

EUROPEAN CENTRE FOR RESEARCH AND ADVANCED TRAINING IN SCIENTIFIC COMPUTING

Recycling Krylov subspace strategies to solve stochastic elliptic equations

Presented by

N. Venkovic venkovic@cerfacs.fr
Cerfacs

P. Mycek mycek@cerfacs.fr Cerfacs In collaboration with

L. Giraud

luc.giraud@inria.fr

Inria Bordeaux

O. Le Maître olm@limsi.fr Limsi-CNRS

www.cerfacs.fr

Elliptic equations with random coefficients

• Let $a(x,\theta)$ be a random coefficient field on a domain Ω , and consider the equation

$$\nabla \cdot (a(x,\theta)\nabla u(x,\theta)) = -f(x), \quad x \in \Omega, \quad \theta \in \Theta$$
$$\mathcal{B}(x,u) = 0 \qquad , \quad x \in \partial \Omega$$

with deterministic forcing and boundary conditions.

• Moments and other quantities of interest about the solution $u(x,\theta)$ can be estimated from a sample of random solutions $\{u^{(s)}(x,\theta)\}_{s=1}^{n_s}$.

For example, the Monte Carlo (MC) estimator of $\mathbb{E}[u(x)]$ is given by

$$\overline{u}_{n_s}(x,\theta) := \sum_{s=1}^{n_s} u^{(s)}(x,\theta)/n_s$$

with a sampling error depending on n_s .

 Reducing the error of an estimator generally requires drawing realizations of a very large sample of solutions.

Sequences of linear systems

• Let's consider a 1D domain. The results presented here are for stationary lognormal coefficient fields $a(x,\theta)$ such that

$$\log a(x,\theta) \sim G(x,\theta)$$

where G has 0-mean and a square-exponential covariance

$$\mathbb{E}[G(x)G(x')] = \sigma^2 \exp(-(x - x')^2/2L)$$

with variance σ^2 and correlation length L.

• An estimator of interest is evaluated upon drawing realizations of $\{a^{(s)}(x)\}_{s=1}^{n_s}$ and solving for $\{u^{(s)}(x)\}_{s=1}^{n_s}$ such that

$$\partial_x(a(x,\theta)\partial_x u(x,\theta)) = -1, x \in (0,1)$$

as we let $u^{(s)}(0) = 0$ and $\partial_x u^{(s)}(1) = 0$.

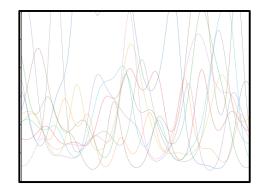
• After discretization into finite elements, a system of the form $A^{(s)}x^{(s)}=b$ is obtained for each $a^{(s)}(x)$, so that the evaluation of the estimator requires to solve a long sequence of n_s linear systems.

Objective

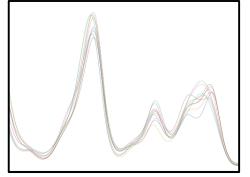
- Can we accelerate the iterative resolution of a current system $A^{(s)}x^{(s)}=b$ by recycling information from the resolution of subsequent systems $A^{(t< s)}x^{(t< s)}=b$?
- If so, does the sampling strategy of the random coefficient field matter?

VS

$$\{a^{(s)}(x)\}_{s=1}^{n_s}$$
 are i.i.d.



$$\{a^{(s)}(x)\}_{s=1}^{n_s}$$
 contains correlated subsequences



- Could we do so efficiently for large problems? Can we speed-up this resolution even when efficient preconditioners are already used?

Deflation of linear systems with SPD matrices

- Consider the projector $H = I_n W(W^TAW)^{-1}W^TA$ with $W \in \mathbb{R}^{n \times k}$ made of $k \ll n$ linearly independent vectors.
- A sequence $\{x_i\}_{i=0}^j$ of approximations of $x^* := A^{-1}b$ is obtained by

$$\hat{\mu}^*$$
 is the direct solution of the *reduced system* $W^TAW\hat{\mu}^* = W^Tb$

$$x_i := \underline{W}\hat{\mu}^* + \underline{H}x_i'$$

$$\mathcal{R}(W) \qquad \mathcal{R}(AW)^{\perp}$$

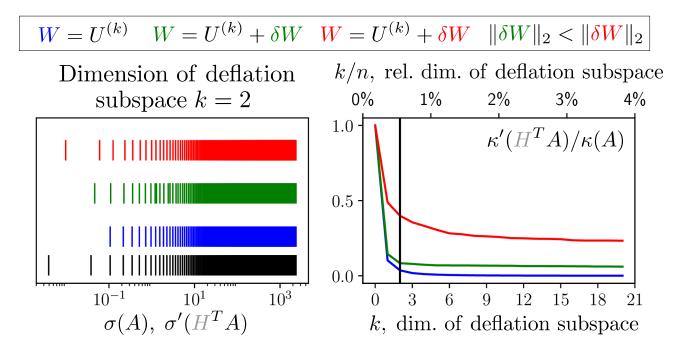
 $x_i := W \hat{\mu}^* + H x_i'$ x_i' is an iterative solution of the *deflated system* $\mathcal{R}(W)$ $\mathcal{R}(AW)^\perp$ $H^T A x' = H^T b$ computed by $\mathrm{CG}(H^T A, x_0')$

Error bounded by:

