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Motivation/Objective

* Understand the role of morphology on the mechanical performance
of random polycrystals
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On a realization-by-realization
basis, can we

Field-statistics

Define micromechanical
schemes that use information

to estimate field statistics about
«<—  of mechanical behaviors Morphological
efficiently and accurately enough? symmetry/anisotropy *

constitutive behavior

Material symmetry and [¢——



Morphological characterization

Single grains are characterized using Minkowski tensors:
Measures of mass distribution:

WS’O:/ 2® dV
Q

(0%

Measures of surface distribution:

Wi = / 2® © [n(2)]®"dS
o0,

Curvature-weighted measures of
surface distribution:

Wy =/a  wle)e® @ nla)) s

Reynolds glyphs of Minkowski tensors \
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Lippmann-Schwinger equation for periodic elastic media

Periodic elastic BVP:
o(z) =L(z):e(z), V.o(z)=0, e(z) = {Vu(z)}sym

for all z € R*, with L(z + (ne; + me,)L) = L(z) forall n,m e Z s.t.

u(z + (ne; +mey)L) = u(z) + LE - (ne; + mey)

o(x+ (ney +mey)) e, =0o(x)- e fork=1,2
1
and where o := 73 / o(z)dv, is a volume average over Q:=[0, L] x [0, L].
Q

Then, as we introduce the polarization field = with reference L,

T7(z) == o(z) — L' : e(z) = AL(2) : e(z)
where AL(z):= L(z) — LY, the local statement of equilibrium becomes

0. . Disturbance strain field &(x)
Veor(z)+V-[L":e(z)] =0 with vanishing field average.

x)=¢—Cx7(x)=—-Tx*[AL : e(z)]

Lippmann-
Schwinger
equation

with solution

Yo

€

Periodic Green
in which I x 7(z) := / T(z' —z):7(z") dvy.  operator for

R2 \ strains.

Note that for all z, we have € = [AL(2)] ' : 7(2) + T * 7(z)



Hashin-Shtrikman (HS) variational principle

Multiplying the previous expression by a test field 7', we have
T'(2) :€=7'(2) : [AL(2)] " : T(2) + 7'(2) : (T 7)(2)

which, after volume averaging over (2, becomes Differential of the HS
— _ ; T ; functional evaluated at
T'ie=17 ALt 17+ 7" (F * T ) the equilibrated stress T

The HS functional is defined as follows by Hashin and Shtrikman (1962):
H(T)i=7":e-1/27" : (AL)"t: 7/ —1/27" : (T x 7/)

H admits a_stationary state for the equilibrated polarization field 7,
irrespectively of the reference stiffness 1.°. At equilibrium, we also have
H(t) =1/28 : (L) — LY : &, where L¢// isst. ¢ =1L/ g

Boundedness conditions of H.:

AL(z) PSD for all z implies V; C Vo, CV = supH < supH < supH = H(T)

V1 Vo V
AL(z) NSD for all z implies V; CV, CV — 13fH>13fH>1nf7i H(T)

Searching for polarization fields among richer functional spaces
guarantees not to deteriorate the quality of the solution if the reference

medium is chosen properly.
6



Case of piecewise constant polarization fields, i.e. V"™

1 itxze
ho (Oé) = - <
Assume T E Xa where o : { 0 otherwise °

Then 7ho : (T % 7ho) ZZT : Tg ) = 77, where

influence tensors

= Xa ()X~ ( dv,dv
OO ‘Q| /R2 /]R? 8 ( ) Y

so that the HS functional becomes

:ZCQ’T a——anT (AL*)™" . O‘—%ZZT“:TS‘IJ:T7

for which the stationary state is obtained for

Co(AL*)™" 7% + Z Tyl : 77 =cqg for all

Remark: We want to avoid mtegratmg I'. Instead, we want to find a
relation between Tg"g, the Minkowski tensors (which we use to
characterize morphological anisotropy) of the microstructure, and the

derivatives of T .




