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KL representation of a 1D lognormal field
● Let                      where    has 0-mean and a square-

exponential covariance                                 .  

● Consider the truncated KL representation of   :
 

where         are dominant solutions of the Fredholm integral 
eigenvalue problem stated by 

We assume the eigenfunctions are orthonormal, i.e.               .

● Resolution: Approximate solutions         are sought in the form 

 

for some         . From here on, different methods exist. 
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Nystrom’s method
● Nystrom’s method (Atkinson, 1997; Betz et al., 2014) relies on an 

approximation of the Fredholm integral by a quadrature 

 

and integration points               . Solutions of the form       
with                         are obtained by solving   

 

equivalently recast in             where                 and          
            .

● To ensure        , we write                                and solve  

instead, with                   and s.t.              . 
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Nystrom’s method
● Denote the most dominant solutions of             by             

and let                          . Then, we have

 

so that we can approximately sample         from

● We can then sample                                               by  
 
 

where             and                  .

● In the special case                , we have        and 
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Galerkin projection
● Given a set of basis functions         , approximate solutions to 

the Fredholm integral equation are sought in the form               
                     , leading up to

 

with a residual                                              .
 

● Approximate solutions              are obtained upon enforcing  
orthogonality as follows, 

 

equivalently stated by             where                   ,  
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Galerkin projection

● Denote the most dominant solutions of             by             
and let                      . Then, we have

 

so that we can approximately sample         from

● We can then sample                                               by  
 
 

where             and                .
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KL representation of a 1D lognormal field
● Consider P0 finite elements for           with          ,          ,  

         and        .

● We denote the mean error variance by                            .  
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KL representation of a 1D lognormal field
● Consider P0 finite elements for           with          ,          ,  

         and        .

● We denote the mean error variance by                            .  
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MCMC sampling of 

● Motivation: Increase similarity between consecutively sampled 
realizations in order to eventually recycle information from one 
solved linear system to another.

● Given a realization    , candidates for        are proposed as 
samples of                             so that the ratio of 
proposal densities                             amounts to 1.

● A proposed state        is then accepted with probability  

● We denote by          the sequence of accepted candidates 
sampled after                  .   
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How do we pick    ? 
● Let’s compare subsequences of realizations obtained by MCMC 

with realizations obtained by MC:

 

● Clearly, MCMC allows to sample highly correlated subsequences.

● For a specific number of realizations, how should we pick   ?   
Should we run several independent chains?
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How do we pick    ? 
● Considering a FE discretization with P1 elements and 

homogeneous Dirichlet-Neumann BC, we obtain:

● The statistics of the solution are not as sensitive to the 
sampling method as those of the coefficient field.
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Deflated CG (DCG) in a nutshell
● Given a basis             with        and an initial guess    s.t.  

                                               
● Deflated CG (Saad et al., 2000) builds a sequence of iterates    

             s.t.

 

●
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DCG – Why “deflation”?
● Consider the oblique projector along     given by

● The solution to the original system          is decomposed into 

                                           

where             in which    is solution of the reduced system

 

and                              so that             where     is 
solution of a deflated, or nearly deflated system  
 

still consistent, and solvable by CG as long as solved with an 
initial residual in     .  
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DCG – Deflation and convergence

● The sequence of iterates              obtained by CG to solve 
the original system         with an initial guess    admits 

 

● On the other hand, the iterates obtained by CG applied to the 
deflated system                     admit the following bound:

● The objective is then to find a projector   , or the basis of a 
deflation space    , such that          is effectively better cond-
itioned than   . 
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DCG – How to deflate?

● Let              be the eigenvectors respectively associated with 
the eigenvalues                      of    so that                .

● If the basis                    consists of the   eigenvectors of   
associated with the least dominant eigenvalues    through    , 
an effective conditioning number                             is 
obtained.   

● On the other hand, if the basis    consists of approximations of 
these   least dominant eigenvectors, we expect to obtain         
                        .

● (Alternatively,    could be constructed solely of most dominant 
eigenvectors, or of both least and most dominant eigenvectors.)
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DCG – Approximating eigenpairs of A 
● Finding an approximation of an eigenpair         of    can be 

done by searching an approximation of           for      .

● Let          denote an eigenpair approximation of       
obtained by the following harmonic projection:  

 

where                admits a basis             , so that         
and the orthogonality condition becomes

● Hence, an approximate eigenpair            of    is obtained 
when solving for a pair         of the        -dimensional 
generalized eigenvalue problem                          .   
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DCG for multiple right-hand sides 
                           (DCGMRHS)

● Given a sequence             , solve for              s.t.             :

1/Solve for                  by CG. Store basis     of            . 

2/Get eigenpair approximations                     of   :  

3/ For          :

3.1/Solve for                            by DCG. Store basis     of         
           . Let                      . 

3.2/Get approximations                      : 
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DCGMRHS results – Random walk
● Let   be a single, fixed realization of the operator with                    

               and                         for                 with  

● Each curve stands for the                                                          
evolution of the relative                                                           
iterated residual of a system                                                       
            . 

● Relative gain of iterations                                                   
for the s-th system wrt                                                   
the 1st system to reach                                                    
the stopping criterion:

 

●
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DCGMRHS – Effect of quality of 
eigenvectors approximation

● Deflation is performed with subspaces       spanned by approximations  
           of the eigenvectors          associated with the least 
dominant eigenvalues                of   . 

● The quality of this approximation can be measured by the principal 
angles           between      and                                          
                         .

● Let 



  21 / 37

DCGMRHS results – Shuffled walk
● Let   be the same realization as before. Let          be the same 

samples as before, but randomly shuffled.  

●                                                       
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DCGMRHS results – Random walk
● Let’s increase  
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DCGMRHS results – Random walk

            to   
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DCGMRHS results – Random walk

            to  
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DCGMRHS results – Random walk
● Let’s increase  
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DCGMRHS results – Random walk

            to  
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DCGMRHS results – Random walk

            to  
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DCGMRHS results – Random walk

            to  
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DCGMRHS results – Random walk
● Let’s apply the preconditioner  

●
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DCG for multiple operators (DCGMO)
● Given a sequence             , solve for              s.t.             :

1/Solve for                     by CG. Store basis     of              . 

2/Get eigenpair approximations                     of     :  

3/ For          :

3.1/Solve for                              by DCG. Store basis     of       
             . Let                      . 

3.2/Get approximations                                                            
    of eigenpairs of     : 
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DCGMO results – MCMC sampling
● Let           be sampled by MCMC with                   and  
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DCGMO results – MC sampling
● Let           be sampled by regular MC with                   . 
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DCGMO results – MCMC sampling
● Let           be sampled by MCMC with                   and  
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DCGMO results – MCMC sampling
● Let           be sampled by MCMC with                   and  
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DCGMO results – MCMC sampling
● Let           be sampled by MCMC with                   and  

 

                                            with preconditioner
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DCGMO results – MCMC sampling
● Let           be sampled by MCMC with                   and  

 

                                            with preconditioner
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