
Implementations of locally optimal block preconditioned
conjugate gradient (LOBPCG) eigensolvers

Group seminar

Nicolas Venkovic

Technical University of Munich
Group of Computational Mathematics

April 16, 2025

Outline
1 Methods based on optimization 1

2 Early development of LOBPCG iterations 7

3 Basic_LOBPCG iterations (Knyazev, 2001) 10

4 Ortho_LOBPCG iterations (Hetmaniuk and Lehoucq, 2006) 24

5 BLOPEX_LOBPCG iterations (Knyazev et al., 2007) 34

6 Skip_ortho_LOBPCG iterations (Duersch et al., 2018) 38

7 Monitoring and handling convergence 47

8 Landscape of existing software 49

9 Our implementations 51

10 Numerical experiments 52

Venkovic Implementations of LOBPCG April 2025

Methods based on optimization

Venkovic Implementations of LOBPCG April 2025

Extremal generalized eigenvalue problem
▶ Generalized eigenvalue problem:

Find (x, λ) such that Ax = λBx

A is symmetric (or Hermitian), and B is symmetric positive definite (SPD)
▶ When only a few extremal eigenvalues are wanted and A and B are very

large and/or applied matrix-free, it is customary to resort to iterative
eigensolvers:

methods based on projection (Krylov)
inherently preconditioned methods (Jacobi-Davidson)
methods based on contour integration and polynomial filters (FEAST)
methods based on constrained optimization (LOBPCG)

▶ Characterization of the extremal generalized eigenpair:
We are looking for an extremal (min or max) generalized eigenpair (λ, x).
Since B is SPD, it admits a Cholesky decomposition B = LLT .
Let the generalized Rayleigh quotient of (A,B) be given by

ρ(x) =
xTAx

xTBx
for xTBx > 0

Venkovic Implementations of LOBPCG April 2025 1 / 65

Characterization of the extremal generalized eigenpair
Making the substitution y := LTx, the generalized Rayleigh quotient
becomes the standard Rayleigh quotient of L−1AL−T :

ρ =
xTAx

xTBx
=

(L−T y)TA(L−T y)

(L−T y)TB(L−T y)
=

yTL−1AL−T y

yT y

Since L−1AL−T is symmetric, the Courant-Fischer theorem implies that
the extremum of ρ is the extremal eigenvalue λ of L−1AL−T .
Then, since we have L−1AL−T y =λy

L−1AL−TLTx =λLTx

Ax =λLLTx

Ax =λBx

the extremum value λ of ρ(x) is the extremal eigenvalue of the generalized
eigenvalue problem Ax = λBx, achieved with the general eigenvector x.

▶ Finding an extremal generalized eigen-pair of (A,B) is equivalent to an
optimization problem of the generalized Rayleigh quotient xTAx

xTBx
.

Venkovic Implementations of LOBPCG April 2025 2 / 65

Approach by steepest descent
▶ Approaches based on the optimization of the quotient ρ(x) = xTAx

xTBx
generate a sequence x0, x1, . . . of approximate eigenvectors based on a
given recurrence formula.

▶ Note that the gradient of ρ(x) is given by:

∇ρ(x) = 2

xTBx
(Ax− ρ(x)Bx) =

2

xTBx
r(x) ∝ r(x)

where r(x) = Ax− ρ(x)Bx is the generalized eigen-residual.
▶ Then, the steepest descent iteration is of the form

xi+1 = xi − αi∇ρ(xi)

where αi is a step size, optimally chosen to minimize ρ(xi+1).
In other words, the iterate xi+1 is searched in a subspace of span{xi, ri}
where ri = Axi − ρ(xi)Bxi.

▶ In order to accelerate convergence, a preconditioner T may be chosen and
applied to ri, in which case the next iterate is searched in span{xi, zi}
where zi = Tri.

Venkovic Implementations of LOBPCG April 2025 3 / 65

From steepest descent to locally optimal conjugate gradient
▶ Limitations of steepest descent:

- Slow convergence, especially for ill-conditioned problems
- Limited to 2-dimensional search space, i.e., xi+1 ∈ span{xi, T ri}

Locally optimal preconditioned conjugate gradient (LOPCG) method
The recurrence formula for LOPCG is

xi+1 = αixi + βipi + γiTri

where pi is a search direction, A-conjugate to the previous direction pi−1.
▶ LOPCG is called "Conjugate Gradient" because:

1 It uses conjugate directions pi similar to the CG algorithm
2 It relies on a recurrence formula similar to that of the CG algorithm

▶ "Locally Optimal" refers to the fact that the search space of each iterate is
composed of three directions, namely

span{xi, pi, T ri} = span{xi, xi−1, T ri}
▶ The iterate xi+1 is formed by Rayleigh Ritz projection to optimize ρ(xi+1).

Venkovic Implementations of LOBPCG April 2025 4 / 65

Rayleigh-Ritz projection of generalized eigenvalue problems
▶ Rayleigh-Ritz projections are a means to find an optimal iterate in a given

search space, e.g., span{xi, xi−1, T ri} in the case of LOPCG.
▶ Rayleigh-Ritz projection of the generalized eigenvalue problem in a search

space R(V) for some full rank V ∈ Rn×m with m ≤ n:

Find (xi+1, λ) ∈ R(V)× R s.t. (Axi+1 − λBxi+1) ⊥ R(V).

Rayleigh-Ritz procedure with respect to R(V)

RR : Sn∗ × Sn++ × Rn×m
∗ → Rm × R

(A,B, V) 7→ (x̂, λ) s.t. V TAV x̂ = V TBV x̂ λ

where λ is an extremal eigenvalue of the projected problem with the
corresponding eigenvector x̂.
Then, the Rayleigh-Ritz vector is formed by xi+1 := V x̂.
By convention, x̂TV TBV x̂ = 1 so that xTi+1Bxi+1 = 1 and xTi+1Axi+1 = θ.

Venkovic Implementations of LOBPCG April 2025 5 / 65

Early LOPCG iteration
The early form of LOPCG iteration is given by:

Early_LOPCG(A, B, x−1, T−1):
(x̂0, λ0)← [RR(A,B, x−1)

x0 := x−1x̂0 ; r0 := Ax0 −Bx0λ0

for i = 0, 1, . . . do
zi := Tri
if i == 0 then Vi+1 := [xi, zi] else Vi+1 := [xi, zi, xi−1]

(x̂i+1, λi+1)←[RR(A,B, Vi+1)

xi+1 := Vi+1x̂i+1; ri+1 := Axi+1 −Bxi+1λi+1

Venkovic Implementations of LOBPCG April 2025 6 / 65

Early development of LOBPCG iterations

Venkovic Implementations of LOBPCG April 2025

Locally optimal block preconditioned conjugate gradient
▶ We now search for X ∈ Rn×k and Λ = diag(λ1, . . . , λk) for k ≤ n s.t.

AX = BXΛ
where XTBX = Ik and λ1, . . . , λk are extremal generalized eigenvalues of
the pencil (A,B).

▶ When k ≪ n and n is very large and/or the application of the operators A
and B is matrix-free, it is customary to resort to iterative eigensolvers.

▶ The least dominant generalized eigenvectors in the columns of X such
that AX = BXΛ can be defined as the minimizer of the trace(XTAX)
subjected to the constraint XTBX = Ik.

▶ Knyazev (2001) introduced LOBPCG by extending LOPCG to a block
version, which simultaneously produces iterates for the approximation of
multiple dominant eigen-pairs.

▶ Given an initial iterate X0, LOBPCG generates a sequence of iterates
X1, X2, . . . which, in their earliest form, are obtained by Rayleigh-Ritz
projection in locally optimal subspaces R([Xi, TRi, Xi−1]), where the
columns of Ri are eigen-residuals, and T is a preconditioner.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

Venkovic Implementations of LOBPCG April 2025 7 / 65

Rayleigh-Ritz projection of generalized eigenvalue problems
▶ Rayleigh-Ritz projections are an essential step of the definition of iterates

generated by LOBPCG.
▶ Rayleigh-Ritz projection of the generalized eigenvalue problem in R(V) for

some full rank V ∈ Rn×m
∗ with m ≤ n:

Find (Y,Θ) ∈ R(V)× Rk×k
∗ s.t. (AY −BYΘ) ⊥ R(V)

where k ≤ m ≤ n and Θ is diagonal.