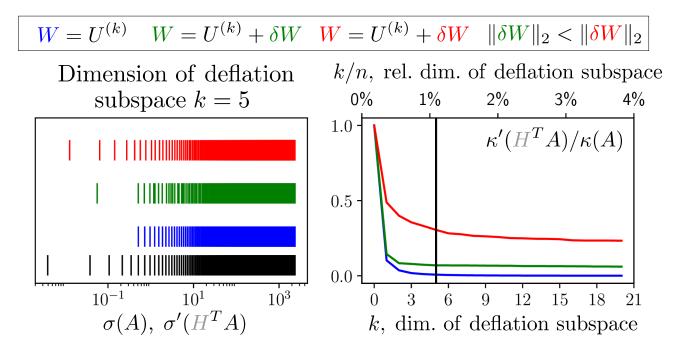
$$||x^* - x_i||_A \le 2||x^* - x_0||_A \left(\frac{\sqrt{\kappa'(H^T A)} - 1}{\sqrt{\kappa'(H^T A)} + 1}\right)^i$$

The lower the conditioning number of the deflated system, the smaller the bound on $||x^* - x_i||_A$. Ideally, we would pick W to minimize $\kappa'(H^TA)$.

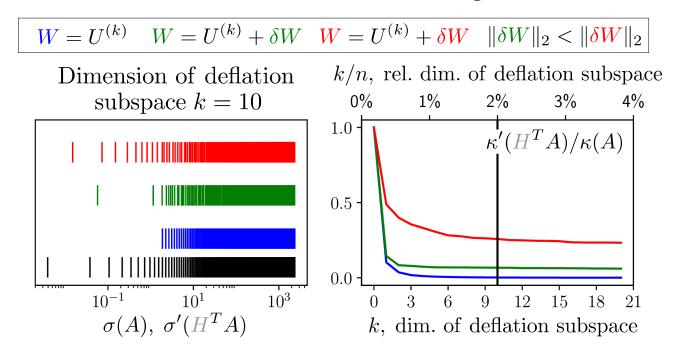
- A common and efficient way to deflate is to let the columns of $\,W$ be eigenvectors of $\,A.$
- Let $U^{(k)} \in \mathbb{R}^{n \times k}$ contain the k least dominant eigenvectors of A . Then,



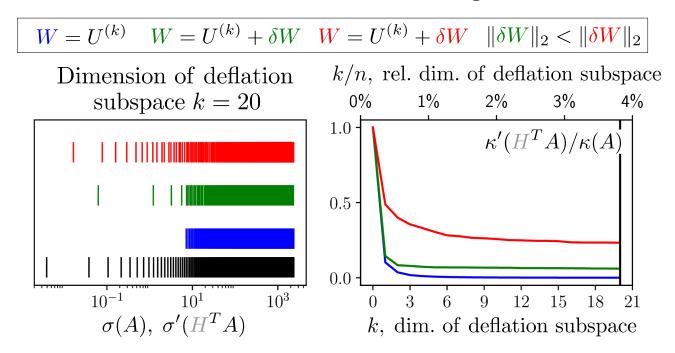
- A common and efficient way to deflate is to let the columns of W be eigenvectors of A.
- Let $U^{(k)} \in \mathbb{R}^{n \times k}$ contain the k least dominant eigenvectors of A. Then,



- A common and efficient way to deflate is to let the columns of W be eigenvectors of A.
- Let $U^{(k)} \in \mathbb{R}^{n \times k}$ contain the k least dominant eigenvectors of A. Then,

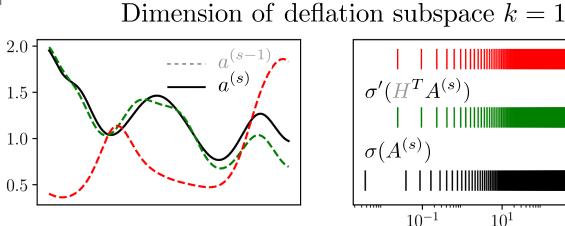


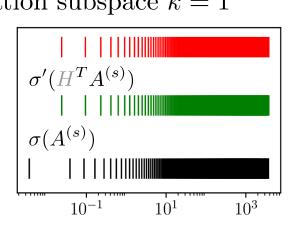
- A common and efficient way to deflate is to let the columns of W be eigenvectors of A.
- Let $U^{(k)} \in \mathbb{R}^{n \times k}$ contain the k least dominant eigenvectors of A. Then,

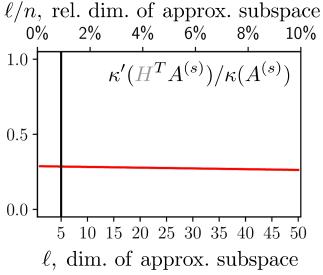


Effect of similarity between sampled fields on quality of deflation

- Deflate $A^{(s)}$ with approximate eigenvectors contained in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$. Effect of relation between $A^{(s-1)}$ and $A^{(s)}$ on the deflation process?
- Let $a^{(s)}$ be the coefficient field of $A^{(s)}$, and consider different fields $a^{(s-1)}$ of $A^{(s-1)}$. For $W^{(s-1)}=\emptyset$, we observe:



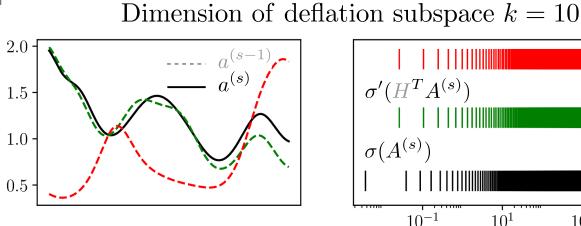


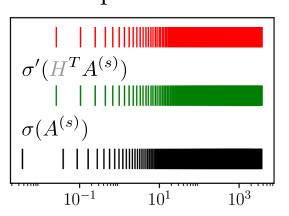


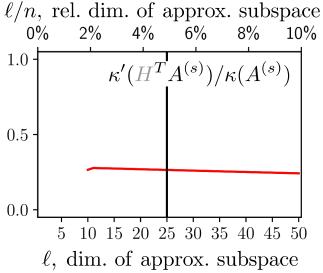
- Similarity between the fields has no effect,
- The dimension of the approximation subspace has no effect.

Effect of similarity between sampled fields on quality of deflation

- Deflate $A^{(s)}$ with approximate eigenvectors contained in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$. Effect of relation between $A^{(s-1)}$ and $A^{(s)}$ on the deflation process?
- Let $a^{(s)}$ be the coefficient field of $A^{(s)}$, and consider different fields $a^{(s-1)}$ of $A^{(s-1)}$. For $W^{(s-1)}=\emptyset$, we observe:



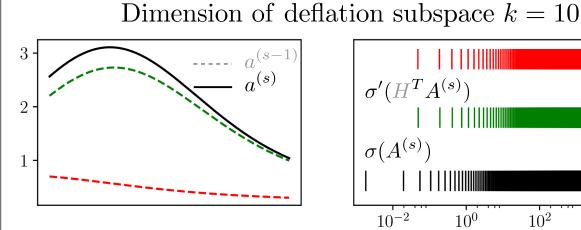


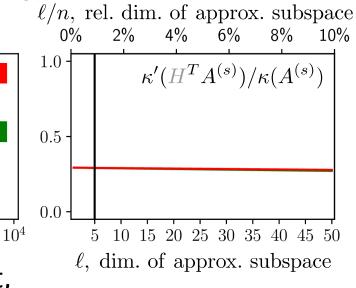


- Similarity between the fields has no effect,
- The dimension of the approximation subspace has no effect.

Effect of similarity between sampled fields on quality of deflation

- Deflate $A^{(s)}$ with approximate eigenvectors contained in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_\ell(A^{(s-1)}, r_0)$. Effect of relation between $A^{(s-1)}$ and $A^{(s)}$ on the deflation process?
- Let $a^{(s)}$ be the coefficient field of $A^{(s)}$, and consider different fields $a^{(s-1)}$ of $A^{(s-1)}$. For $W^{(s-1)}=\emptyset$, we observe:

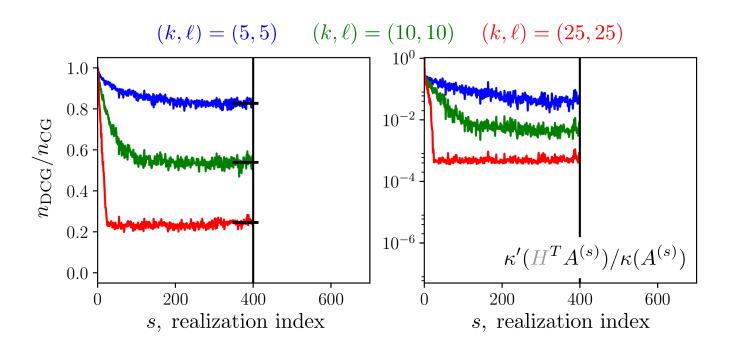




- Similarity between the fields has no effect,
- The dimension of the approximation subspace has no effect.

Solving a MC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

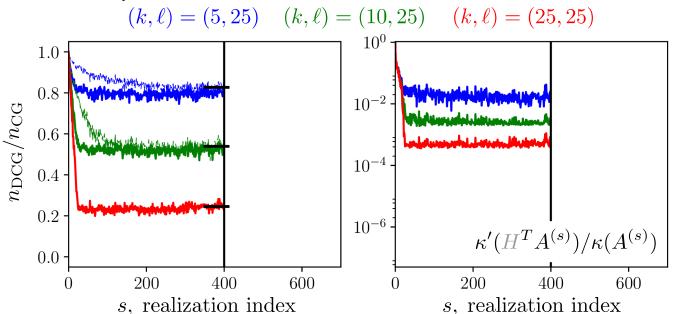
- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$.
- Considering different dimensions k of deflation subspaces, we observe:



an asymptotic gain of iterations over CG which strongly depends on k.

Solving a MC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

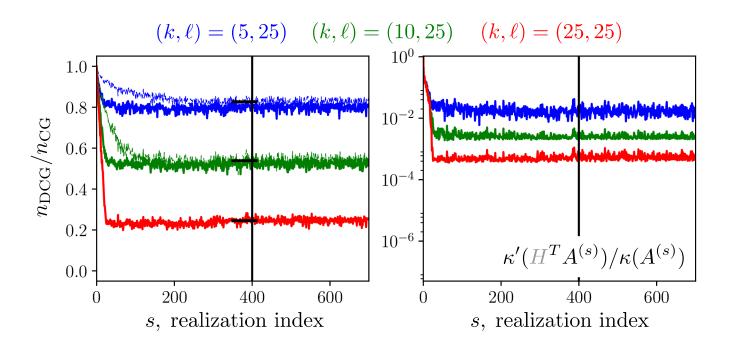
- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$.
- Increasing the dimension ℓ of the approximation subspaces used for the harmonic Ritz anlysis, we observe:



a faster gain of iterations over CG, still to the same asymptotic speed-up.

