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Stochastic elliptic partial differential equations (PDEs)
▶ Let us consider the domain Ω := [0, 1]2 with boundary ∂Ω, and the set Θ
of all possible outcomes. We search for u : Ω×Θ → R such that

∇ · [κ(x, θ)∇u(x, θ)] = f(x) ∀ x ∈ Ω

u(x, θ) = 0 ∀ x ∈ ∂Ω
is almost surely satisfied.
▶ We assume f : Ω → R is square integrable, i.e., f ∈ L2(Ω) where

∥f∥2Ω :=

∫

Ω
|f(x)|2dx < ∞ ⇐⇒ f ∈ L2(Ω).

▶ We further assume the random coefficient field κ : Ω×Θ → R is such
that P [θ ∈ Θ : κ(·, θ) ∈ A] = 1 where A := {κ ∈ L2(Ω), κ(x) > 0 ∀ x ∈ Ω}.
▶ We define the set L2(Ω,Θ) of 2nd order stochastic processes such that

E[∥κ(·, θ)∥2Ω] < ∞ ⇐⇒ κ ∈ L2(Ω,Θ).

▶ See Babuska al. (2004) for more details on existence and uniqueness of u.
Babuska, Ivo, Raúl Tempone, and Georgios E. Zouraris. "Galerkin finite element approximations of
stochastic elliptic partial differential equations." SIAM Journal on Numerical Analysis 42.2 (2004):
800-825.
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Karhunen-Loève (KL) representation of coefficient fields
▶ Let κ be a real-valued 2nd order stochastic processes, i.e., κ ∈ L2(Ω,Θ),
with zero mean and known covariance C(x, x′) = E[κ(x, ·)κ(x′, ·)].
▶ Then, the truncated KL expansion κN of κ minimizes the representation
error E[∥κ− κN∥2Ω] over N -dimensional function spaces. It is given by

κN (x, θ) :=

N∑

α=1

√
λαξα(θ)Φα(x)

where (λα,Φα) ∈ R+ × L2(Ω) is the α-th dominant eigen-pair of the
covariance function and Φα is a normalized eigenfunction. That is, (λα,Φα)
is solution of the Fredholm integral equation:∫

Ω
C(x, x′)Φ(x′)dx′ = λΦ(x), ∥Φ∥2Ω = 1.

▶ The random variables (RVs) ξα, a.k.a. the "stochastic coordinates" of κN ,
are uncorrelated with zero mean and unit variance, i.e., E[ξαξβ] = δαβ .

▶ In case κ is a Gaussian process, the RVs are independent.
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State-of-the-art
Two main approaches have been used to characterize the uncertainty of u.
▶ Approaches based on polynomial chaos (PC) expansions:
Leveraging the KL expansion, an approximate functional representation of the
random solution u : Ω×Θ → R is built in the form of a spectral expansion

uM (x, ξ(θ)) :=

M∑

α=0

uα(x)Ψα(ξ(θ))

where Ψα : Θ → R is set a priori from a finite polynomial basis. The
computation of the coefficients uα : Ω → R is done by stochastic Galerkin,
regression or collocation. Once equipped with a spectral expansion, statistics
can be computed on the basis of approximate solution realizations.
▶ Approaches based on Monte Carlo (MC) sampling:
Statistics are computed on the basis of solution realizations u(·, θ) which are
obtained by solving a deterministic equations with the corresponding
realizations κ(·, θ) ∈ A of the coefficient field. The spatial discretization of
the deterministic equation for a given event θ leads to an SPD linear system

A(θ)u(θ) = b(θ).
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Limit preconditioning strategies
▶ A(θ) being SPD, A(θ)u(θ) = b(θ) can be solved by conjugate gradient
(CG), i.e., we search for iterates u(j)(θ) such that:

u(j)(θ)− u(0) ∈ K(j)(A(θ), r(0)(θ))

r(j)(θ) ⊥ K(j)(A(θ), r(0)(θ))

where K(j)(A(θ), r(0)(θ)) := Span{r(0)(θ),A(θ)r(0)(θ), . . . ,Aj−1(θ)r(0)(θ)} is
the Krylov subspace of A(θ) generated by r(0)(θ).

▶ J is the (random) number of solver iterations to reach a backward error of 10−6.

Median realization preconditioner
A single SPD preconditioner M−1

0,• is defined based on A(ξ = 0). We then search
for iterates u(i)(θ) such that:

u(j)(θ)− u(0) ∈ K(j)(M−1
0,•A(θ),M−1

0,•r
(0)(θ))

r(j)(θ) ⊥ K(j)(M−1
0,•A(θ),M−1

0,•r
(0)(θ))
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the Krylov subspace of A(θ) generated by r(0)(θ).