Rayleigh-Ritz procedure with respect to R(V)

RR : Sn∗ × Sn++ × Rn×m
∗ × N+ → Rm×k

∗ × Rk×k
∗

(A,B, V, k) 7→ (Ŷ ,Θ) s.t. V TAV Ŷ = V TBV ŶΘ

where Θ = diag(θ1, . . . , θk) consists of k ≤ m ≤ n extremal eigenvalues of
the projected problem with corresponding eigenvectors in the columns of Ŷ.
Then, Rayleigh-Ritz vectors are formed by the columns of Y := V Ŷ .
By convention, Ŷ TV TBV Ŷ = Ik so that Y TBY = Ik and Y TAY = Θ.

Venkovic Implementations of LOBPCG April 2025 8 / 65

Definition of Early_LOBPCG iterations
▶ In their earliest form, LOBPCG iterations are defined by Knyazev (2001) as

Rayleigh-Ritz projections w.r.t. R([Xi, Zi, Xi−1]). We refer to these as

Early_LOBPCG(A, B, X−1, T−1, k):
▷X−1 ∈ Rn×m

∗ , k ≤ m ≤ n
(X̂0,Λ0)←[RR(A,B,X−1,m)

X0 := X−1X̂0 ; R0 := AX0 −BX0Λ0

for i = 0, 1, . . . do
Zi := T−1Ri

if i == 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Xi−1]

(X̂i+1,Λi+1)←[RR(A,B, Vi+1,m)

Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1

▶ As Early_LOBPCG converges, [Xi, Zi, Xi−1] becomes ill-conditioned
which, when relying on finite arithmetic, leads to error propagation through
the Rayleigh-Ritz procedure, eventually making the method unstable.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

Venkovic Implementations of LOBPCG April 2025 9 / 65

Basic_LOBPCG iterations (Knyazev, 2001)

Venkovic Implementations of LOBPCG April 2025

Definition of Basic_LOBPCG iterations
▶ To circumvent the stability issue of Early_LOBPCG, Knyazev (2001)

proposes to improve the conditioning of the matrices V2, V3, . . . , while
preserving their ranges. We refer to these iterations as Basic_LOBPCG.

▶ We denote the variables of Basic_LOBPCG by X̃i, Z̃i, Then,
The iterates for i = 0 are the same as in Early_LOBPCG:

(
ˆ̃
X0, Λ̃0)← [RR(A,B,X−1,m) =⇒ ˆ̃

X0 = X̂0, Λ̃0 = Λ0

X̃0 := X−1
ˆ̃
X0 =⇒ X̃0 = X0

R̃0 := AX̃0 −BX̃0Λ̃0 ; Z0 := T−1R0 =⇒ R̃0 = R0, Z̃0 = Z0

The iterates for i = 1 are also the same as in Early_LOBPCG:

Ṽ1 := [X̃0, Z̃0] =⇒ Ṽ1 = V1

(
ˆ̃
X1, Λ̃1)← [RR(A,B, Ṽ1,m) =⇒ ˆ̃

X1 = X̂1, Λ̃1 = Λ1

X̃1 := Ṽ1
ˆ̃
X1 = X̃0

ˆ̃
X1|X̃0

+ Z̃0
ˆ̃
X1|Z̃0

=⇒ X̃1 = X1 = X0X̂1|X0
+ Z0X̂1|Z0

R̃1 := AX̃1 −BX̃1Λ̃1 ; Z̃1 := T−1R̃1 =⇒ R̃1 = R1, Z̃1 = Z1

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

Venkovic Implementations of LOBPCG April 2025 10 / 65

Definition of Basic_LOBPCG iterations, cont’d1
Then, blocks of search directions are introduced, and used to define Ṽi+1.
For i = 1, this is done by

P̃1 := Z̃0
ˆ̃
X1|Z̃0

=⇒ P̃1 = X̃1 − X̃0
ˆ̃
X1|X̃0

= X1 −X0X̂1|X0

Ṽ2 := [X̃1, Z̃1, P̃1] =⇒ R(Ṽ2) = R([X̃1, Z̃1, P̃1])

= R([X1, Z1, X1 −X0X̂1|X0
])

= R([X1, Z1, X0])

= R(V2)

Consequently, the iterates for i = 2 are such that

(
ˆ̃
X2, Λ̃2)← [RR(A,B, Ṽ2,m) =⇒ X̃2 = X2, Λ̃2 = Λ2

R̃2 := AX̃2 −BX̃2Λ̃2 ; Z̃2 := T−1R̃2 =⇒ R̃2 = R2, Z̃2 = Z2

P̃2 := Z̃1
ˆ̃
X2|Z̃1

+ P̃1
ˆ̃
X2|P̃1

=⇒ P̃2 = X̃2 − X̃1
ˆ̃
X2|X̃1

= X2 −X1
ˆ̃
X2|X̃1

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

Venkovic Implementations of LOBPCG April 2025 11 / 65

Definition of Basic_LOBPCG iterations, cont’d2
Then, the iterates for i = 3 are such that

Ṽ3 := [X̃2, Z̃2, P̃2] =⇒ R(Ṽ3) = R([X̃2, Z̃2, P̃2])

= R([X2, Z2, X2 −X2
ˆ̃
X3|X̃0

])

= R([X2, Z2, X1]) = R(V3)

(
ˆ̃
X3, Λ̃3)← [RR(A,B, Ṽ3,m) =⇒ X̃3 = X3, Λ̃3 = Λ3

...
In general, for all i > 0, we have

P̃i+1 := Z̃i
ˆ̃
Xi+1|Z̃i

+ P̃i
ˆ̃
Xi+1|P̃i

= Xi+1 −Xi
ˆ̃
Xi+1|X̃i

so that R(Ṽi+1)=R(Vi+1) which, in turn, implies X̃i+1 = Xi+1, Λ̃i+1 = Λi+1,

R̃i+1 = Ri+1 and Z̃i+1 = Zi+1.

So, in exact arithmetic, the iterates of Basic_LOBPCG are equivalent to those
of Early_LOBPCG, the difference being that, when nearing convergence, Ṽi+1

is presumably better conditioned than Vi+1.
Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.

Venkovic Implementations of LOBPCG April 2025 12 / 65

Definition of Basic_LOBPCG iterations, cont’d3
▶ Dropping the •̃ notation, a pseudocode for the Basic_LOBPCG iterations

is given as follows:

Basic_LOBPCG(A, B, X−1, T−1, k):
▷X−1 ∈ Rn×m

∗ , k ≤ m ≤ n
(X̂0,Λ0)← [RR(A,B,X−1,m)

X0 := X−1X̂0 ; R0 := AX0 −BX0Λ0

for i = 0, 1, . . . do
Zi := T−1Ri

if i == 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Pi]

(X̂i+1,Λi+1)← [RR(A,B, Vi+1,m)

Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1

if i == 0 then Pi+1 := ZiX̂i+1|Zi
else Pi+1 := ZiX̂i+1|Zi

+ PiX̂i+1|Pi

▶ In some implementations, the iterate Xi+1 is updated as

Xi+1 := Pi+1 +XiX̂i+1|Xi
,

which is equivalent to setting Xi+1 := Vi+1X̂i+1.
Venkovic Implementations of LOBPCG April 2025 13 / 65

Rayleigh-Ritz procedure in Basic_LOBPCG
▶ Consider the reduced eigenvalue problems solved in the Rayleigh-Ritz

procedure of Basic_LOBPCG.
For i > 1, the following matrices need to be assembled:

V T
i+1AVi+1 =

XT
i AXi XT

i AZi XT
i APi

. ZT
i AZi ZT

i APi

. . P T
i APi


and

V T
i+1BVi+1 =

XT
i BXi XT

i BZi XT
i BPi

. ZT
i BZi ZT

i BPi

. . P T
i BPi


where, by construction/convention, we have:

XT
i AXi = Λi and XT

i BXi = Im.

Venkovic Implementations of LOBPCG April 2025 14 / 65

Rayleigh-Ritz procedure in Basic_LOBPCG, cont’d
Unless the basis Vi+1 is orthogonalized, the remaining blocks

XT
i AZi , X

T
i APi , Z

T
i AZi , Z

T
i APi, P

T
i APi

and XT
i BZi , X

T
i BPi , Z

T
i BZi , Z

T
i BPi, P

T
i BPi.

do not have any specific structures.
▶ We observed that, in practical implementations, which rely on implicit

updates of the products AX,BX,AP and BP , the stability of LOBPCG
is enhanced by explicitly computing XTAX rather than assuming that
XTAX = Λ stands in finite precision.