Solving a MC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

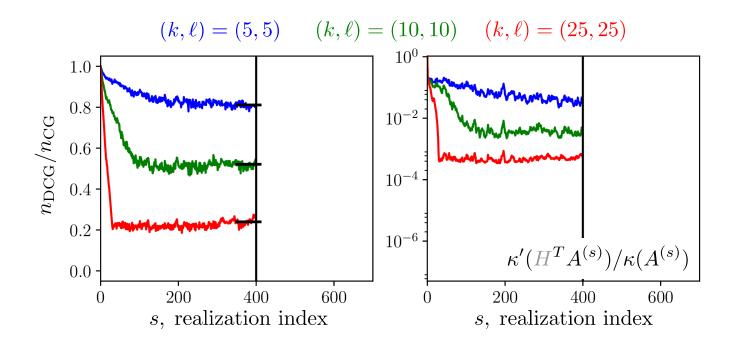
- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_\ell(A^{(s-1)}, r_0)$.
- After stopping the update of the deflation subspace, we observe



the relative gain of iteration is preserved.

Solving a MCMC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

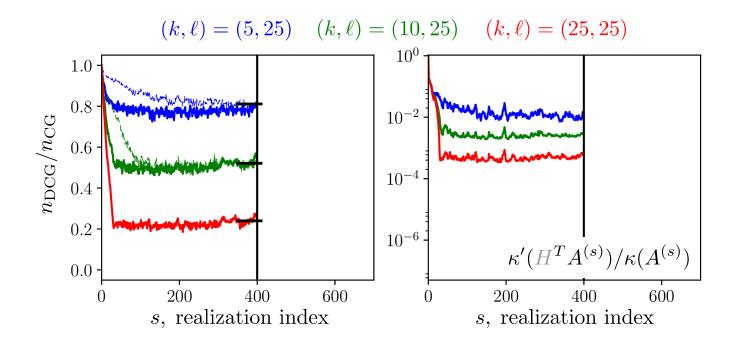
- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_\ell(A^{(s-1)}, r_0)$.
- When sampling the fields of coefficients by Markov Chain Monte Carlo,



a similar behavior is observed.

Solving a MCMC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

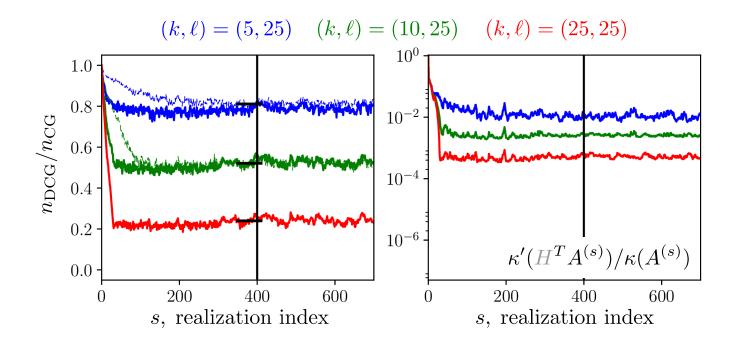
- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$.
- When sampling the fields of coefficients by Markov Chain Monte Carlo,



a similar behavior is observed.

Solving a MCMC sampled sequence of systems $A^{(s)}x^{(s)} = b$ by deflated CG

- Deflate current system with approximate eigenvectors $W^{(s)} := [w_1^{(s)}, \dots, w_k^{(s)}]$ of $A^{(s)}$ built by harmonic Ritz analysis in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_\ell(A^{(s-1)}, r_0)$.
- When sampling the fields of coefficients by Markov Chain Monte Carlo,



a similar behavior is observed.

Deflation and preconditioning of SPD systems

- Consider a preconditioner $M=LL^T$. Let $\dot{A}:=L^{-1}AL^{-T}$ and define the projector $\dot{H}=I_n-\dot{W}(\dot{W}^T\dot{A}\dot{W})^{-1}\dot{W}^T\dot{A}$ with $k\ll n$ linearly independent vectors $[\dot{w}_1,\ldots,\dot{w}_k]=:W$.
- A sequence $\{x_i\}_{i=0}^j$ of approximations of $x^* := A^{-1}b$ is obtained by

$$\hat{\mu}^*$$
 is the direct solution of a *reduced system*

$$x_i := L^{-T}(\dot{W}\hat{\mu}^* + \dot{H}x_i')$$

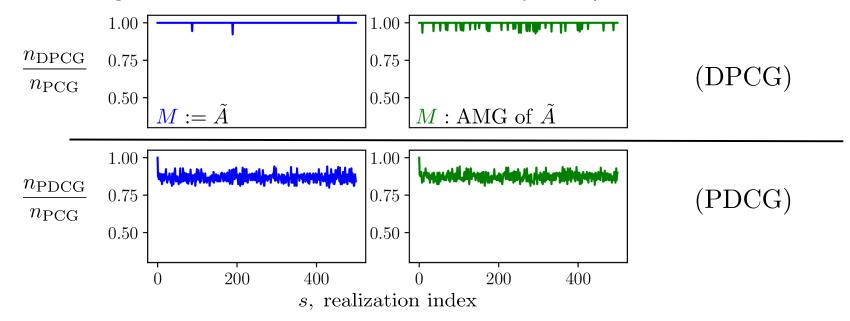
$$x_i := L^{-T}(\dot{W}\hat{\mu}^* + \dot{H}x_i')$$
 x_i' is an iterative solution of the deflated system $\dot{H}^T\dot{A}x' = \dot{H}^TL^{-1}b$

