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Motivation/Objective
 Understand the role of morphology on the mechanical performance 

of random polycrystals

Morphological
characterization

Simulation of 
Markov marked 
point processes

Ellipsoidal Growth
Tessellations

Full-field simulation of elastic and 
elasto-viscoplastic behaviors

Field-statistics 

Explore a potentially 
more efficient and 

insightful way

?
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Motivation/Objective
 Understand the role of morphology on the mechanical performance 

of random polycrystals

Morphological
characterization

Ellipsoidal Growth
Tessellations

Full-field simulation of elastic 
and elasto-viscoplastic behaviors

Field-statistics 

Morphological 
symmetry/anisotropy

On a realization-by-realization 
basis, can we

Define micromechanical 
schemes that use information 

about

Material symmetry and 
constitutive behavior

to  estimate field statistics 
of mechanical behaviors

efficiently and accurately enough?
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Morphological characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:

Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:

Reynolds glyphs of Minkowski tensors
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Lippmann­Schwinger equation for periodic elastic media 
Periodic elastic BVP:      

for all            , with                                                for all                 s.t.

and where                              is a volume average over                            .

Then, as we introduce the polarization field     with reference     ,

where                               , the local statement of equilibrium becomes

with solution

in which                                                          .

Note that for all    , we have 

Disturbance strain field          
with vanishing field average.    
        

Lippmann-
Schwinger 
equation

Periodic Green 
operator for 
strains.
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Hashin­Shtrikman (HS) variational principle 
Multiplying the previous expression by a test field     , we have 

which, after volume averaging over    , becomes

The HS functional is defined as follows by Hashin and Shtrikman (1962):

     admits a stationary state for the equilibrated polarization field    , 
irrespectively of the reference stiffness     . At equilibrium, we also have     
                                              , where          is s.t.                     .

Boundedness conditions of     : 

Searching for polarization fields among richer functional spaces 
guarantees not to deteriorate the quality of the solution if the reference 
medium is chosen properly.  

Differential of the HS 
functional evaluated at 
the equilibrated stress 
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Case of piecewise constant polarization fields, i.e.  

Assume                                        where                                   .     

Then                                                             , where

                                                                         
                                                                                            

so that the HS functional becomes

for which the stationary state is obtained for

Remark: We want to avoid integrating   . Instead, we want to find a 
relation between        , the Minkowski tensors (which we use to 
characterize morphological anisotropy) of the microstructure, and the 
derivatives of    . 

influence tensors
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Influence tensors for polarization fields in  
To avoid singularities, we consider the domain                            and let

where                         . Also, we consider the following Taylor expansion, 

so that  for           , we introduce the following estimates:

  

where,             is the m-th derivative of the Green operator, i.e. with                
                                                     components                                               .

Note that the Taylor expansion does satisfy the Maxwell-Betti theorem, i.e. 
for a stationary system  
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Self­influence tensors for polarization fields in
When           , we refer to        as a self-influence tensor. We can not 
integrate                         over               because    is singular at the origin.

Instead, we proceed to the same change of variables as before, for some    
          . We obtain

where                                                             . Using the same Taylor series 
expansion as before, we get

where, similarly, we have                            so that                                     .

Because Minkowski tensors are motion covariant, we can write

so that there is no need to re-analyze a digital microstructure to evaluate  
            , which we need to compute the self-influence tensors. 

Compute these 
for i = 0,…,n
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Influence tensors for polarization fields in  
To summarize, the following estimates of influence and self-influence 
tensors are obtained:

                                                             
which we respectively recast in the following expressions:

 

estimate of the 0-0 influence 
tensor of       over

estimate of the 0-0
self-influence tensor of    
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Influence tensors for polarization fields in  
To summarize, the following estimates of influence and self-influence 
tensors are obtained:

                                                             
which we respectively recast in the following expressions:

 

estimate of the 0-0 influence 
tensor of       over

estimate of the 0-0
self-influence tensor of    

Results obtained for piecewise 
constant trial fields

No field statistics available
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Piecewise polynomial polarization fields, i.e.  
Now, if we assume a trial polynomial field of degree     given by                
                
                                                                                                       ,
                                             

The term                     then contains terms of the form

                                                                             where

which, similarly as before, can lead to estimates of “r-s influence tensors 
of       over      ”  
 

Change of variable
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Self­influence tensors for polarization fields in  
Similarly as before, we want to address the terms with those components:

  
                                                                  

so that the following estimates of the “r-s self-influence tensor of     ” are 
obtained after picking some          ,



where

Which, once again, can be obtained by post-processing the Minkowski 
tensors computed previously. 