Venkovic Implementations of LOBPCG April 2025 15 / 65

Implicit product updates in Basic_LOBPCG
▶ From the fact that P1 = Z0X̂1|Z0

we can compute the products AP1 and
BP1 from AZ0 and BZ0 as follows:

AP1 := AZ0X̂1|Z0
and BP1 := BZ0X̂1|Z0

.

▶ From the fact that X1 = X0X̂1|X0
+ Z0X̂1|Z0

, the products AX1 and
BX1 can be formed from AX0, AP1, BX0 and BP1 as follows:

AX1 := AX0X̂1|X0
+AP1 and BX1 := BX0X̂1|X0

+BP1.

▶ For i > 0, from the fact that Pi+1 = ZiX̂i+1|Zi
+ PiX̂i+1|Pi

, the APi+1

and BPi+1 can be calculated as follows from AZi, APi, BZi and BPi:

APi+1 := AZiX̂i+1|Zi
+APiX̂i+1|Pi

and BPi+1 :=BZiX̂i+1|Zi
+BPiX̂i+1|Pi

.

▶ For i > 0, from the fact that Xi+1 = Pi+1 +XiX̂i+1|Xi
, AXi+1 and

BXi+1 can be calculated as follows from APi+1, AXi, BPi+1 and BXi+1:

AXi+1 := APi+1 +AXiX̂i+1|Xi
and BXi+1 := BPi+1 +BXiX̂i+1|Xi

.

Venkovic Implementations of LOBPCG April 2025 16 / 65

Implementation of Basic_LOBPCG iterations
▶ Making use of the relations and implicit product updates presented, the

implementation of Basic_LOBPCG iterations takes the following form:

Algorithm 1 Basic_LOBPCG(A, B, X, T−1, k) 7→ (X,Λ)
1: Allocate memory for Z, P ∈ Rn×m ▷ X ∈ Rn×m

∗ , k ≤ m ≤ n

2: Allocate memory for AX,AZ,AP ∈ Rn×m

3: Allocate memory for BX,BZ,BP ∈ Rn×m

4: Compute AX,BX
5: (X̂,Λ)← [RR(X,AX,BX,m)

6: X := XX̂
7: [AX,BX] := [AXX̂,BXX̂] ▷ implicit product updates
8: Z := AX − BXΛ
9: for j = 0, 1, . . . do

10: Z := T−1Z
11: Compute AZ,BZ
12: if i == 0 then
13: (X̂,Λ)← [RR(X,Z,AZ,BZ,Λ,m) ▷ X̂ = [X̂T

X , X̂T
Z]T

14: P := ZX̂Z

15: [AP,BP] := [AZX̂Z , BZX̂Z] ▷ implicit product updates
16: else
17: (X̂,Λ)← [RR(X,Z, P,AZ,AP,BZ,BP,Λ,m) ▷ X̂ = [X̂T

X , X̂T
Z , X̂T

P]T

18: P := ZX̂Z + PX̂P

19: [AP,BP] := [AZX̂Z , BZX̂Z] + [APX̂P , BPX̂P] ▷ implicit product updates
20: X := P + XX̂X

21: [AX,BX] := [AP,BP] + [AXX̂X , BXX̂X] ▷ implicit product updates
22: Z := AX − BXΛ

Venkovic Implementations of LOBPCG April 2025 17 / 65

Implementation of Basic_LOBPCG iterations, cont’d1

▶ The Rayleigh-Ritz procedures of Basic_LOBPCG are as follows:

Algorithm 2 RR(X, AX, BX)
1: ▷ X ∈ Rn×m

∗ , m ≤ n
2: Compute XTAX,XTBX ∈ Rm×m

3: Solve for X̂ ∈ Rm×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂=GBX̂Λ and X̂TGBX̂=Im

where GA := XTAX and GB := XTBX.
4: return X̂,Λ

Algorithm 3 RR(X, Z, AX, AZ, BZ)
1: ▷ [X,Z] ∈ Rn×2m

∗ , 2m ≤ n
2: Compute XTAX,XTAZ,ZTAZ,XTBZ,ZTBZ ∈ Rm×m

3: Solve for X̂∈R2m×m
∗ and Θ = diag(λ1, . . . , λm) s.t. GAX̂= GBX̂Λ and X̂TGBX̂=Im

where GA :=

[
XTAX XTAZ

. ZTAZ

]
, GB :=

[
Im XTBZ
. ZTBZ

]
and λ1, . . . , λm are extremal

generalized eigenvalues of (GA, GB).
4: return X̂,Λ

Venkovic Implementations of LOBPCG April 2025 18 / 65

Implementation of Basic_LOBPCG iterations, cont’d2

Algorithm 4 RR(X, Z, P , AX, AZ, AP , BZ, BP)
1: ▷ [X,Z, P] ∈ Rn×3m

∗ , 3m ≤ n
2: Compute XTAX,XTAZ,XTAP,ZTAZ,ZTAP,PTAP ∈ Rm×m

3: Compute XTBZ,XTBP,ZTBZ,ZTBP,PTBP ∈ Rm×m

4: Solve for X̂∈R3m×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂=GBX̂Λ and X̂TGBX̂=Im

where GA :=

XTAX XTAZ XTAP
. ZTAZ ZTAP
. . PTAP

, GB :=

Im XTBZ XTBP
. ZTBZ ZTBP
. . PTBP

 and

λ1, . . . , λm are extremal generalized eigenvalues of (GA, GB).
5: return X̂,Λ

Venkovic Implementations of LOBPCG April 2025 19 / 65

Sources of instability in Basic_LOBPCG iterations
The instability of Basic_LOBPCG was showcased and related to the
ill-conditioning of V T

i+1BVi+1. This was explained as follows in the works of
Hetmaniuk and Lehoucq (2006), Knyazev et al. (2007) and Duersch (2015):

1. RR(A,B, Vi+1,m) needs to solve for (X̂,Λ) in the reduced equation

V T
i+1AVi+1X̂ = V T

i+1BVi+1X̂Λ.

This is done by computing the Cholesky decomposition LLT = V T
i+1BVi+1

before solving for (Ŷ ,Λ) in the standard symmetric eigenvalue problem

L−1V T
i+1AVi+1L

−T Ŷ = Ŷ Λ

and letting X̂ := L−T Ŷ .
When V T

i+1BVi+1 is ill-conditioned, the Cholesky factorization may fail or
lead to significant round-off error upon factor deployment.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.

Venkovic Implementations of LOBPCG April 2025 20 / 65

Sources of instability in Basic_LOBPCG iterations, cont’d1

2. As we denote the generalized eigenvalues of (A,B) and (V TAV, V TBV)
for some V ∈ Rn×m

∗ with m ≤ n by λ1 ≤ · · · ≤ λn and λ̂1 ≤ · · · ≤ λ̂m,
respectively, assuming A is positive definite, Parlett (1998, see Theorem
11.10.1) states that

|λi − λ̂i| ≤
∥AV −BV L−1V TAV L−T ∥B−1√

λ̂1

where LLT is the Cholesky decomposition of V TBV .
Consequently, the error |λi − λ̂i| of a Ritz value λ̂i increases as the basis in
the columns of V departs from B-orthonormality.

Parlett, B. N. (1998). The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.

Venkovic Implementations of LOBPCG April 2025 21 / 65

Sources of instability in Basic_LOBPCG iterations, cont’d2
▶ Additionally, the following observations were made:

The Gram matrix V T
i+1BVi+1 can become ill-conditioned irrespective of the

conditioning of B.
When the number k of approximated eigenvectors is large, V T

i+1BVi+1 can
become ill-conditioned before any eigenvector is accurately approximated.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A. (2015). High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank
Approximations. University of California, Berkeley.

Venkovic Implementations of LOBPCG April 2025 22 / 65

More stable LOBPCG iterations
▶ Alternative LOBPCG iterations were introduced to fix the stability issues

of Basic_LOBPCG:
BLOPEX was developed as an alternative implementation since 2005, and
became the standard with adoption through Hypre and PETSc (i.e., SLEPc),
see Knyazev et al. (2007).
▶ In BLOPEX, Knyazev et al. (2007) B-orthogonalize the Zi and Pi blocks of Vi+1

independently, but not between themselves. The method is shown to work for
specific examples.