- Error bounded by $\|x^*-x_i\|_A \leq 2\|x^*-x_0\|_A \left(\frac{\sqrt{\kappa'(\dot{H}^T\dot{A})}-1}{\sqrt{\kappa'(\dot{H}^T\dot{A})}+1}\right)^i$ Two heuristics are considered for
- the choice of W:
 - (1) Deflated Preconditioned CG (DPCG)
 - (2) Preconditioned Deflated CG (PDCG)

- Consider two preconditioners :
 - (1) $M := \tilde{A}$ $\Longrightarrow n_{PCG}/n_{CG} = 2.8\%$ on average
 - (2) $M: AMG \text{ of } \tilde{A} \implies n_{PCG}/n_{CG} = 3.1\% \text{ on average}$

and compare their relative performance with DPCG and PDCG.

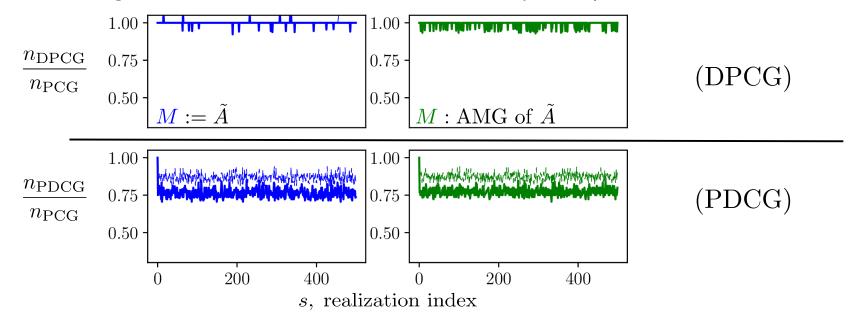
• Considering a relative dimension of deflation subspace k/n=0.4% , i.e. k=2:



- Consider two preconditioners :
 - (1) $M := \tilde{A}$ $\Longrightarrow n_{PCG}/n_{CG} = 2.8\%$ on average
 - (2) $M : AMG \text{ of } \tilde{A} \implies n_{PCG}/n_{CG} = 3.1\% \text{ on average}$

and compare their relative performance with DPCG and PDCG.

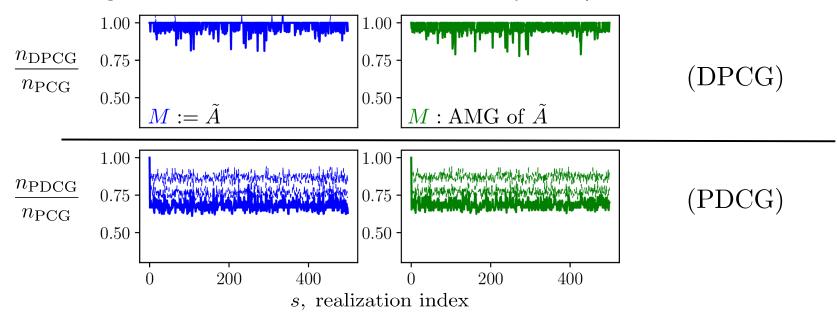
• Considering a relative dimension of deflation subspace k/n=2% , i.e. k=10 :



- Consider two preconditioners :
 - (1) $M := \tilde{A}$ $\Longrightarrow n_{PCG}/n_{CG} = 2.8\%$ on average
 - (2) $M: AMG \text{ of } \tilde{A} \implies n_{PCG}/n_{CG} = 3.1\% \text{ on average}$

and compare their relative performance with DPCG and PDCG.

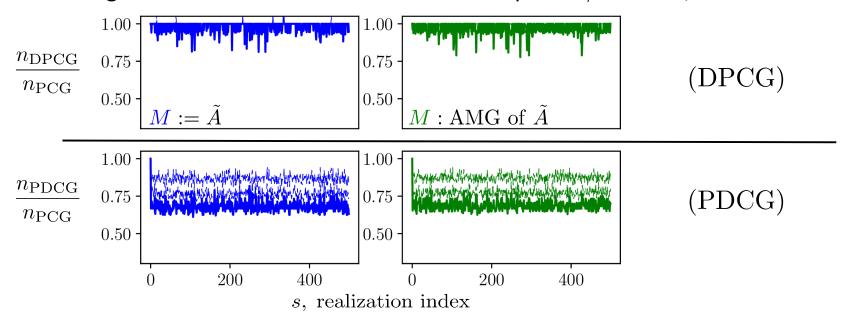
• Considering a relative dimension of deflation subspace k/n=8% , i.e. k=40:



- Consider two preconditioners :
 - (1) $M := \tilde{A}$ $\Longrightarrow n_{PCG}/n_{CG} = 2.8\%$ on average
 - (2) $M : AMG \text{ of } \tilde{A} \implies n_{PCG}/n_{CG} = 3.1\% \text{ on average}$

and compare their relative performance with DPCG and PDCG.

