances AM® weighted by
Minkowski tensors.

{o"r} )

L pi
3Na , o 3Na o e o 3Ma , o Assembly of components of self-| |
— Wl 5 3+ 3p) — 73l influence and influence tensors.

37



2D Barnett-Lothe integral formalism

* The Green operator is obtained as follows from the Green’s function,
ATijaa(r, 0) = Gy (1,0) + Gy, (r,0) + Gy (r,0) + Gy (7, 0)

J

* Irrespectively of the material symmetry, 2D Green’s functions are a by-

product of the Barnett-Lothe (1973) integral formalism. We have

2G(r, 0) = —% In(r)H(7) — S(6) - H(rx) — H(0) - ST ()

1 0
where S(9) = - /O N'(y)dy and H(9) =

0
% /O N*(y)dy are incomplete Barnett-

Lothe integrals with integrands readily computable for every symmetry.

* To evaluate I';;,;, we only need those integrands and the complete
integrals s(r) and wH(r), which we evaluate numerically.

* We derive the following recurrence relations:

00 = - nepes ovlion
.40 (0) = m—wmgfk4wmmw»4mmgam4wwamﬂxnzz ork =G =
Ok i1, (0)] = ﬁ(’j){mmk T 0153l (0)] — O AT (005 o, (0)])
P, ) = Higni (6) + [NAO)Hay + N2(6)S):]m 6)
0 [hln, (0)] = HijO [y, (0 +Z( ){Hlj@k SINL(0)] + S;105 5 [N3(0)]} 05 [mu, (0)] 28




2D Anisotropy

* Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Liin = To + 2T + Ro cos(4®o) + 4Ry cos(2P1) — Conditions for positive strain energy —
L1112 = Ry sin(4(1>0) + 2R, Sin(2<I>1) Ty — Ry > 0,
L = —Ty+ 217 — 40
1122 0+ 271 — Ro cos(4Po) Ty (T2 — R2) — 2R%{Ty — Ry cos[4(®g — ®1)]} > 0,
L1212 = T() — RO COS(4<I)0) RO Z 0,
Lao1o = — Rpsin(4®g) + 2Ry sin(2P4) R, > 0.
L =Ty + 2T 40¢) — 4 2P :
2222 0 + 271 + Rg cos(4®g) — 4Ry cos(2Py) RoR2sin[4(® — ®1)] £ 0
Ty, T4 : Isotropic polar invariants RoR?sin[4(®g — ®;)] =0 = Symmetry
Ry, R1, &9 — @1 : Anisotropic polar invariants
Substitute ®; by ®; — 0 for counter Computed components of some
clockwise positive passive rotation " gradients of the Green’s function
Validation ——— L0’ — G0)
Equilibrated traction fields M) — Gl |
on random curves _ 107 — G0 ]
—— Polar diagram of — 10! — Gl ||
generalized moduli = 0
O (I
< jt
T 1071 —
U _1p3L /
__1[1);: _ Gi?lzlzli‘v!g) :
_10° Gig‘flzlzlzi‘v!g:] |
—10° | e Gg‘flzlzlzlirff;:} y
~107 —_— Gllgflzlzlzl'zirfe)
—10° 1 I
) 6 T




Drawback of a simple recursive implementation

* Computing the n-th derivative of an anisotropic Green’s function at a
location (r,6) leads up to the following recurrence tree:

G

K (r,0)

'

itk (0)

N;i(6) is computed xx times when evaluating G\, (r,6) —

Number of components of the derivatives of the
Green operator needed to compute estimates of
influence tensors based on a n-th order Taylor
expansion for a polycrystal with n, grains:

o

Slevll

v

N ()]

Oplhl?.

ks ()]

Need for dynamic
programming (DP)

| Y
h;'ﬁll...kn_l(@ aO[h%23...kn_l(9)]
\
2 2 *
h:;;;lkn—2(0) 89[]2':27;1kn—2(0)j| h?j;)fkn_z(e)
N CO ) [N CHI RIS N ()

vy

%..

h%ﬁi..kn_;’, (0)—:

N ()]

h%ﬁ...kn_g (@)

N G

Oy s (O]

v

Oolhiey . p_s (O],

LN ()]

0p [hijn, (0)]

0~ [hije, (0)] -

Dolhije, ...k, (0)]

L

OFhEE & (O]

LN ()]

v

v

0y [N (0)]

0~ [Na(0)]) ---

0y [N (0)]

0~ [N (0)]) - --

LN )

e e o T o o

Height of
recursion tree

fo

r Ol hisn, . 1, (0)]:

40



A bottom-up DP algorithm

* We derive the following bottom-up DP algorithm to compute ., &, () :

300 T

def Ay, . 1, (6) : - From exponential to
dOhk := zeros(n) “I' linear computing time
for k € [1,n]: £ - More than 200 times
for rr € [0,n — k] : %m» quicker for n=8
r=n—k—rr
for s € [0, 7] : =
if (s ==0): s
if (k==1): e S e e s
dOhK[r + k — 1] = Hy;0 [n, (0)] + { Hi;05 [N} (0)] + S0 [N (0)]} ma, (6)
else :
L dohk[r + k — 1] = (k — 1)dOhk[r + k — 2]ng, (6) — dOhk[r + k — 1] [ng, ()]

else :
if (k==1):

 anfr k14 = (1) {105 N O] + 205 [N3(0)]) 35, ()

else :

L L LdOhk[r—i—k—l]—i—_(r

S

) {(k —1)dOhk[r — s + k — 2]} [nk, ()] — dOhk[r — s + k — 1]95 " [ng, (0)]}

_ #£At this stage, r € [0,n — k] = dOhk[r +k — 1] = 8§[hfjk1mkk (0)]

#At this stage, k € [1,n] = dOhk[k — 1] = hfjkl_‘_kk (0)

return dOhk[n — 1]
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Morphological characterization for simple geometries

* As a first application, we consider a 2D periodic array of anisotropic
squares. The corresponding Minkowski tensors of interest have
components

[Wg’o](nl) = [Wg’o] 111 22...2

7\

ny € [0,7]

Ve

N7~ R n :: ’r o n
(ny times) (r — ny times) 2 :

W) (ny) = (a/2)"17m2%2 — (—a/2)™ T (a/2)" T — (a/2)" T (—a/2)" " + (—a/2)" T (—a/2)"= "}
(n1+1)(n2 +1)
Reynolds glyphs of normalized
Polar diagram of generalized moduli Minkowski tensors Wy for » < 12

- N— E®y/E
/Nl nl8)/n

vid) /v




Results

* Preliminary results for a uniaxial average strain (€) = e, ® e,
Polynomial HS Polynomial HS

= S~

12/ 10

|V -7

VERY POOR QUALITATIVE RESULTS
* The change of variables used to construct ("I;))r,...r.ijkis:...s. TEQqUITES TO

r,s

evaluate the Taylor expansion of the Green operator near the origin, where
it is a very bad approximation

Tk (Z0)
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