Hetmaniuk and Lehoucq (2006) investigate the choice of basis used in the
Rayleigh-Ritz procedure and its effect on stability with more details.
▶ Hetmaniuk and Lehoucq (2006) argue that the strategy adopted in BLOPEX to

handle ill-conditioned V T
i+1BVi+1 matrices has no theoretical justication, and it

does not solve the problem when [Xi, Zi] is ill-conditioned.
▶ In order to improve the stability of Basic_LOBPCG, they propose to

B-orthonormalize Vi+1 at each iteration. We call this Ortho_LOBPCG.
Duersch et al. (2018) improve the performance of Ortho_LOBPCG, and
showcase its better stability in comparison to BLOPEX.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 23 / 65

https://github.com/lobpcg/blopex
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://slepc.upv.es/

Ortho_LOBPCG iterations (Hetmaniuk
and Lehoucq, 2006)

Venkovic Implementations of LOBPCG April 2025

Definition of Ortho_LOBPCG iterations
▶ LOBPCG is made more robust by making Vi+1 B-orthonormal, i.e., by

making sure that V T
1 BV1 = I2m and V T

i+1BVi+1 = I3m for i = 1, 2, . . .

▶ To do so, Hetmaniuk and Lehoucq (2006), rely on a generic procedure

Ortho : Rn×p
∗ × Sn++ × Rn×q

∗ → Rn×p
∗

(Z,B,W) 7→ V

such that V TBV = Ip, V TBW = 0p×q and R(Z) ⊆ R(V).
▶ The following observations are made to define Ortho_LOBPCG iterations:

Let Z0 ←[Ortho(T−1R0, B,X0) and V1 := [X0, Z0], so that V T
1 BV1 = I2m

and X̂T
1 X̂1 = X̂T

1|X0
X̂1|X0

+ X̂T
1|Z0

X̂1|Z0
= Im.

Now, if we were to let P1 := Z0X̂1|Z0
as in Basic_LOBPCG, we would have

PT
1 BX1=(Z0X̂1|Z0

)TBV1X̂1=X̂T
1|Z0

ZT
0 B[X0, Z0]X̂1=X̂T

1|Z0
X̂1|Z0

̸= Im

so that P1 also needs to be formed by B-orthonormalization against X1.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Venkovic Implementations of LOBPCG April 2025 24 / 65

Definition of Ortho_LOBPCG iterations, cont’d1

Note however that letting P1 ←[Ortho(Z0X̂1|Z0
, B,X1) is equivalent to

Ŷ1 ←[Ortho([0m×m, X̂1|Z0
]T , V T

1 BV1, X̂1)

P1 :=V1Ŷ1

as we have

1. Ŷ T
1 V T

1 BV1Ŷ1 = Im =⇒ (V1Ŷ1)
TBV1Ŷ1 = PT

1 BP1 = Im

2. Ŷ T
1 V T

1 BV1X̂1 = 0m×m =⇒ (V1Ŷ1)
TBX1 = PT

1 BX1 = 0m×m

3. R([0m×m, X̂1|Z0
]T) ⊆ R(Ŷ1) =⇒ R(V1[0m×m, X̂1|Z0

]T) ⊆ R(V1Ŷ1)

=⇒ R(Z0X̂1|Z0
) ⊆ R(P1)

Moreover, remember that V T
1 BV1 = I2m.

Consequently, P1 may be constructed as follows:

Ŷ1 ← [Ortho([0m×m, X̂1|Z0
]T , I2m, X̂1)

P1 :=V1Ŷ1

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Venkovic Implementations of LOBPCG April 2025 25 / 65

Definition of Ortho_LOBPCG iterations, cont’d2

Then, as we let Z1 ← [Ortho(T−1R1, B, [X1, P1]) and V2 := [X1, Z1, P1], we
have V T

2 BV2 = I3m and

X̂T
2 X̂2 = X̂T

2|X1
X̂2|X1

+ X̂T
2|Z1

X̂2|Z1
+ X̂T

2|P1
X̂2|P1

= Im.

Now, if we were to let P2 := Z1X̂2|Z1
+ P1X̂2|P1

, we still would have

PT
2 BX2 =(Z1X̂2|Z1

+ P1X̂2|P1
)TBV2X̂2

= X̂T
2|Z1

ZT
1 BV2X̂2 + X̂T

2|P1
PT
1 BV2X̂2

= X̂T
2|Z1

ZT
1 BZ1X̂2|Z1

+ X̂T
2|P1

PT
1 BP1X̂2|P1

= X̂T
2|Z1

X̂2|Z1
+ X̂T

2|P1
X̂2|P1

̸= Im

so that P2 needs to be formed by B-orthonormalization against X2.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Venkovic Implementations of LOBPCG April 2025 26 / 65

Definition of Ortho_LOBPCG iterations, cont’d3
Similarly as before, letting P2 ← [Ortho(Z1X̂2|Z1

+ P1X̂2|P1
, B,X2) is

equivalent to

Ŷ2 ←[Ortho([0m×m, X̂T
2|Z1

, X̂T
2|P1

]T , V T
2 BV2, X̂2)

P2 :=V2Ŷ2

as we have

1. Ŷ T
2 V T

2 BV2Ŷ2 = Im =⇒ (V2Ŷ2)
TBV2Ŷ2 = PT

2 BP2 = Im

2. Ŷ T
2 V T

2 BV2X̂2 = 0m×m =⇒ (V2Ŷ2)
TBX2 = PT

2 BX2 = 0m×m

3. R([0m×m, X̂T
2|Z1

, X̂T
2|P1

]T) ⊆ R(Ŷ2) =⇒ R(V2[0m×m, X̂T
2|Z1

, X̂T
2|P1

]T)⊆R(V2Ŷ2)

=⇒ R(Z1X̂2|Z1
+ P1X̂2|P1

) ⊆ R(P2)

Moreover, remember that V T
2 BV2 = I3m.

Consequently, P2 is best built by

Ŷ2 ←[Ortho([0m×m, X̂T
2|Z1

, X̂T
2|P1

]T , I3m, X̂2)

P2 :=V2Ŷ2

Subsequent iterates are defined similarly.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Venkovic Implementations of LOBPCG April 2025 27 / 65

Definition of Ortho_LOBPCG iterations, cont’d4

▶ In summary, Ortho_LOBPCG iterations are defined as follows:

Ortho_LOBPCG(A, B, X−1, T−1, k):
▷X−1 ∈ Rn×m

∗ , k ≤ m ≤ n
(X̂0,Λ0)← [RR(A,B,X−1,m)

X0 := X−1X̂0 ; R0 := AX0 −BX0Λ0

for i = 0, 1, . . . do
if i == 0 then Zi ← [Ortho(T−1Ri, B,Xi) else Zi ←[Ortho(T−1Ri, B, [Xi, Pi])

if i == 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Pi]

(X̂i+1,Λi+1)←[RR(A,B, Vi+1,m)

Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1

if i == 0 then
Ŷi+1 ← [Ortho([0m×m, X̂T

i+1|Zi
]T , I2m, X̂i+1)

else
Ŷi+1 ← [Ortho([0m×m, X̂T

i+1|Zi
, X̂T

i+1|Pi
]T , I3m, X̂i+1)

Pi+1 := Vi+1Ŷi+1

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.

Venkovic Implementations of LOBPCG April 2025 28 / 65

Implicit product updates in Ortho_LOBPCG
▶ From the fact that X1 = X0X̂1|X0

+ Z0X̂1|Z0
, the products AX1 and

BX1 can still be formed from AX0, AZ0, BX0 and BZ0 as follows:

AX1 := AX0X̂1|X0
+AZ0X̂1|Z0

and BX1 := BX0X̂1|X0
+BZ0X̂1|Z0

.

▶ Similarly, from the fact that P1 = X0Ŷ1|X0
+ Z0Ŷ1|Z0

, we have:

AP1 := AX0Ŷ1|X0
+AZ0Ŷ1|Z0

and BP1 := BX0Ŷ1|X0
+BZ0Ŷ1|Z0

.

▶ For i > 0, from the fact that Xi+1 = XiX̂i+1|Xi
+ ZiX̂i+1|Zi

+ PiX̂i+1|Pi
,

AXi+1 and BXi+1 can be calculated as follows from AXi, AZi, APi,
BXi, BZi and BPi:

AXi+1 := AXiX̂i+1|Xi
+AZiX̂i+1|Zi

+APiX̂i+1|Pi

and BXi+1 := BXiX̂i+1|Xi
+BZiX̂i+1|Zi

+BPiX̂i+1|Pi
.