▶ J is the (random) number of solver iterations to reach a backward error of 10−6.

Realization-dependent ideal preconditioner
For every single realization θ, a preconditioner M−1

• (θ) is defined based on A(θ).
We then search for iterates u(i)(θ) such that:

u(j)(θ)− u(0) ∈ K(j)(M−1
• (θ)A(θ),M−1

• (θ)r(0)(θ))

r(j)(θ) ⊥ K(j)(M−1
• (θ)A(θ),M−1

• (θ)r(0)(θ))
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Results of limit preconditioning strategies
▶ We consider a covariance C(x, x′) = exp(−∥x− x′∥2/0.12).

4,000 8,000 16,000 32,000 64,000 128,000
DoFs

101

102

103

E[
J

]
MbJ(0), nb = 200

MbJ(ξ), nb = 200

MLORASC(0), nd = 200, ε = 0

MLORASC(ξ), nd = 200, ε = 0

MLORASC(0), nd = 200, ε = 0.01

MLORASC(ξ), nd = 200, ε = 0.01

MAMG(0)

MAMG(ξ)

▶ Speedup of M−1
• (ξ): 2-3X (bJ), 3X (LORASC), 10X (AMG).

Venkovic et al. Sparse days 2023 Cerfacs, Toulouse, France 5 / 17



Alternative preconditioning strategies

▶ Using M•(0) leads to large numbers of solver iterations, while M•(ξ)
entails significant preconditioner setup times, e.g., computing factorizations
for every single realization ξ(θ).

▶ Alternative preconditioning strategies are needed.

▶ We consider preconditioning strategies which consist of both:
1 A P -quantizer q : κ ∈ A 7→ κ̂ ∈ Â with centroidal coefficient fields in

the codebook Â := {κ̂p ∈ A, p = 1, . . . , P}. The quantizer q serves as
a compact representation of the random coefficient field.

2 A preconditioner M : κ ∈ A 7→ M(κ) ∈ Sym+
n×n(R).

We are interested in the composition M ◦ q : κ ∈ A 7→ {M̂1, . . . , M̂P }.
The preconditioners M̂1, . . . , M̂P are not known explicitly.
Instead, as we consider solving cycles of algebraic multigrid solvers for
A(κ̂1), . . . ,A(κ̂P ), we simply know how to efficiently compute the
mapping x 7→ M̂−1

p x for p = 1, . . . , P .
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Alternative preconditioning strategies
▶ We assume there exists an invertible map T1 : L

2(Ω) → L2(Ω) such that
T−1
1 κ is a Gaussian process with zero mean.

▶ We know the truncated KL expansion T̂−1
1 κ which approximates T−1

1 κ
with m dominant eigen-pairs (λα,Φα) ∈ R+ × L2(Ω).

▶ Let us introduce the following projection:

P̂−1
1 : f ∈ L2(Ω) 7→



λ
−1/2
1 ⟨Φ1, f⟩Ω

...
λ
−1/2
m ⟨Φm, f⟩Ω


, ⟨f, g⟩Ω :=

∫

Ω
f(x)g(x)dx ∀ f, g ∈ L2(Ω)

and P̂1 : ξ ∈ Rm 7→
m∑

k=1

λ
1/2
k ξkΦk(·) ∈ L2(Ω) s.t. T̂−1

1 = P̂1 ◦ P̂−1
1 ◦ T−1

1 .

▶ We introduce a quantizer q2 of Rm and an invertible map T2 : Rm → Rm

which we use as follows to define q:

q : κ(·) ∈ A 7→ T̃ (q2(T̃
−1κ(·))) ∈ Â ⊂ A

where T̃ := T1 ◦ P̂1 ◦ T2 and Â is the codebook induced by q.
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Optimal preconditioning strategies
▶ The representation error of κ(·,Θ) by q(κ(·,Θ)) is the distortion

w(q, d) := E[d(κ, q(κ))] =
∫

Θ
d(κ(·, θ), q(κ(·, θ)))dµ(θ)

where the distortion functional, a.k.a. divergence, d : A×A → [0,∞)
measures proximity between realizations of the coefficient field.

▶ Every Voronoi quantizer q has a codebook Â := {κ̂1, . . . , κ̂P } ⊂ A s.t.

q : κ ∈ A 7→
P∑

p=1

κ̂p1[κ ∈ Ap], Ap ⊂ {κ ∈ A, d(κ, κ̂p) ≤ d(κ, κ̂q), q = [1, P ]} ,

and so that A1, . . . ,AP form a Borel partition of A.