Influence tensors for polarization fields in V"

To avoid singularities, we consider the domain Q,, := Q, w {-z_} and let

TS‘])—‘M//XQ T+ 2,,)Xy(y +2,)0(x—y+z,,)drdy, = |Q\// (z —y+z,,)dvdy,

R2 R2 Q’ QL
where gm =z, Also we consider the following Taylor expansion,
n k—1 7
Ta-y+z,) =Tz, +ZZ —m' <r<k>( 2z @y® >k for all (z,y) € Y, x &,
k=1 1=0

so that for~ # a , we introduce the following estimates:

(87 1 n
"To = 1l // 'z —y+z,,)dvdy,

Q’ Q7
npoy (k) k—1,0 ry/ 2,0 ry/
T0 0 CGC’Y|Q’F |Q| kz:l lz; . Z "L' <F (—fyoz) WO (Qa) ® WO (Q’Y)>k
where, T'™ (z) is the m-th derivative of the Green operator, i.e. with
components I'\7y) = (z) = ny...n, Dijia () -

Note that the Taylor expansion does satisfy the Maxwell-Betti theorem, i.e.
for a stationary system

nF'L]kl (l _ g + nya) — anl’L] (3/ T+ xafy)



Self-influence tensors for polarization fields in V'

When v = a, we refer to Topasa self-influence tensor. We can not
integrate I‘(:z: —yY+To,) over Q, x Q. because I'is singular at the origin.

Instead, we proceed to the same change of variables as before, for some
v # o . We obtain

Too = 1l /m /, o)AV dyy

where Q := Q, w{~-z } = {z -z |z € Q,}. Using the same Taylor series
expansion as before we get

"T5 = AT (a ‘Q‘ZZ _m (P9 e, ) W) @ W (@)

k
=11=0

where, similarly, we have Q) = O v {%a} so that Wg°(Q1) = Wi (Qh{z.. ).

Because Minkowski tensors are motion covariant, we can write

W’Ino Q'Y — X WZ—t,O Q/
Compute these 0" (%) ;(1)%@@ o ()

fori=0,...,n

so that there is no need to re-analyze a digital microstructure to evaluate

wi?(Q)), which we need to compute the self-influence tensors. 9



Influence tensors for polarization fields in V"

To summarize, the following estimates of influence and self-influence
tensors are obtained:

estimate of the 0-0 influence estimate of the 0-0
tensor of ()., over ), self-influence tensor of .,
nTO’% = @ / / Lz —y+ gva)dvgdyg "TEG = ﬁ / / "Iz —y+z,,)dvdyy,
QL N F o P /% N F o

which we respectively recast in the following expressions:

ik
(_1) F’E]]Z:lk’lkk (—’yoz
(7 — )]

i np(k

for any v # « (k — )l

For ~ fixed, | ("T50 )ijxt = ("To.0 )kiij 10




Influence tensors for polarization fields in V"

To summarize, the following estimates of influence and self-influence
tensors are obtained:

estimate of the 0-0 influence estimate of the 0-0
tensor of ()., over ), self-influence tensor of .,
nmmo 1 n ].
TOB = @ / / Lz —y+ gva)dvgdyg "TEG = ﬁ / / "Iz —y+z,,)dvdyy,
QL QY vV F fo T8 v # «

which we respectively recast in the following expressions:

Results obtained for piecewise
(1) T8 (@ constant trial fields

(k — )i I

No field statistics available

i np(k
(—1) Fq(:jlilkl..kk @fyo)
for any v # « (k — )l

[Wé{—%o (Q/a)]kl kg [WS’O (Qg)]kk—

it1--kg

For ~ fixed, | ("T50 )ijxt = ("To.0 )kiij 11




Piecewise polynomial polarization fields, i.e. V"

Now, if we assume a trial polynomial field of degree p given by

p

() i Z (Xa@)qﬂ + Yo (2) Z <7'048k, (z — ga)®k>k> ’

« k=1

The term 7" : (T« ") then contains terms of the form
/:/xm—-a (@ — 2 )i — ) (e —22.) - (e, — 22, )dvpdr,

— # Change of variable
//xrl . xrr z]k;l y+§7a)ysl - °ysstngg Where Q/. = {& — Lo | S Qo}

which, 31m11ar1y as before, can lead to estimates of “r-s influence tensors
of Q. over Q,

1
Gk

k r+k—1, 1+s
AR LU () PSRN () R

n 8% 7“,0 S,O
(T 7)7”1 Trigklsy...ss W (Q/a)]ﬁ-.-mrijkl(lfya)[WO (Qﬁy)]sl.-.ss

! ijkl (E y+x a) ="1 klij (y £ Qa'y) — (nCFr g)rl...rrkzlijsl...s (nT )7"1 Trrijklsy...sq
/y 7
— (nzgr)sl sskligry...ryp — (nCZ 7)7"1 rrtjklsy...ss 12



Self-influence tensors for polarization fields in V"
Similarly as before, we want to address the terms with those components:

/ / (ry = 22) . (2, — 2 )it (2 — 1) Ger — 2%) . (8, — 22 )y,
Qo Na

I
= % Change of variable Qy 1= Qyw{-z,}
Y. _ o
//.I‘Tl oo Lt —y +2,0) (Ys, —28) o (Ys, — 230 )dvedyy Qg 1= Q'oz ¥ { @7}

so that the following estimates of the “r-s self-influence tensor of ). are
obtained after picking some v # «,

L o 5,0 I

YT ) rigklsy s = @[WO ()] Digra (2,0) [Wo ™ ()]s .6 for any v # « :

1 (_1)Z k r+k—1,0 SEXY l

_'_ﬁ (k _ i)|,&'|rz('j125lk:1..kk (gya)[WO—I_ 7 (Q/a)]kl..kk_irl..rr [7W0| (Q;)]kk_i+1---kk31---ss :

k=1 i=0 o |

________________________________________________________________ B
where ;

11—t Z_tat

YAl S, Z S,
@) =3 () ) W)
t=0

Which, once again, can be obtained by post-processing the Minkowski
tensors computed previously.
13



HS functional for trial fields in V* (derivation)
From our definition of the estimates of influence tensors, we obtain

ﬁ
I
—
(V)
I
—

p p
P g+ Y0 (0 (T Tvas>s+2>r+2]

where AM® := (L* — L")~! so that the following estimate of the HS
functional "H (") := 7h» : 8 — 1/27h : (AL)~! : 7he — 1/27he . n(T % 7he) 1S

o r=1
p p
_% Z AM® <Ca7'a ® T+ Z Z <Taar’ <W5+8’0(Q/a)a 887a> > )
N r=1s=1 o
p p
_% Z Z <7_a : nTg”(Y) i LA Z Z <8r7'a7 <nT?,277'788>5—|—2> _|_2>
o« A r=1s=1 '

14



Stationarity conditions for trial fields in V"
The stationary state of the functional is such that
— First, let 9,"H = 0 for all « :
After using ("7¢ g )ijre = ("Ty g Jxii; for v £ o and

symmetrizing our estimates of self-influence tensors "T¢¢ , we obtain

Co,€ = Co AM® @ 7% + Z RTS‘]) 77 | for all a.

Second, let Oragr"H =0forall a,rs.t. 1 <r <p:

Similarly, after using ("70 0 )r1...rvijkiss...ss = ("10.0)s1...s0klijr...r TOr ¥ 7 & and

symmetrizing our estimates of self-influence tensors npoa , We obtain

p

p
EWpO () =AM Y (70t W) + 303 (0t ),

s=1 v s=1

forall a,rst. 1 <r<p:

15



“Generalized Mandel representation” for assembly of a global

We want to solve the system system of stationarity equations
r=0 — (&} = [Df){r}
Ingx1 INgX3ng 3nagXx1 3(p+ 1)nax1
r=1 — {&'} = [D{or} + [Dz{8"7} + [D3]{8°T} + - + [D, {87}
6nax1 6naXxbng 6neXx1 6nax9n, Inex1 6nax12n, 12n,x1 6nax3(p + 1)ng
3(p+ 1)nex1
r=2 —{&%) = [Di{o7} + D37} + DI’} + - + [DI{O" 7}
Ingx1 IMX6bng 6Myx1 IMX9g Ingx1 IMXx12n, 12n,x1 IMaX3(p+ 1)ng

3(p+ nex1

r=3 = {g" = Di}or} + DI{O°T} + DIHO' T} + -+ Df){O'™)

12n,x1 12n,,% 61, 6n4x1 12nx 914 9ngx1 12n,,x 1204 12n,x1 12n,X3(p + 1)nq
6nax 1 IMgx1 12n,x1 .3(p + 1)ngx1
r=p — {&"} = D7} + [DE{O°T} + [DED* 7} + - - + [DL]{9" T}
Wh]_Ch we recast ]_n 3(p+ nex1 3(p+ 1)nex6n, 3(p+ Dnax9ng 3(p + 1)nax12n, 3(p+ 1)nax3(p+ 1)ng
— - - where
@ el ooy - o e T e
{52} []D)Z] [DQ] []D2] [DQ] {827'} [ s] T [ 3,7’] + [ 377“]
=2 21% ]D‘%’ D% o ]D>§ 3
JETY = (D] [D3]  [D3] D] [{ {0 T} Assembly of components of

compliances AM® weighted by
Minkowski tensors.