▶ Similarly, APi+1 and BPi+1 can be calculated as follows:

APi+1 := AXiŶi+1|Xi
+AZiŶi+1|Zi

+APiŶi+1|Pi

and BPi+1 := BXiŶi+1|Xi
+BZiŶi+1|Zi

+BPiŶi+1|Pi
.

Venkovic Implementations of LOBPCG April 2025 29 / 65

Implementation of Ortho_LOBPCG iterations
▶ Making use of the relations and implicit product updates presented, the

implementation of Ortho_LOBPCG iterations takes the following form:

Algorithm 5 Ortho_LOBPCG(A, B, X, T−1, k) 7→ (X,Λ)
1: Allocate memory for Z, P,W ∈ Rn×m ▷ X ∈ Rn×m

∗ , k ≤ m ≤ n

2: Allocate memory for AX,AZ,AP ∈ Rn×m

3: Allocate memory for BX,BZ,BP ∈ Rn×m

4: Compute AX,BX
5: (X̂,Λ)← [RR(X,AX,BX)

6: [X,AX,BX] := [XX̂,AXX̂,BXX̂] ▷ implicit product updates
7: Z := AX − BXΛ
8: for j = 0, 1, . . . do
9: if j == 0 then Z ← [Ortho(T−1Z,B,X) else Z ← [Ortho(T−1Z,B, [X,P])

10: Compute AZ,BZ
11: if i == 0 then
12: (X̂,Λ)← [RR(X,Z,AX,AZ) ▷ X̂ = [X̂T

X , X̂T
Z]T

13: Ŷ ← [Ortho([0m×m, X̂T
Z]T , I2m, X̂)

14: [AP,BP] := [AXŶX , BXŶX] + [AZŶZ , BZŶZ] ▷ implicit product updates
15: [AX,BX] := [AXX̂X , BXX̂X] + [AZX̂Z , BZX̂Z] ▷ implicit product updates
16: W := XX̂X + ZX̂Z ; P := XŶX + ZŶZ ; X := W
17: else
18: (X̂,Λ)← [RR(X,Z, P,AX,AZ,AP) ▷ X̂ = [X̂T

X , X̂T
Z , X̂T

P]T

19: Ŷ ← [Ortho([0m×m, X̂T
Z , X̂T

P]T , I3m, X̂)

20: [W,AX] :=[AXŶX , AXX̂X]+[AZŶZ , AZX̂Z]+[APŶP , APX̂P] ; AP := W ▷ implicit product updates
21: [W,BX] :=[BXŶX , BXX̂X]+[BZŶZ , BZX̂Z]+[BPŶP , BPX̂P] ; BP := W ▷ implicit product updates
22: W := XX̂X + ZX̂Z + PX̂P ; P := XŶX + ZŶZ + PŶP ; X := W
23: Z := AX − BXΛ

Venkovic Implementations of LOBPCG April 2025 30 / 65

Implementation of Ortho_LOBPCG iterations, cont’d
▶ The Rayleigh-Ritz procedure RR(X, AX, BX, k) is the same as before.

The other Rayleigh-Ritz procedures in Basic_LOBPCG are

Algorithm 6 RR(X, Z, AX, AZ)
1: ▷ [X,Z] ∈ Rn×2m

∗ , 2m ≤ n
2: Compute XTAX,XTAZ,ZTAZ ∈ Rm×m

3: Solve for X̂ ∈ R2m×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂ = X̂Θ and X̂T X̂ = Im

where GA :=

[
XTAX XTAZ

. ZTAZ

]
and λ1, . . . , λm are extremal eigenvalues of GA.

4: return X̂,Λ

Algorithm 7 RR(X, Z, P , AX, AZ, AP)
1: ▷ [X,Z, P] ∈ Rn×3m

∗ , 3m ≤ n
2: Compute XTAX,XTAZ,XTAP,ZTAZ,ZTAP,PTAP ∈ Rm×m

3: Solve for X̂ ∈ R3m×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂ = X̂Λ and X̂T X̂ = Im

where GA :=

XTAX XTAZ XTAP
. ZTAZ ZTAP
. . PTAP

 and λ1, . . . , λm are extremal eigenvalues

of GA.
4: return X̂,Λ

Venkovic Implementations of LOBPCG April 2025 31 / 65

Choice of B-ortonormalization procedure
▶ The following orthogonalization procedures need be implemented in order

to deploy Ortho_LOBPCG iterations:

Z ←[Ortho(Z,B,X)

Z ←[Ortho(Z,B, [X,P])

X̂ ←[Ortho([0m×m, X̂T
Z]

T , I2m, X̂)

X̂ ←[Ortho([0m×m, X̂T
Z , X̂

T
P]

T , I3m, X̂)

Different methods can be used for this purpose:
In Hetmaniuk & Lehoucq (2006) and Duersch et al. (2018):
SVD-based B-orthogonalization using SVQB from Stathopoulos & Wu (2002),
which is cache-efficient, highly stable, with low synchronization cost.
Householder-QR, which is highly stable, but difficult to implement for B ̸= In.
Gram-Schmidt procedures, which can be stable, but less efficient than SVQB.
Cholesky-QR, which is not very stable.

Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Stathopoulos, A., & Wu, K. (2002). A block orthogonalization procedure with constant synchronization requirements.
SIAM Journal on Scientific Computing, 23(6), 2165-2182.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 32 / 65

Definition of the Ortho procedure
▶ In order to B-orthogonalize U ∈ Rn×p

∗ against V ∈ Rn×q
∗ , the Ortho

procedure is defined as follows using the SVQB method from Stathopoulos
& Wu (2002):

Ortho(U , B, V):

▷U ∈ Rn×p
∗ ,V ∈ Rn×q

∗ , p, q ≤ n

do
U := U − V (V TBU)

do
U := SVQB(B,U)

while ∥UTBU−Ip∥
∥BU∥∥U∥ < τortho

while ∥V TBU∥
∥BV ∥∥U∥ < τortho

return U

SVQB(U , B):

▷U ∈ Rn×p
∗ , p ≤ n

D := (diag(UTBU))−1/2

Solve for eigen-pairs Z,Θ of DUTBUD
such that DUTBUDZ = ZΘ

θmax := maxi |Θii|
for i = 1, . . . , p do

if Θii < τ θmax then Θii := τ θmax

return UDZΘ−1/2

where τortho and τ are set to modest multiples of the machine precision.
Stathopoulos, A., & Wu, K. (2002). A block orthogonalization procedure with constant synchronization requirements.

SIAM Journal on Scientific Computing, 23(6), 2165-2182.

Venkovic Implementations of LOBPCG April 2025 33 / 65

BLOPEX_LOBPCG iterations (Knyazev et
al., 2007)

Venkovic Implementations of LOBPCG April 2025

Definition of BLOPEX_LOBPCG iterations
▶ BLOPEX_LOBPCG iterations are summarized as follows:

BLOPEX_LOBPCG(A, B, X−1, T−1, k):
▷X−1 ∈ Rn×m

∗ , k ≤ m ≤ n
B-orthogonalize X−1: L←[chol(XT

−1BX−1) ; X−1 := X−1L
−T

(X̂0,Λ0)← [RR(A,B,X−1,m) ; X0 := X−1X̂0

for i = 0, 1, . . . do
Ri := AXi −BXiΛi ; Zi := T−1Ri

B-orthogonalize Zi: L← [chol(ZT
i BZi) ; Zi := ZiL

−T

if i == 0 then Vi+1 := [Xi, Zi]
else

B-orthogonalize Pi: L← [chol(PT
i BPi) ; Pi := PiL

−T

Vi+1 := [Xi, Zi, Pi]

(X̂i+1,Λi+1)← [RR(A,B, Vi+1,m)

if i == 0 then Pi+1 := ZiX̂i+1|Zi
else Pi+1 := ZiX̂i+1|Zi

+ PiX̂i+1|Pi

Xi+1 := XiX̂i+1|Xi
+ Pi+1

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Venkovic Implementations of LOBPCG April 2025 34 / 65

Implementation of BLOPEX_LOBPCG iterations
▶ Making use of implicit product updates and other relations,

BLOPEX_LOBPCG iterations can be implemented as follows:

Algorithm 8 BLOPEX_LOBPCG(A, B, X, T−1, k) 7→ (X,Λ)
1: Allocate memory for Z, P ∈ Rn×m ▷ X ∈ Rn×m