• Considering a relative dimension of deflation subspace k/n=8% , i.e. k=40:

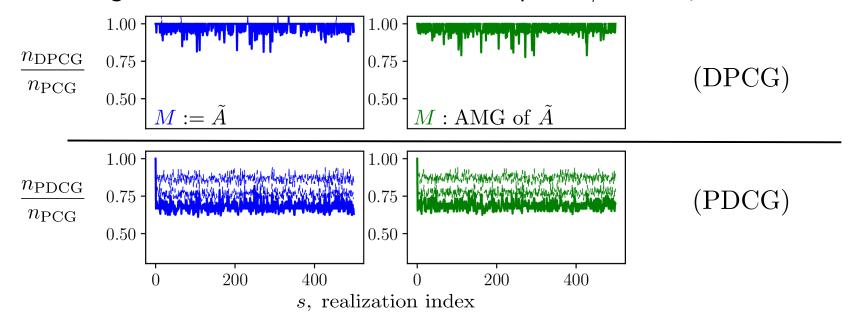


Deflating with the AMG preconditioner works as well as with the median operator,

- Consider two preconditioners :
 - (1) $M := \tilde{A}$ $\Longrightarrow n_{PCG}/n_{CG} = 2.8\%$ on average
 - (2) $M: AMG \text{ of } \tilde{A} \implies n_{PCG}/n_{CG} = 3.1\% \text{ on average}$

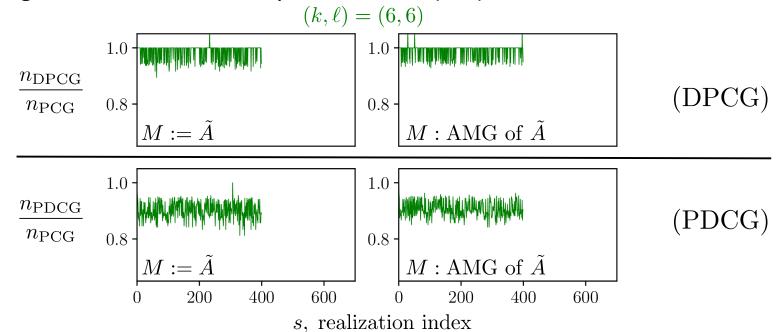
and compare their relative performance with DPCG and PDCG.

• Considering a relative dimension of deflation subspace k/n=8% , i.e. k=40:



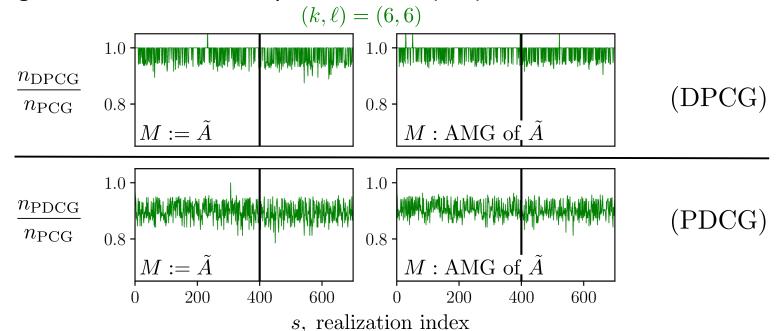
Deflating before preconditioning (PDCG) works better than the opposite (DPCG).

- Deflate current system with approximate eigenvectors $\dot{W}^{(s)} := [\dot{w}_1^{(s)}, \dots, \dot{w}_k^{(s)}]$ of $L^{-1}A^{(s)}L^{-T}$ (DPCG), or $L^TA^{(s)}L^{-T}$ (PDCG), obtained by harmonic Ritz analysis in an approximation subspace of dimension $(k+\ell)$ obtained while solving the precedent system $A^{(s-1)}x^{(s-1)}=b$.
- Sampling the coefficient fields by Monte Carlo (MC), we obtain:



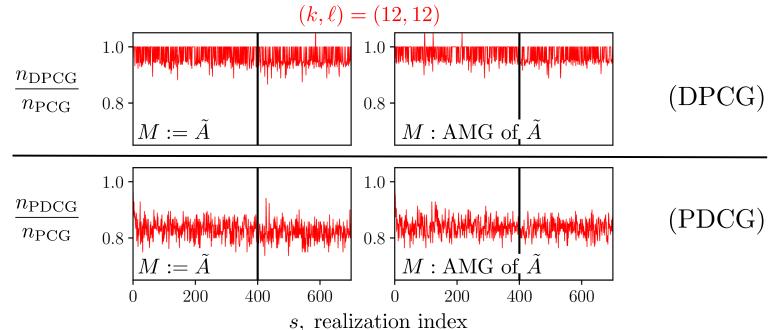
The asymptotic speed-up is quickly reached. PDCG still yields a greater acceleration than DPCG. The AMG preconditioner is as good as the median.