▶ The local distortions wp(q, d) := E[d(κ, q(κ)) |κ ∈ Ap] = wp(κ̂p, d) and
attribution frequencies fp := µ(Ap) form a decomposition of distortion

w(Â, d) =

P∑

p=1

fpwp(κ̂p, d).

▶ For a partition A1, . . . ,AP , the distortion is minimized by selecting
centroidal fields κ̂p which minimize the local distortions wp(κ̂p, d).

Venkovic et al. Sparse days 2023 Cerfacs, Toulouse, France 8 / 17



Computation of stationary quantizers
▶ Remember that we let q(κ(·)) = T̃ (q2(T̃

−1κ(·))) be induced by a vector
quantizer q2 of T−1

2 (ξ).

▶ We are interested in L2 quantizers with distortions given by

w2(q2) := E[∥T−1
2 (ξ)− q2(T

−1
2 (ξ))∥2] =

∫

Θ
∥T−1

2 (ξ)− q2(T
−1
2 (ξ))∥2dµξ(θ).

▶ We let q2 be a Voronoi quantizer, and we denote the partition of
T−1
2 (Rm) induced by q2 as H1, . . . ,HP so that

q2(T
−1
2 (ξ)) :=

P∑

p=1

η̂p1[T
−1
2 (ξ) ∈ Hp]

where η̂p := T−1
2 (ξ̂p).

▶ The distortion of q2 admits the following decomposition:

w2(q2) =

P∑

p=1

w2,p(q2)µξ(T
−1
2 (Hp))

where w2,p(q2) := E[∥T−1
2 (ξ)− q2(T

−1
2 (ξ))∥2 | T−1

2 (ξ) ∈ Hp].
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Computation of stationary quantizers
▶ The computation of µξ(T

−1
2 (Hp)) and w2,p(q2) is intractable.

▶ In practice, we use an empirical measure of distortion. Given an ns-sample
κ1, . . . , κns of i.i.d. realizations of the coefficient field, we compute
ξs := P̂−1

1 (T−1
1 κs) for s = 1, . . . , ns and approximate w2(q2) with

w
(ns)
2 (q2) :=

1

ns

ns∑

s=1

∥T−1
2 (ξs)− q2(T

−1
2 (ξs))∥2

which is also given by

w
(ns)
2 (q2) =

P∑

p=1

f
(ns)
2,p w

(ns)
2,p (q2) where f

(ns)
2,p :=

1

ns

ns∑

s=1

1[T−1
2 (ξs) ∈ Hp]

is the empirical measure of Hp associated with ξ1, . . . , ξns
, and

w
(ns)
2,p (q2) :=

1

f
(ns)
2,p ns

ns∑

s=1

∥T−1
2 (ξs)− q2(T

−1
2 (ξs))∥21[T−1

2 (ξs) ∈ Hp].

▶ Several algorithms compute stationary quantizers q2 on the basis of these
empirical measures, e.g., k-means, competitive learning vector quantization
(CLVQ), ...
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Choices of the map T2(ξ)
▶ Upon defining the map T2 : Rm → Rm, we introduce some control over
the design of q2 and its underlying codebook, as well as of q.

▶ First, we aim to define T2 so as to minimize the L2(Ω)-distortion of T̂−1
1 κ.

By orthonormality of the eigenfunctions of the KL expansion, we have:

∥T̂−1
1 κ(·, θ)∥2Ω =

∥∥∥∥∥
m∑

k=1

λ
1/2
k Φk(x)ξk(θ)

∥∥∥∥∥

2

Ω

=

m∑

k=1

λkξk(θ)
2 = ξ(θ)TΛξ(θ)

which can be recast as ∥Λ1/2ξ(θ)∥2 for all θ ∈ Θ. Consequently, the map
T−1
2 : χ 7→ Λ1/2χ is such that ∥T−1

2 ξ(θ)∥2 = ∥T̂−1
1 κ(·, θ)∥2Ω.

▶ Second, we aim at designing stationary quantizers with constant
frequencies. We consider

T−1
2 : χ 7→ Λ1/2Fξ ◦ χ where Fξ ◦ χ =



Fξ(χ1)

...
Fξ(χm)




where Fξ(χ) = Pr[ξ ≤ χ]. Our experiments show that this choice of T−1
2

yields stationary quantizers q2 with f1 ≈ · · · ≈ fP .
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Quantizations based on deterministic grids
▶ We want a quantizer for which the number m of KL modes considered
depends on the number P of preconditioners.