             .

Change of variable
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 HS functional for trial fields in      (derivation)   
From our definition of the estimates of influence tensors, we obtain          
                              

The other term,                                can be calculated exactly. We obtain

where                              so that the following estimate of the HS 
functional                                                                                               is

Now, we want to solve for the stationary state of the functional, i.e. find   
                               for all     s.t.             is optimized.
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Stationarity conditions for trial fields in  
The stationary state of the functional is such that 

After using                                      for            and 

symmetrizing our estimates of self-influence tensors          , we obtain

Similarly, after using                                                                      for            and 

symmetrizing our estimates of self-influence tensors          , we obtain                      
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“Generalized Mandel representation” for assembly of a global 
system of stationarity equations  We want to solve the system

which we recast in                             
                                                                         where

 

                                                                                 

                                                         

Assembly of components of 
compliances           weighted by 
Minkowski tensors.

Assembly of components of self-
influence and influence tensors.
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Computation of a table of derivatives of Green operators 
 For some given order n of the Taylor expansion used for the Green 

operators, we need to compute

 Taking advantage of symmetries, if all pairwise interactions are to be 
accounted for, this means that

                                                       components need to be evaluated. 

 The construction of the table of derivatives is what governs the computing 
time of the current implementation.

 In a later time, it would be relevant to introduce “k-fold neighborhoods” by 
limiting the number of grains     interacting with a grain     to the            
nearest neighbors, or to the                   first and second nearest neighbors, 
and so on... 
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2D Barnett­Lothe integral formalism
 The Green operator obtained as follows from the Green’s function,

 Irrespectively of the material symmetry, 2D Green’s functions are a by-
product of the Barnett-Lothe (1973) integral formalism. We have

where                             and                             are incomplete Barnett-

Lothe integrals with integrands readily computable for every symmetry.
 To evaluate       , we only need those integrands and the complete 

integrals       and       , which we evaluate numerically.
 We derive the following recurrence relations:

Requires evaluation of
and              

           for                           
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2D Anisotropy 
 Polar representation of 2D anisotropic stiffnesses, see Vannucci (2016)

Validation
Equilibrated traction fields 

on random curves
Polar diagram of 

generalized moduli

Computed components of some 
gradients of the Green’s function

Conditions for positive strain energy
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Morphological characterization for simple geometries 
 As a first application, we consider a 2D periodic array of anisotropic 

squares. The corresponding Minkowski tensors of interest have 
components 

Polar diagram of generalized moduli
Reynolds glyphs of normalized 
Minkowski tensors        for       
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Results
 Preliminary results for a uniaxial average strain

Note that

is symmetric because       has
the same morphology for all   
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Post­processing  
 Once an estimate of the polarization stress field is obtained, there are 

different ways to obtain the corresponding strain field

– First, from the very definition of the polarization, we have

If so, we can recover closed form expressions of the corresponding 
piecewise polynomial strain and strain fields:

      
          
          and

However, as we do so, we note that the “prescribed” mean strain state 
is not recovered.

– Another possibility is to exploit the following form of the Lippman-
Schwinger equation 

       for which derivations as the ones carried over for the definition of the
       influence tensors is needed.
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Post­processing  
 Once an estimate of the polarization stress field is obtained, there are 

different ways to obtain the corresponding strain field

– First, from the very definition of the polarization, we have

If so, we can recover closed form expressions of the corresponding 
piecewise polynomial strain and strain fields:

      
          
          and

However, as we do so, we note that the “prescribed” mean strain state 
is not recovered.

– Another possibility is to exploit the following form of the Lippman-
Schwinger equation 

       for which derivations as the ones carried over for the definition of the
       influence tensors is needed.

Work in progress
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