∗ , k ≤ m ≤ n

2: Allocate memory for AX,AZ,AP ∈ Rn×m

3: Allocate memory for BX,BZ,BP ∈ Rn×m

4: Compute BX

5: B-orthogonalize X: L← [chol(XTBX) ; X := XL−T ; BX := BXL−T ▷ LLT = XTBX
6: Compute AX
7: (X̂,Λ)← [RR(X,AX, k)

8: [X,AX,BX] := [XX̂,AXX̂,BXX̂] ▷ implicit product updates
9: for j = 0, 1, . . . do

10: Z := AX − BXΛ ; Z := T−1Z
11: Compute BZ

12: B-orthogonalize Z: L←[chol(ZTBZ) ; Z := ZL−T ; BZ := BZL−T ▷ LLT = ZTBZ
13: Compute AZ
14: if i == 0 then
15: (X̂,Λ)← [RR_BLOPEX(X,Z,AX,AZ,BZ) ▷ X̂ = [X̂T

X , X̂T
Z]T

16: [P,AP,BP] := [ZX̂Z , AZX̂Z , BZX̂Z] ▷ implicit product updates
17: else
18: B-orthogonalize P : L← [chol(PTBP) ; P := PL−T ; BP := BPL−T ▷ LLT = PTBP

19: (X̂,Λ)← [RR_BLOPEX(X,Z, P,AX,AZ,AP,BZ,BP) ▷ X̂ = [X̂T
X , X̂T

Z , X̂T
P]T

20: [P,AP,BP] := [ZX̂Z , AZX̂Z , BZX̂Z] + [PX̂P , APX̂P , BPX̂P] ▷ implicit product updates
21: [X,AX,BX] := [XX̂X , AXX̂X , BXX̂X] + [P,AP,BP] ▷ implicit product updates

Venkovic Implementations of LOBPCG April 2025 35 / 65

Implementation of BLOPEX_LOBPCG iterations, cont’d1

▶ The Rayleigh-Ritz procedures of BLOPEX_LOBPCG are as follows:

Algorithm 9 RR(X, AX)
1: ▷ X ∈ Rn×m

∗ , m ≤ n
2: Compute XTAX ∈ Rm×m

3: Solve for X̂ ∈ Rm×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂ = X̂Λ and X̂T X̂ = Im

where GA := XTAX.
4: return X̂,Λ

Algorithm 10 RR_BLOPEX(X, Z, AX, AZ, BZ)
1: ▷ [X,Z] ∈ Rn×2m

∗ , 2m ≤ n
2: Compute XTAX,XTAZ,ZTAZ,XTBZ ∈ Rm×m

3: Solve for X̂∈R2m×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂=GBX̂Λ and X̂TGBX̂=Im

where GA :=

[
XTAX XTAZ

. ZTAZ

]
, GB :=

[
Im XTBZ
. Im

]
and λ1, . . . , λm are extremal

generalized eigenvalues of (GA, GB).
4: return X̂,Λ

Venkovic Implementations of LOBPCG April 2025 36 / 65

Implementation of BLOPEX_LOBPCG iterations, cont’d2

Algorithm 11 RR_BLOPEX(X, Z, P , AX, AZ, AP , BZ, BP)
1: ▷ [X,Z, P] ∈ Rn×3m

∗ , 3m ≤ n
2: Compute XTAX,XTAZ,XTAP,ZTAZ,ZTAP,PTAP ∈ Rm×m

3: Compute XTBZ,XTBP,ZTBP ∈ Rm×m

4: Solve for X̂∈R3m×m
∗ and Λ = diag(λ1, . . . , λm) s.t. GAX̂=GBX̂Λ and X̂TGBX̂=Im

where GA :=

XTAX XTAZ XTAP
. ZTAZ ZTAP
. . PTAP

, GB :=

Im XTBZ XTBP
. Im ZTBP
. . Im

 and

λ1, . . . , λm are extremal generalized eigenvalues of (GA, GB).
5: return X̂,Λ

Venkovic Implementations of LOBPCG April 2025 37 / 65

Skip_ortho_LOBPCG iterations (Duersch
et al., 2018)

Venkovic Implementations of LOBPCG April 2025

Definition of Skip_ortho_LOBPCG iterations
▶ Duersch et al. (2018) point out that the B-orthonormalization of Zi

against [Xi, Pi] represents a significant cost of Ortho_LOBPCG iterations.
▶ However, the B-orthonormalization of Zi is not always necessary for a

stable implementation of LOBPCG.
▶ Consequently, they propose to skip parts of the B-orthonormalization:

1. Start by Ortho_LOBPCG iterations, without the B-orthonormalization of Zi.
- As seen with Ortho_LOBPCG iterations, the B-orthonormalization of Pi+1

against Xi+1 can be done implicitly, at relatively low-cost. Indeed, we saw that

Ŷi+1 ←[Ortho([0m×m, X̂T
i+1|Zi

, X̂T
i+1|Pi

]T , V T
i+1BVi+1, X̂i+1)

Pi+1 :=Vi+1Ŷi+1

is equivalent to Pi+1 ←[Ortho(ZiX̂i+1|Zi
+ PiX̂i+1|Pi

, B,Xi+1) where, if Zi is
B-orthonormal w.r.t. [Xi, Pi], we have V T

i+1BVi+1 = I3m.
- For this reason, the B-orthonormalization of Pi+1 against Xi+1 is never skipped

by Duersch et al. (2018).
Then, as long as the B-orthonormalization of Zi w.r.t. [Xi, Pi] is skipped, the
Gram matrix V T

i+1BVi+1 is not identity, and must be accounted for a proper
implicit B-orthonormalization of Pi+1 against Xi+1.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 38 / 65

Definition of Skip_ortho_LOBPCG iterations, cont’d1
2. For every Rayleigh-Ritz procedure, as long as Vi+1 is not B-orthonormal,

solving the reduced eigenvalue problem requires to factorize the Gram matrix
V T
i+1BVi+1.
- Duersch et al. (2018) investigate the conditioning of those factors, and then

decide when to trigger the B-orthonormalization of Zi w.r.t. [Xi, Pi].
To do so, the reduced eigenvalue problem is scaled as follows:

1. D := diag(V T
i+1BVi+1)

−1/2

2.Compute Cholesky decomposition LLT = DV T
i+1BVi+1D

3. Solve for small eigenpairs in (Λ, X̂) s.t. L−1DV T
i+1BVi+1DL−T X̂ = X̂Λ

4.Form Rayleigh-Ritz vectors as X := Vi+1DL−T X̂

3. Duersch et al. (2018) set a criterion on the conditioning of L to decide
whether to keep the basis Vi+1 as is, or not.
- Since 3 triangular solves need be applied to form the Rayleigh-Ritz vectors,

Duersch et al. (2018) check if cond(L)−3 is greater than a modest multiple of
machine precision. If so, the procedure is maintained as is.
Otherwise, the Rayleigh-Ritz procedure is aborted and, from that point on, Zi is
always B-orthonormalized w.r.t. [Xi, Pi].

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 39 / 65

Definition of Skip_ortho_LOBPCG iterations, cont’d2
▶ We refer to these iterations as Skip_ortho_LOBPCG defined as follows:

Skip_ortho_LOBPCG(A, B, X−1, T−1, k, τskip):

skipOrtho := True ▷X−1 ∈ Rn×m
∗ , k ≤ m ≤ n

(X̂0,Λ0)← [RR(A,B,X−1,m)

X0 := X−1X̂0 ; R0 := AX0 −BX0Λ0

for i = 0, 1, . . . do
Zi := T−1Ri

if !skipOrtho
if i == 0 then Zi ←[Ortho(Zi, B,Xi) else Zi ← [Ortho(Zi, B, [Xi, Pi])

if i == 0 then Vi+1 := [Xi, Zi] else Vi+1 := [Xi, Zi, Pi]

(X̂i+1,Λi+1)←[RR(A,B, Vi+1,m) ▷L is a by-product s.t. LLT = DV T
i+1BVi+1D

if !skipOrtho then if cond(L)−3 < τskip then skipOrtho := False ; restart i-th iteration
Xi+1 := Vi+1X̂i+1; Ri+1 := AXi+1 −BXi+1Λi+1

if i == 0 then
Ŷi+1 ← [Ortho([0m×m, X̂T

i+1|Zi
]T , V T

i+1BVi+1, X̂i+1)
else

Ŷi+1 ← [Ortho([0m×m, X̂T
i+1|Zi

, X̂T
i+1|Pi

]T , V T
i+1BVi+1, X̂i+1)