▶ To indicate the number m of KL modes in the quantization, we write q
(m)
2 .

▶ For m = 1, we use
q
(1)
2 (ξ) = T−1

2 (0)1[−s/2 ≤ ξ < s/2]+T−1
2 (−s)1[ξ < s/2]+T−1

2 (s)1[s/2 ≤ ξ]

so as to provide symmetric design. Moreover, in order to have constant
attribution frequencies, we let s = 2F−1

ξ (2/3) ≈ 0.8614.

▶ For higher numbers m of KL modes, we have

q
(m)
2 (ξ) =

2m∑

p=0

T−1
2 (ξ̂p)1[T

−1
2 (ξ) ∈ Hp]

where H0, . . . ,H2m form a Voronoi partition of T−1
2 (Rm) and are given such

that
Hp ⊂

{
T−1
2 (ξ), ξ ∈ Rm, ∥ξ − ξ̂p∥ ≤ ∥ξ − ξ̂q∥, q = 0, . . . , 2m

}

with centers ξ̂0, . . . , ξ̂2m .
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Quantizations based on deterministic grids
Algorithm 1 GetGridCoordinates(s, m)

Require: Grid parameter s,
Number of KL modes m

Ensure: Centroids T−1
2 (ξ̂0), . . . , T

−1
2 (ξ̂2m) of quantizer q(m)

2 .
1: ξ̂0 := 0
2: p := 1
3: for ξ̂p,1 ∈ (−s, s) do
4: for ξ̂p,2 ∈ (−s, s) do

5:
...

6: for ξ̂p,m ∈ (−s, s) do
7: ξ̂p := [ξ̂p,1, . . . , ξ̂p,m]T

8: p := p+ 1
9: end for

10: end for
11: end for
12: return T−1

2 (ξ̂0), . . . , T
−1
2 (ξ̂2m)
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Attribution frequencies for different stationary quantizers
Let m = 2 and ξ ∼ N (0, I2). We compute stationary quantizers q2 of R2

with different T2.
T−1
2 (ξ) = Λ1/2ξ T−1

2 (ξ) = Λ1/2Fξ ◦ ξ
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Effect of preconditioning strategies from different stationary
quantizers and deterministic grids
▶ Let T−1

1 κ := log κ be a Gaussian process with C(x, x′) = exp
(
−∥x−x′∥2

0.12

)
.

▶ E[J ] is estimated with 100,000 realizations and A is 100,000-dimensional.

100 101 102 103 104

P

120

130

140

E[
J

]

T−1
2 (ξ) = Λ1/2ξ

m = 8 (20%)

m = 24 (50%)

m = 48 (75%)

m = 170 (99%)

100 101 102 103 104

P

T−1
2 (ξ) = Λ1/2Fξ ◦ ξ
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▶ For some m, E[J ] stagnates passed some value of P . The smaller m the
faster it happens.
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▶ Let T−1

1 κ := log κ be a Gaussian process with C(x, x′) = exp
(
−∥x−x′∥2

0.12

)
.

▶ E[J ] is estimated with 100,000 realizations and A is 100,000-dimensional.

100 101 102 103 104

P

120

130

140

E[
J

]

T−1
2 (ξ) = Λ1/2ξ

m = 8 (20%)

m = 24 (50%)

m = 48 (75%)

m = 170 (99%)

100 101 102 103 104

P

T−1
2 (ξ) = Λ1/2Fξ ◦ ξ

▶ For some m, E[J ] stagnates passed some value of P . The smaller m the
faster it happens.
▶ A similar behavior is observed for T−1

2 (ξ) = Λ1/2Fξ ◦ ξ, but with larger
values of E[J ].
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Effect of preconditioning strategies from different stationary
quantizers and deterministic grids
▶ Let T−1

1 κ := log κ be a Gaussian process with C(x, x′) = exp
(
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)
.
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deterministic grid
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2 (ξ) = Λ1/2Fξ ◦ ξ

▶ For some m, E[J ] stagnates passed some value of P . The smaller m the
faster it happens.
▶ A similar behavior is observed for T−1

2 (ξ) = Λ1/2Fξ ◦ ξ, but with larger
values of E[J ].
▶ Using the deterministic grid prevents the stagnation of E[J ].
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Distribution of cumulated number of solver iterations for
different stationary quantizers
▶ Let T̂−1

1 κ have m = 8 KL modes (for 20% energy) and P=1,000.
▶ The realizations of the simulation are denoted by Θ̂ ∈ Θ with the partition
Θ̂1, . . . , Θ̂P .
▶ We are interested by number of linear solves np per preconditioner, and
the cumulated number of solver iterations

∑
θ∈Θ̂p

J(θ).

