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Motivation/Objective
 Understand the role of morphology on the mechanical performance 

of random polycrystals

Morphological
characterization

Simulation of 
Markov marked 
point processes

Ellipsoidal Growth
Tessellations

Full-field simulation of elastic and 
elasto-viscoplastic behaviors

Field-statistics 

Explore a potentially 
more efficient and 

insightful way

?
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Ellipsoidal growth structures (EGS)
Ellipsoidal growth structures (EGS) are morphological models 
defined with marked point patterns (MPP). Underlying 
microstructures are constructed after a rule invoking the MPP.

Example: Tessellations.

• MPP:

• Rule:

Every cell      with boundary        can be reconstructed from 
common curves       . Can we solve for       ? 

MPP Underlying microstructure

Resolution
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EGS – Transformation 
Solving for parameterizations of common curves        is difficult. 
To circumvent this difficulty, we introduce a diffeomorphic 
transformation.

Let every point of a growing ellipse be given by a time-
dependent mapping from a unit circle: 

We let the common curves be

with                                                   .

Finding parameterizations      of
is much easier than parameterizing        directly.  
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EGS – Transformation (illustration) 
Solving for charts      is equivalent
to solve for times at which a given
point in        is intersected by a 
moving ellipse of fixed dimensions.

Contact function:

Still, common points (locations of triple junctions) must be 
solved numerically.
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Ellipsoidal growth structures as microstructure models 

For the same definition of common curves, i.e.      , we try to 
generate different types of underlying microstructures by 
changing the contact functions.

Space filling models (Tess.): Non-space filling models:

(2 common curves per 
pair of neighbors)

(1 common curve per pair of neighbors)
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Space filling EGS – Parameterization (Define    )
To solve for a parameterization of the common curve                  , we 
first define the distance      :

Convention for the spectral
decomposition of      :

This distance is given by                                                                , 

where                                                                   so that            is 

an active counterclockwise    rad rotation of    .       

We find                                                                          .  
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Space filling EGS – Parameterization (Cases w/        )
The parameterization of the common curve        strongly depends on 
the distance      . First, we consider:

Let                                            

such that                                            and                       .

Let                                                  ,

and solve for           such that
                      

                                                . 
             
From the def. of      , we find 
that                                               . 

1 single parameterization 
needed for        .

ADD DETAILS.
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Space filling EGS – Parameterization (Cases w/        )
As a result, we find

where               and                                      . For            , we have            
                 and           . As we let                                            , we obtain:

where                                                                                   .                     
                    

 

“1a” “1b”
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Space filling EGS – Parameterization (Cases w/        )
Otherwise, we have:

Then, the common curve is parameterized with                                     
and        is defined as previously so that                        where           or 
  ,            and                      . 

First, a special case is defined as follows,                           :                  

where                      .

More than 1 parameterization   
needed for        .

“2a”
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Space filling EGS – Parameterization (Cases w/        )
-                                                               :

  –                          :                             –                :

– where                        and                                            .

                    

“2b1b”“2b1a”
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Space filling EGS – Parameterization (Cases w/        )
-                                                               :

  –                          :                             –                :

– where                        and                                            .

“2b2b”“2b2a”
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Space filling EGS – Solve for Common Points
We summarize and classify the different types of parameterized 
common curves as follows:

where        and       are defined to solve for common points.

                    

“1a”       “2a”       “2b1a”       “2b1b”      “2b2b”
“1b”                  “2b2a”

 0          1           1             1           0

 0          1           1             0           1
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Space filling EGS – Solve for Common Points
Given a common point x[t] found at the intersection of two common 
curves, we want to find the next common point of the cell boundary:

kt=0,ktt=0 // Trial #1
kt=1,ktt=0 // Trial #2
kt=0,ktt=1 // Trial #3

                    

cmn_types[t][0]=0

x[t]

cmn_types[t][1]=0

kt=0

ktt=1

typ0
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Expressions of Minkowski tensors for EGS
Using the parameterization of the EGS, the following 
expressions are obtained: 

where       and           are 
scalar coefficients obtained 
by integration of the locally 
defined contact functions   .  

Effect of 
common points
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Morphological characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:

Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:

Reynolds glyphs of Minkowski tensors
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EGS – Resolution
I) Discretize and solve numerically for lists of neighbors.

II) Solve for common points with parameterizations of common curves.

 

and repeat for each pixel.Compute contact times, attribute pixel, 

Get list of neighbors

and repeat for each 
                 neighbor.