{o"r} )

L pi
3Na , o 3Na o e o 3Ma , o Assembly of components of self-| |
— Wl 5 3+ 3p) — 73l influence and influence tensors.

16



Computation of a table of derivatives of Green operators

* For some given order n of the Taylor expansion used for the Green
operators, we need to compute

(1) (2) (n)
Uikt ks (@ya)v Fz’jkl,kl (%a)a Fijkl,kle (im)v "'7Fz’jkl,k1...kk @»ya)

* Taking advantage of symmetries, if all pairwise interactions are to be
accounted for, this means that
o(5)("7)
2 2

3(ng — ng(n+1)(n + 2)
2

components need to be evaluated.

* The construction of the table of derivatives is what governs the computing
time of the current implementation.

* In a later time, it would be relevant to introduce “k-fold neighborhoods” by
limiting the number of grains @, interacting with a grain ©,to the 7.(a, 1) <n,
nearest neighbors, or to the 7.(a,2)<n. first and second nearest neighbors,

and so on...
17



2D Barnett-Lothe integral formalism

* The Green operator obtained as follows from the Green'’s function,
ATijaa(r, 0) = Gy (1,0) + Gy, (r,0) + Gy (r,0) + Gy (7, 0)

J

* Irrespectively of the material symmetry, 2D Green’s functions are a by-

product of the Barnett-Lothe (1973) integral formalism. We have

2G(r, 0) = —% In(r)H(7) — S(6) - H(rx) — H(0) - ST ()

1 0
where S(9) = - /O N'(y)dy and H(9) =

0
% /O N*(y)dy are incomplete Barnett-

Lothe integrals with integrands readily computable for every symmetry.

* To evaluate I';;,;, we only need those integrands and the complete
integrals s(r) and wH(r), which we evaluate numerically.

* We derive the following recurrence relations:

00 = - nepes ovlion
.40 (0) = m—wmgfk4wmmw»4mmgam4wwamﬂxnzz ork =G =
Ok i1, (0)] = ﬁ(’j){mmk T 0153l (0)] — O AT (005 o, (0)])
P, ) = Higni (6) + [NAO)Hay + N2(6)S):]m 6)
0 [hln, (0)] = HijO [y, (0 +Z( ){Hlj@k SINL(0)] + S;105 5 [N3(0)]} 05 [mu, (0)] 18




2D Anisotropy

* Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Liin = To + 2T + Ro cos(4®o) + 4Ry cos(2P1) — Conditions for positive strain energy —
L1112 = Ry sin(4(1>0) + 2R, Sin(2<I>1) Ty — Ry > 0,
L = —Ty+ 217 — 40
1122 0+ 271 — Ro cos(4Po) Ty (T2 — R2) — 2R%{Ty — Ry cos[4(®g — ®1)]} > 0,
L1212 = T() — RO COS(4<I)0) RO Z 0,
Lao1o = — Rpsin(4®g) + 2Ry sin(2P4) R, > 0.
L =Ty + 2T 40¢) — 4 2P :
2222 0 + 271 + Rg cos(4®g) — 4Ry cos(2Py) RoR2sin[4(® — ®1)] £ 0
Ty, T4 : Isotropic polar invariants RoR?sin[4(®g — ®;)] =0 = Symmetry
Ry, R1, &9 — @1 : Anisotropic polar invariants
Substitute ®; by ®; — 0 for counter Computed components of some
clockwise positive passive rotation " gradients of the Green’s function
Validation ——— L0’ — G0)
Equilibrated traction fields M) — Gl |
on random curves _ 107 — G0 ]
—— Polar diagram of — 10! — Gl ||
generalized moduli = 0
O (I
< jt
T 1071 —
U _1p3L /
__1[1);: _ Gi?lzlzli‘v!g) :
_10° Gig‘flzlzlzi‘v!g:] |
—10° | e Gg‘flzlzlzlirff;:} y
~107 —_— Gllgflzlzlzl'zirfe)
—10° 1 I
) 6 T




Morphological characterization for simple geometries

* As a first application, we consider a 2D periodic array of anisotropic
squares. The corresponding Minkowski tensors of interest have
components

[Wg’o](nl) = [Wg’o] 111 22...2

7\

ny € [0,7]

Ve

N7~ R n :: ’r o n
(ny times) (r — ny times) 2 :