1 2 3

‖ξ̂p‖

120

130

140

Ep[J ]

T−1
2 (ξ) = Λ1/2ξ T−1

2 (ξ) = Λ1/2Fξ ◦ ξ

1 2 3

‖ξ̂p‖

50

100

150

200

np

1 2 3

‖ξ̂p‖

10000

20000

∑
θ∈Θ̂p

J(θ)

▶ The strategy with T−1
2 = Λ1/2Fξ ◦ ξ is more load balanced.
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Conclusions and perspectives
Conclusions:

A lot of improvement can be made compared to using a single constant
preconditioner.
The optimal energy level of the approximating coefficient field of a
preconditioning strategy based on stationary quantizers depends on P .
Selecting an optimal m requires some preprocessing.
For sequential simulations, the average number of solver iterations is
minimized by letting T−1

2 := Λ1/2ξ.
For distributed simulations, the most balanced distribution of the
cumulated number of solver iterations is obtained by letting
T−1
2 := Λ1/2Fξ ◦ ξ.

Using a deterministic grid such that the approximating coefficient field
has an energy which increases with P prevents stagnation of E[J ] and
does not require preprocessing.

Future endeavor:
Speeding-up the setup of AMG preconditioners for random coefficient
fields when using fixed meshes and discretization.
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Effect of truncation of the approximating KL expansion on
realization-dependent ideal preconditioning
▶ Let T−1

1 κ := log κ be a Gaussian process with C(x, x′) = exp
(
−∥x−x′∥2

0.12

)
.

▶ Relative energy is the variance of T̂−1
1 κ given by

∑m
k=1 λk.

▶ Discretization with 100,000 DoFs.

0 50 100 150 200
m

0

50

100

150

E[
J

]

AMG

Cholesky

0.00 0.25 0.50 0.75 1.00
Relative energy

▶ AMG preconditioners are nearly as effective as Cholesky factorizations,
especially for large values of relative energy.
▶ Nearly linear dependence of E[J ] on relative energy.
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Local interpolation of preconditioners
▶ Let us consider the case of distributed simulations in which the m-th node
(out of M ≤ P ) stores Pm preconditioners M−1(ξ̂

(m)

1 ), . . . ,M−1(ξ̂
(m)

Pm
) in

memory.

▶ When ξ is drawn close to a centroid of the m-th node, we follow the work
of Zahm and Nouy (2016) and leverage the availability of local
preconditioners to approximate M−1(ξ) with an interpolation of the form

M̂−1
m (ξ) =

Pm∑

p=1

α(m)
p (ξ)M−1(ξ̂

(m)

p ).

▶ An ideal choice for α(m)
1 , . . . , α

(m)
Pm

∈ R is to minimize the condition
number of M̂−1

m (ξ)A(ξ). This, however, is a Clarke regular pseudoconvex
optimization problem which is not worth solving for every realization of ξ.
Zahm, Olivier, and Anthony Nouy. "Interpolation of inverse operators for preconditioning
parameter-dependent equations." SIAM Journal on Scientific Computing 38.2 (2016):
A1044-A1074.
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Local interpolation of precondtioners
▶ Another more computationally feasible alternative is to minimize the
Frobenius norm ∥I− M̂−1

m (ξ)A(ξ)∥F . This leads to solving

B(ξ)



α
(m)
1 (ξ)

...
α
(m)
Pm

(ξ)


 =




tr
(
M−1(ξ̂

(m)

1 )A(ξ)
)

...

tr
(
M−1(ξ̂

(m)

Pm
)A(ξ)

)




where B(ξ) has components

Bpq(ξ) = tr

((
M−1(ξ̂

(m)

p )A(ξ)
)T

M−1(ξ̂
(m)

q )A(ξ)

)
, (p, q) ∈ [1, Pm]2.

▶ The computation of the matrices M−1(ξ̂p)A(ξ) for p = 1, . . . , Pm

requires large numbers of preconditioner applications whose cost may surpass
the gain obtained by local interpolation. Random sketching is used to
significantly reduce the number of necessary preconditioner applications.

▶ Results: we applied Shepard interpolation and the minimizer presented
here with and without random sketching to build local interpolations of
preconditioners. All of our attempts failed to improve convergence.
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