               Solve for common    
point,

select & bound local   
charts, 

Get atlas of
cell boundary.
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Enriched Marching Squares (EMS)

Minkowski tensors of n-polytopes

Objective: Approximate Minkowski tensors with higher 
accuracy from coarse resolution of tessellations

Method: Use our parametric representation of grain 
boundaries to derive a more efficient Marching square 
algorithm:
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Application #1 / Viscoplastic matrix with random defects 
Quantify the morphological uncertainty of plastic regions

 Constitutive model:           ∙ ICs:

                                                       
                             ,

 Loading: Mean constant strain rate, 

 Material properties: 2D isotropic stiffness; 

 Sources of randomness:     ∙ Quantity of interest: Porous-plastified zone 
– Size, aspect-ratio                                        at a given 

orientation and position
of defects
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Lippmann­Schwinger equation for periodic elastic media 
Periodic elastic BVP:      

for all            , with                                                for all                 s.t.

and where                              is a volume average over                            .

Then, as we introduce the polarization field     with reference     ,

where                               , the local statement of equilibrium becomes

with solution

in which                                                          .

Note that for all    , we have 

Disturbance strain field          
with vanishing field average.    
        

Lippmann-
Schwinger 
equation

Periodic Green 
operator for 
strains.
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Hashin­Shtrikman (HS) variational principle 
Multiplying the previous expression by a test field     , we have 

which, after volume averaging over    , becomes

The HS functional is defined as follows by Hashin and Shtrikman (1962):

     admits a stationary state for the equilibrated polarization field    , 
irrespectively of the reference stiffness     . At equilibrium, we also have     
                                              , where          is s.t.                     .

Boundedness conditions of     : 

Searching for polarization fields among richer functional spaces 
guarantees not to deteriorate the quality of the solution if the reference 
medium is chosen properly.  

Differential of the HS 
functional evaluated at 
the equilibrated stress 
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Piecewise polynomial polarization fields, i.e.  
We assume a trial polynomial field of degree     given by                            
    
                                                                                                       ,
                                             
The term                     then invokes components of the form

which we reformulate by changes of variables and using a Taylor 
expansions of the Green operator,

The resulting expression contains the following estimates of “r-s 
influence tensors of       over      ”  
 

Special treatment required for 
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 HS functional for trial fields in      (derivation)   
From our definition of the estimates of influence tensors, we obtain          
                              

The other term,                                can be calculated exactly. We obtain

where                              so that the following estimate of the HS 
functional                                                                                               is

Now, we want to solve for the stationary state of the functional, i.e. find   
                               for all     s.t.             is optimized.
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Stationarity conditions for trial fields in  
The stationary state of the functional is such that 

After using                                      for            and 

symmetrizing our estimates of self-influence tensors          , we obtain

Similarly, after using                                                                      for            and 

symmetrizing our estimates of self-influence tensors          , we obtain                      
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“Generalized Mandel representation” for assembly of a global 
system of stationarity equations  We want to solve the system

which we recast in                             
                                                                         where

 

                                                                                 

                                                         

Assembly of components of 
compliances           weighted by 
Minkowski tensors.

Assembly of components of self-
influence and influence tensors.
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2D Barnett­Lothe integral formalism
 The Green operator is obtained as follows from the Green’s function,

 Irrespectively of the material symmetry, 2D Green’s functions are a by-
product of the Barnett-Lothe (1973) integral formalism. We have

where                             and                             are incomplete Barnett-

Lothe integrals with integrands readily computable for every symmetry.
 To evaluate       , we only need those integrands and the complete 

integrals       and       , which we evaluate numerically.
 We derive the following recurrence relations:

Requires evaluation of
and              

           for                           
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2D Anisotropy 
 Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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Drawback of a simple recursive implementation

Need for dynamic 
programming (DP)

 Computing the n-th derivative of an anisotropic Green’s function at a 
location       leads up to the following recurrence tree: 

is computed xx times when evaluating

Number of components of the derivatives of the
Green operator needed to compute estimates of

influence tensors based on a n-th order Taylor 
expansion for a polycrystal with      grains:

Height of 
recursion tree
for                       :
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A bottom­up DP algorithm
  We derive the following bottom-up DP algorithm to compute               :

- From exponential to 
  linear computing time

- More than 200 times  
  quicker for n=8
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Morphological characterization for simple geometries 
 As a first application, we consider a 2D periodic array of anisotropic 

squares. The corresponding Minkowski tensors of interest have 
components 

Polar diagram of generalized moduli
Reynolds glyphs of normalized 
Minkowski tensors        for       
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Results
 Preliminary results for a uniaxial average strain

 The change of variables used to construct                              requires to 
evaluate the Taylor expansion of the Green operator near the origin, where 
it is a very bad approximation

VERY POOR QUALITATIVE RESULTS

Spectral solver Polynomial HS Polynomial HS


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