W) (ny) = (a/2)"17m2%2 — (—a/2)™ T (a/2)" T — (a/2)" T (—a/2)" " + (—a/2)" T (—a/2)"= "}
(n1+1)(n2 +1)
Reynolds glyphs of normalized
Polar diagram of generalized moduli Minkowski tensors Wy for » < 12

- N— E®y/E
/Nl nl8)/n

vid) /v




Results

* Preliminary results for a uniaxial average strain (€) = e, ® e,

(111/T0)(To +T1)/(To + 2T11)

T12/ 1o

Note that

DY DY DY ... DY
Dfl D3 DY ... [
Di Di DI ... DI
D DY DY ... Dz

is symmetric because Q/ has
the same morphology for all «

394

60

108

168

240
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Post-processing

* Once an estimate of the polarization stress field is obtained, there are
different ways to obtain the corresponding strain field

— First, from the very definition of the polarization, we have
e(z) = AM(z) : ()

If so, we can recover closed form expressions of the corresponding
piecewise polynomial strain and strain fields:

v (z) = Z (Xa(@ea + Xa(2) Z <€O‘8k, (z — la)®k>k>

o k=1
and o (z) = Z (Xoc(§>0'a + Xa(z) Z <0'O‘8k, (x — &a)®k>k>
- k=1

However, as we do so, we note that the “prescribed” mean strain state
IS not recovered.

— Another possibility is to exploit the following form of the Lippman-
Schwinger equation .
e(x) = —"Tx7"(x)
for which derivations as the ones carried over for the definition of the
influence tensors is needed. 22



Post-processing

* Once an estimate of the polarization stress field is obtained, there are
different ways to obtain the corresponding strain field

— First, from the very definition of the polarization, we have
e(z) = AM(z) : ()

If so, we can recover closed form expressions of the corresponding
piecewise polynomial strain and strain fields:

v (z) = Z (Xa(@ea + Xa(2) Z <€O‘8k, (z — la)®k>k>

o k=1
and o (z) = Z (Xoc(§>0'a + Xa(z) Z <0'O‘8k, (x — &a)®k>k>
- k=1

However, as we do so, we note that the “prescribed” mean strain state
IS not recovered.

— Another possibility is to exploit the following form of the Lippman-

Schwinger equation
e(x) =e—"I'xT

for which derivations as the ones carrie n of the
influence tensors is needed. 23

h
:I Work in progress L




References

* Barnett, D. and Lothe, J. (1973). Synthesis of the sextic and the integral formalism for

dislocations, greens functions and surface waves in anisotropic elastic solids. Phys. Norv.,
7:13-19.

* Brisard, S. (2011). Analyse morphologique et homogénéisation numérique: ap-
plication a la pate de ciment. PhD thesis, Université Paris-Est.

* Brisard, S., Dormieux, L., and Sab, K. (2014). A variational form of the equivalent inclusion
method for numerical homogenization. International Journal of Solids and Structures,
51(3):716 - 728.

* Eshelby, J., Read, W,, and Shockley, W. (1953). Anisotropic elasticity with applications to
dislocation theory. Acta Metallurgica, 1(3):251-259.

* Hashin, Z. and Shirikman, S. (1962). On some variational principles in anisotropic and
nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10(4):335-342.

* Molinari, A. (2001). Averaging models for heterogeneous viscoplastic and elastic viscoplastic
materials. Journal of Engineering Materials and Technology, 124(1):62-70.

* Ponte-Castaneda, P. and Willis, J. (1995). The effect of spatial distribution on the effective
behavior of composite materials and cracked media. Journal of the Mechanics and Physics of
Solids, 43(12):1919-1951.

* Stroh, A. N. (1958). Dislocations and cracks in anisotropic elasticity. Philosophical Magazine,
3(30):625-646.

* Stroh, A. N. (1962). Steady state problems in anisotropic elasticity. Journal of Mathematics
and Physics, 41(1-4):77-103.

* Ting, T. (1996). Anisotropic Elasticity: Theory and Applications. Oxford University Press.

* Torquato, S. (1997). Effective stiffness tensor of composite mediai. exact series expansions.
Journal of the Mechanics and Physics of Solids, 45(9):1421-1448.

* Vannucci, P. (2016). Another View on Planar Anisotropy: The Polar Formalism, pages 489-524.
Springer International Publishing, Cham.

* Willis, J. (1977). Bounds and self-consistent estimates for the overall properties of anisotropic
composites. Journal of the Mechanics and Physics of Solids, 25(3):185-202. 24




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