Pi+1 := Vi+1Ŷi+1

Venkovic Implementations of LOBPCG April 2025 40 / 65

Implementation of Skip_ortho_LOBPCG iterations
Algorithm 12 Skip_ortho_LOBPCG(A, B, X, T−1, k, τskip) 7→ (X,Λ)
1: Allocate memory for Z, P ∈ Rn×m ▷ X ∈ Rn×m

∗ , k ≤ m ≤ n

2: Allocate memory for AX,AZ,AP,BX,BZ,BP ∈ Rn×m

3: skipOrtho := True
4: Compute AX,BX
5: (X̂,Λ)← [RR(X,AX,BX)

6: [X,AX,BX] := [XX̂,AXX̂,BXX̂] ▷ implicit product updates
7: Z := AX − BXΛ
8: for j = 0, 1, . . . do
9: Z := T−1Z

10: if not skipOrtho then
11: if j == 0 then Z ← [Ortho(Z,B,X) else Z ← [Ortho(Z,B, [X,P])
12: Compute AZ,BZ
13: if skipOrtho then
14: if i == 0 then (X̂,Λ)← [RR(X,Z,AX,AZ,BZ) else (X̂,Λ)← [RR(X,Z, P,AX,AZ,AP,BZ,BP)
15: else
16: if i == 0 then (X̂,Λ)← [RR(X,Z,AX,AZ) else (X̂,Λ)← [RR(X,Z, P,AX,AZ,AP)

17: if skipOrtho then if cond(L)−3 < τskip then skipOrtho := False ; go to 13
18: if i == 0 then
19: [AX,BX] := [AXX̂X , BXX̂X] + [AZX̂Z , BZX̂Z] ▷ implicit product updates
20: Ŷ ← [Ortho([0m×m, X̂T

Z]T , V T
i+1BVi+1, X̂)

21: [AP,BP] := [AXŶX , BXŶX] + [AZŶZ , BZŶZ] ▷ implicit product updates
22: AZ := [X,Z]X̂ ; P := [X,Z]Ŷ ; X := AZ
23: else
24: [AX,BX] := [AXX̂X , BXX̂X] + [AZX̂Z , BZX̂Z] + [APX̂P , BPX̂P] ▷ implicit product updates
25: Ŷ ← [Ortho([0m×m, X̂T

Z , X̂T
P]T , V T

i+1BVi+1, X̂)

26: [AP,BP] := [AXŶX , BXŶX] + [AZŶZ , BZŶZ] + [APŶP , BPŶP] ▷ implicit product updates
27: AZ := [X,Z, P]X̂ ; P := [X,Z, P]Ŷ ; X := AZ
28: Z := AX − BXΛ

Venkovic Implementations of LOBPCG April 2025 41 / 65

Improvement of stability
▶ Even though Ortho_LOBPCG is more stable than BLOPEX_LOBPCG,

Duersch et al. (2018) further improve the stability of Ortho_LOBPCG by:
Basis truncation:
The B-orthogonalization of Zi against [Xi, Pi] using the SVQB procedure can
sometimes yield a poorly conditioned Vi+1, even when B := In.
To circumvent this issue, the basis generated by the SVQB procedure is
truncated by discarding contributions below a round-off error threshold to
represent the Gram matrix ZTBZ, as previously done in Sathopoulos &
Wu (2002) and Yamamoto et al. (2015).
However, in order to deploy basis truncation, one needs to accommodate for
Ortho(Z,B, [X,P]) to return a variable number of B-othonormalized
preconditioned residuals, unless artificially maintaining the rank of ZTBZ’s
decomposition to a prescribed level.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
Stathopoulos, A., & Wu, K. (2002). A block orthogonalization procedure with constant synchronization requirements.
SIAM Journal on Scientific Computing, 23(6), 2165-2182.
Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., & Fukaya, T. (2015). Roundoff error analysis of the CholeskyQR2
algorithm. Electron. Trans. Numer. Anal, 44(01), 306-326.

Venkovic Implementations of LOBPCG April 2025 42 / 65

Improvement of stability, cont’d1
▶ Even though Ortho_LOBPCG is more stable than BLOPEX_LOBPCG,

Duersch et al. (2018) further improve the stability of Ortho_LOBPCG by:
Improved basis selection strategy:
Changes can also made to the way [Xi, Pi] is implicitly B-orthogonalized, in
order to improve both stability and performance.
Let us consider the case when V is B-orthonormal, so that the Raleigh-Ritz
procedure relies on solving the eigendecomposition ẐΘẐT = V TAV with the
block structure given by

Ẑ = [X̂, X̂⊥] , Θ = diag(Λ,Λ⊥) where X̂ =

X̂X

X̂Z

X̂P

 and X̂⊥ =

X̂⊥|X
X̂⊥|Z
X̂⊥|P

 .

Then, the B-orthonormalization of [X,P] is done implicitly by letting
P := V Ŷ , in which Ŷ is such that Ŷ T Ŷ = Im, Ŷ T X̂ = 0m×m and

R([0m×m, X̂T
Z , X̂

T
P]

T) ⊆ R(Ŷ).

This can be achieved by letting Ŷ be a normalized (I3m − X̂X̂T)

0m×m

X̂Z

X̂P

.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 43 / 65

Improvement of stability, cont’d2
▶ Even though Ortho_LOBPCG is more stable than BLOPEX_LOBPCG,

Duersch et al. (2018) further improve the stability of Ortho_LOBPCG by:
Improved basis selection strategy, cont’d:

But since we have X̂X̂T + X̂⊥X̂ ⊥T= I3m, we can actually focus on

X̂⊥X̂
T
⊥

0m×m

X̂Z

X̂P

 = X̂⊥[X̂
T
⊥|X , X̂T

⊥|Z , X̂
T
⊥|P]

0m×m

X̂Z

X̂P


= X̂⊥

(
X̂T

⊥|ZX̂Z + X̂T
⊥|P X̂P

)
= − X̂⊥X̂

T
⊥|XX̂X

where X̂⊥ is orthonormal and X̂T
⊥|X ∈ R2m×m, so that it suffices to let

Ŷ := X̂⊥Q
T
⊥|X

where QT
⊥|X is the Q-factor of a QR decomposition QT

⊥|XLT
⊥|X of XT

⊥|X .

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 44 / 65

Improvement of convergence detection
▶ Most commonly, the convergence of an approximate eigenpair (λi, xi) is

determined by a stopping criterion of the form

∥ri∥
|λi|∥xi∥B

=
∥Axi − λiBxi∥
|λi|∥xi∥B

≤ τ.

However, as explained in Duersch et al. (2018), difficulties can occur when
diagnosing convergence of iterative eigensolvers with this criterion:
1. For generalized problems, i.e., when B ̸= In, the lack of scaling invariance of

the stopping criterion makes convergence detection somewhat arbitrary.
In particular, the smaller the matrix norm ∥B∥2, the more premature the
convergence detection may be.

2. Even for standard problems, i.e., when B = In, if the magnitude of an
approximate eigenvalue λi is too small compared to the matrix norm ∥A∥2, the
eigenresidual norm ∥ri∥2 cannot be computed in floating point arithmetic to
satisfy the stopping criterion, in which case convergence may not be detected.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 45 / 65

Improvement of convergence detection, cont’d
▶ As a means to circumvent issues 1. and 2., Duersch et al. (2018) use the

backward stable criterion

∥ri∥2
(∥A∥2 + |λi|∥B∥2)∥xi∥2

=
∥Axi − λiBxi∥2

(∥A∥2 + |λi|∥B∥2)∥xi∥2
≤ τ.

Since evaluating the matrix 2-norms ∥A∥2 and ∥B∥2 can be costly,
Duersch et al. (2018) suggest to rely on random sketching x 7→ Ωx s.t.

∥A∥(Ω)
2 :=

∥ΩA∥F
∥Ω∥F

≤ ∥A∥2.

Then, convergence is monitored with the following criterion instead:

∥ri∥2
(∥A∥2 + |λi|∥B∥2)∥xi∥2

≤ ∥ri∥2
(∥A∥(Ω)

2 + |λi|∥B∥(Ω)
2)∥xi∥2

≤ τ.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 46 / 65

Monitoring and handling convergence

Venkovic Implementations of LOBPCG April 2025

Handling convergence
▶ Irrespective of the criterion used, see slide on convergence detection,

different eigenvectors may converge at different stages of the iteration.
Maintaining converged eigenvectors to perform subsequent iterations
1 requires unnecessary computational work,
2 can lead to instabilities.