- Deflate current system with approximate eigenvectors $\dot{W}^{(s)} := [\dot{w}_1^{(s)}, \dots, \dot{w}_k^{(s)}]$ of $L^{-1}A^{(s)}L^{-T}$ (DPCG), or $L^TA^{(s)}L^{-T}$ (PDCG), obtained by harmonic Ritz analysis in an approximation subspace of dimension $(k+\ell)$ obtained while solving the precedent system $A^{(s-1)}x^{(s-1)}=b$.
- Sampling the coefficient fields by Monte Carlo (MC), we obtain:



Similarly as for the non-preconditioned case, the deflation subspace need not be updated to preserve the asymptotic speed-up.

- Deflate current system with approximate eigenvectors $\dot{W}^{(s)} := [\dot{w}_1^{(s)}, \dots, \dot{w}_k^{(s)}]$ of $L^{-1}A^{(s)}L^{-T}$ (DPCG), or $L^TA^{(s)}L^{-T}$ (PDCG), obtained by harmonic Ritz analysis in an approximation subspace of dimension $(k+\ell)$ obtained while solving the precedent system $A^{(s-1)}x^{(s-1)}=b$.
- Sampling the coefficient fields by Monte Carlo (MC), we obtain:



a similar behavior is observed when increasing the dimension of the deflation subspace.

Conclusions

- Deflation is a low-cost solution to accelerate the iterative resolution of sequences of linear systems which arise when evaluating estimators based on solutions of random elliptic equations
- The sampling strategy of the random field has little impact on the quality of the deflation
- Once a stable iteration gain is reached, there is no need to keep updating the deflation subspace
- Using an adequate deflation heuristic allows to reach iteration gains over PCG when paired with preconditioners based on a median operator
- Even when using a preconditioner whose parallel application is known to be more scalable than the median operator itself

Perspectives

- 2D problems
- Domain decomposition
- Parallel implementation

Thank you

Eigvenvector approximation

• Least dominant eigenvectors of $A^{(s)}$ are commonly approximated with harmonic Ritz vectors w in some subspace $\mathcal{S}^{(s)}$ s.t.

$$A^{(s)}w - \theta w \perp A^{(s)}\mathcal{S}^{(s)}$$

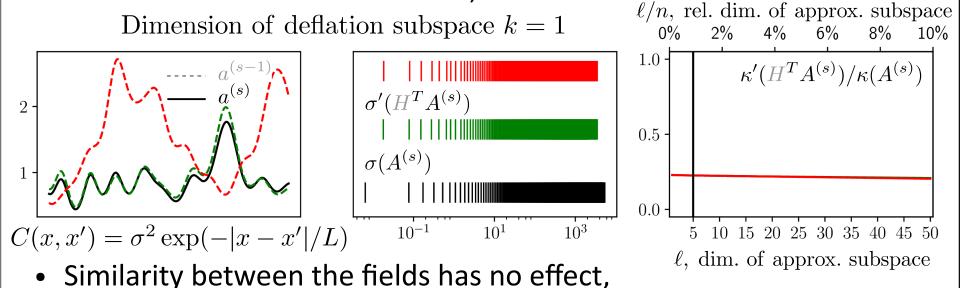
• If a basis $Z^{(s)} \in \mathbb{R}^{n \times m}$ of $\mathcal{S}^{(s)}$ is available, the Ritz vector $w = Z^{(s)}\hat{w}$ is obtained by solving the m-dimensional generalized eigenvalue problem

$$(A^{(s)}Z^{(s)})^T A^{(s)}Z^{(s)}\hat{w} = \theta Z^{(s)T}A^{(s)}Z^{(s)}\hat{w}$$

- Note that upon generating some iterates $\{x_i\}_{i=0}^\ell$ to solve $A^{(s-1)}x^{(s-1)}=b$, a basis is constructed for $\mathcal{R}(W^{(s-1)})\oplus\mathcal{K}_\ell(A^{(s-1)},r_0)$
- Therefore, the system $A^{(s)}x^{(s)}=b$ can be deflated with a basis $W^{(s)}$ made of Harmonic Ritz vectors of $A^{(s)}$ in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$.

Effect of similarity between sampled fields on quality of deflation

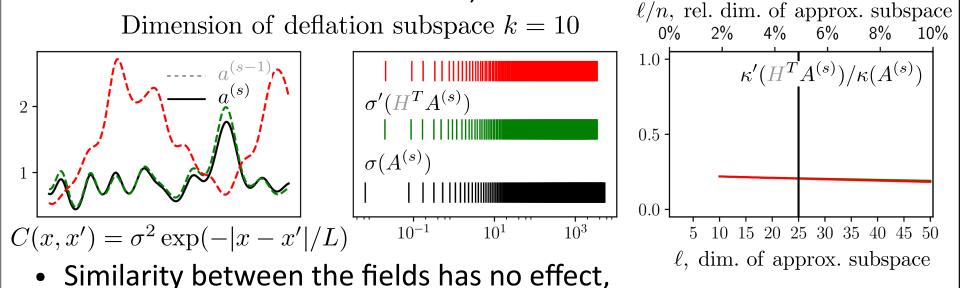
- Deflate $A^{(s)}$ with approximate eigenvectors contained in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_\ell(A^{(s-1)}, r_0)$. Effect of relation between $A^{(s-1)}$ and $A^{(s)}$ on the deflation process?
- Let $a^{(s)}$ be the coefficient field of $A^{(s)}$, and consider different fields $a^{(s-1)}$ of $A^{(s-1)}$. For $W^{(s-1)}=\emptyset$, we observe:



• The dimension of the approximation subspace has no effect.

Effect of similarity between sampled fields on quality of deflation

- Deflate $A^{(s)}$ with approximate eigenvectors contained in $\mathcal{R}(W^{(s-1)}) \oplus \mathcal{K}_{\ell}(A^{(s-1)}, r_0)$. Effect of relation between $A^{(s-1)}$ and $A^{(s)}$ on the deflation process?
- Let $a^{(s)}$ be the coefficient field of $A^{(s)}$, and consider different fields $a^{(s-1)}$ of $A^{(s-1)}$. For $W^{(s-1)}=\emptyset$, we observe:



• The dimension of the approximation subspace has no effect.

DPCG vs PDCG

- Consider a preconditioner $M=LL^T$. Let $\dot{A}:=L^{-1}AL^{-T}$ and define the projector $\dot{H}=I_n-\dot{W}(\dot{W}^T\dot{A}\dot{W})^{-1}\dot{W}^T\dot{A}$ with $k\ll n$ linearly independent vectors $[\dot{w}_1,\ldots,\dot{w}_k]=:\dot{W}$.
- A sequence $\{x_i\}_{i=0}^j$ of approximations of $x^* := A^{-1}b$ is obtained by

$$x_i := L^{-T}(\dot{W}\hat{\mu}^* + \dot{H}x_i')$$
 where

 $x_i := L^{-T}(\dot{W}\hat{\mu}^* + \dot{H}x_i')$ where $x_i' = x_i'$ is an iterative solution of the deflated system $\dot{H}^T \dot{A}x' = \dot{H}^T L^{-1}b$

- Error bounded by $\|x^*-x_i\|_A \leq 2\|x^*-x_0\|_A \left(\frac{\sqrt{\kappa'(\dot{H}^T\dot{A})}-1}{\sqrt{\kappa'(\dot{H}^T\dot{A})}+1}\right)^i$ Let $W:=L^{-T}\dot{W}$ so that
- $\dot{H}^T \dot{A} = L^{-1} H^T A L^{-T}$

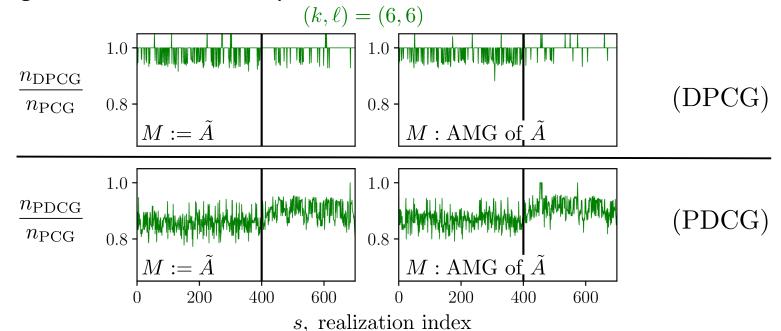
(1) Let \dot{W} be eigenvectors of \dot{A} $\implies W$ are eigenvectors of $M^{-1}A$

> (2) Let W be eigenvectors of A $\implies \dot{W}$ are eigenvectors of $L^T A L^{-T}$

DPCG

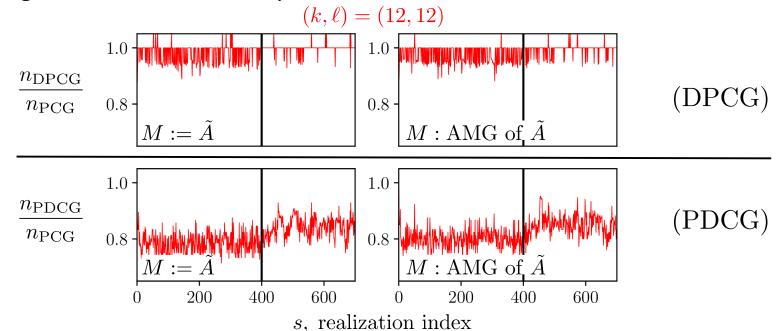
PDCG

- Deflate current system with approximate eigenvectors $\dot{W}^{(s)} := [\dot{w}_1^{(s)}, \dots, \dot{w}_k^{(s)}]$ of $L^{-1}A^{(s)}L^{-T}$ (DPCG), or $L^TA^{(s)}L^{-T}$ (PDCG), obtained by harmonic Ritz analysis in an approximation subspace of dimension $(k+\ell)$ obtained while solving the precedent system $A^{(s-1)}x^{(s-1)}=b$.
- Sampling the coefficient fields by Markov chain Monte Carlo, we obtain:



Interrupting the deflation subspace update while sampling by MCMC causes a slight deterioration in the quality of the deflation.

- Deflate current system with approximate eigenvectors $\dot{W}^{(s)} := [\dot{w}_1^{(s)}, \dots, \dot{w}_k^{(s)}]$ of $L^{-1}A^{(s)}L^{-T}$ (DPCG), or $L^TA^{(s)}L^{-T}$ (PDCG), obtained by harmonic Ritz analysis in an approximation subspace of dimension $(k+\ell)$ obtained while solving the precedent system $A^{(s-1)}x^{(s-1)}=b$.
- Sampling the coefficient fields by Markov chain Monte Carlo, we obtain:



Interrupting the deflation subspace update while sampling by MCMC causes a slight deterioration in the quality of the deflation.