=⇒ A robust and efficient implementation of LOBPCG needs to detect, and
properly handle converged eigenvectors.

▶ Two approaches possible, see Knyazev (2004) and Knyazev et al. (2007):
Hard locking: converged eigenvectors are set aside, kept unchanged, and
B-orthogonalized against by the non-converged, still iterated eigenvectors.
▶ As the number of hard locked vectors increases, the attainable accuracy of the

iterated eigenvectors may decrease, possibly making convergence unachievable.
Soft locking: the residuals and search directions of converged eigenvectors
are set aside, and kept unchanged, but the corresponding locked eigenvectors
still participate to subsequent Rayleigh-Ritz procedures.
▶ The locked eigenpairs keep getting more accurate over subsequent iterations, and

the B-orthogonality is maintained implicitly through the Rayleigh-Ritz procedures.
Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Venkovic Implementations of LOBPCG April 2025 47 / 65

Handling convergence, cont’d
▶ Soft locking is more computationally demanding than hard locking, but it

enables more robust convergence behaviors when more accurate solutions
are needed.

▶ In practice, convergence may be detected in unordered fashions, i.e., the
inner eigenpairs converge before the smallest eigenpairs.

▶ We denote two distinct approaches to deal with this situation:
out-of-order locking: if locking is implemented out of order, one needs to
re-order the stored iterates so as to seamlessly rely on standard BLAS libraries,
which operate most efficiently on contiguous data.
in-order locking: more commonly in practice, locking is implemented in
order, disregarding the fact that some inner eigenpairs may converge before
the sought least dominant eigenpairs.
- Maintaining such unlocked but converged eigenvectors in the iterations can lead

to unstable behaviors of LOBPCG.
▶ The theoretical underpinnings of locking, particularly out-of-order locking,

are not well studied.
Knyazev, A. V. (2004). Hard and soft locking in iterative methods for symmetric eigenvalue problems. In Presentation
at the eighth copper mountain conference on iterative methods.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Venkovic Implementations of LOBPCG April 2025 48 / 65

Landscape of existing software

Venkovic Implementations of LOBPCG April 2025

Existing implementations of LOBPCG
Different implementations of LOBPCG have been developed over the years. In
particular, we know of implementations and bindings in the following libraries:

▶ BLOPEX: C implementation with MPI support after Knyazev et al. (2007).
On GitHub at lobpcg/blopex.

BLOPEX can be called from Matlab, SLEPc and Hypre.

▶ MAGMA: C++ implementation based on BLOPEX (?) for B := In and
T−1 := In with GPU support. On GitHub at

CEED/MAGMA/sparse/src/zlobpcg.cpp

▶ SciPy: Python implementation based on BLOPEX. On GitHub at

scipy/sparse/linalg/eigen/lobpcg/lobpcg.py

▶ IterativeSolvers.jl: Julia implementation based on BLOPEX with
multithreaded BLAS support. On GitHub at

JuliaLinearAlgebra/IterativeSolvers.jl/src/lobpcg.jl
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.

Venkovic Implementations of LOBPCG April 2025 49 / 65

https://github.com/lobpcg/blopex
https://www.mathworks.com/matlabcentral/fileexchange/48-locally-optimal-block-preconditioned-conjugate-gradient
https://slepc.upv.es/documentation/current/src/eps/impls/cg/lobpcg/lobpcg.c
https://hypre.readthedocs.io/en/latest/solvers-lobpcg.html
https://github.com/CEED/MAGMA/blob/master/sparse/src/zlobpcg.cpp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html
https://iterativesolvers.julialinearalgebra.org/stable/eigenproblems/lobpcg/

Existing implementations of LOBPCG, cont’d
▶ BLOPEX from Knyazev et al. (2007) has become the most common

reference among widely used implementations of LOBPCG.
▶ At the moment, there seems to be no widely used implementations of

Ortho_LOBPCG (Hetmaniuk and Lehoucq, 2006)
Skip_ortho_LOBPCG (Duersch et al., 2018)
Mixed precision LOBPCG (Kressner et al., 2023)
Randomized LOBPCG (Xiang, 2024)

Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.
Kressner, D., Ma, Y., & Shao, M. (2023). A mixed precision LOBPCG algorithm. Numerical Algorithms, 94(4),
1653-1671.
Xiang, Y. (2024). Randomized LOBPCG algorithm with dimension reduction maps. Technical Report of Inria,
hal-04517617.

Venkovic Implementations of LOBPCG April 2025 50 / 65

Our implementations

Venkovic Implementations of LOBPCG April 2025

Functions implemented
▶ The following functions are implemented in Julia and Python:

Basic_LOBPCG as in Algo. 1, see Knyazev (2001)
Ortho_LOBPCG as in Algo. 5, see Hetmaniuk & Lehoucq (2006)
BLOPEX_LOBPCG as in Algo. 8, see Knyazev et al. (2007)
Skip_ortho_LOBPCG as in Algo. 12, see Duersch et al. (2018)
- Basis truncation of Duersch et al. (2018) is not implemented.
- Improved basis selection of Duersch et al. (2018) is implemented.
- Improved convergence detection of Duersch et al. (2018) is not implemented.
- Orthogonalization is skipped if cond(L)−3 > 2× ϵmach.

▶ In-order soft locking is implemented for Basic_LOBPCG only.
▶ Hard-locking is not implemented in any of the routines.
▶ Implicit product updates are enabled by default, but can be

deactivated for products with either A, B or both.
Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 51 / 65

Numerical experiments

Venkovic Implementations of LOBPCG April 2025

Previous experiments on stability
▶ The following matrices and matrix pencils were used for the experiments

and comments on BLOPEX’s behavior by Duersch et al. (2018):

Matrix Type of problem Size nnz BLOPEX
C60∗ standard 17 556 407 204 ✘

Si5H12† standard 19 896 738 598 ✓

c-65† standard 48 066 360 428 ✗

Andrews† standard 60 000 760 154 ✓

Ga3As3H12† standard 61 349 5 970 947 ✓

Ga10As10H30† standard 113 081 6 115 633 ✗

nanotube◦ generalized 9984 5 076 862 ✘

graphene◦ generalized 21 060 2 357 415 ✘

∗: Matrix generated with the Matlab RSDFT package for a Buckyball molecule.
†: SuiteSparse matrices.
◦: Matrix pencils generated with the electronic structure software package SIESTA.

✗ : fails. ✘ : converges to incorrect eigen-pairs. ✓: converges to wanted eigen-pairs.

Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 52 / 65

New generalized stability experiments (Julia)
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5.
Results obtained with implicit product updates:
Matrix pencil Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✓ ✗ ✓◦ ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ ✗ ◦ ✘ ✘

Results obtained with explicit product updates:
Matrix pencil Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✓ ✓ N.A. ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ N.A. ✓ ✓

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the Gram matrix V TBV .
✘ : does not converge with wanted accuracy.
✓: converges with wanted accuracy.
◦: If nev is specified, IterativeSolvers.jl discards X0[:, nev + 1 : m], and then sets

m := nev. To work around this implementation error, we need not specify nev, and
monitor convergence ourselves.

∗: SuiteSparse matrices from Boeing with n = 1473, nnz(A) = 34 241 and nnz(B) = 19659.
†: SuiteSparse matrices from Boeing with n = 15 439, nnz(A) = 252 241 and nnz(B) = n.

Venkovic Implementations of LOBPCG April 2025 53 / 65

New generalized stability experiments (Julia), cont’d
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−6.
Results obtained with implicit product updates:
Matrix pencil Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✗ ✗ ✗ ◦ ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ ✗ ◦ ✘ ✘

Results obtained with explicit product updates:
Matrix pencil Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✗ ✗ N.A. ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ N.A. ✓ ✔

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the Gram matrix V TBV .
✘ : does not converge with wanted accuracy. ✓: converges with wanted accuracy.
✔: converges with wanted accuracy, but requires 2.42X more iterations.
◦: If nev is specified, IterativeSolvers.jl discards X0[:, nev + 1 : m], and then sets

m := nev. To work around this implementation error, we need not specify nev, and
monitor convergence ourselves.

∗: SuiteSparse matrices from Boeing with n = 1473, nnz(A) = 34 241 and nnz(B) = 19659.
†: SuiteSparse matrices from Boeing with n = 15 439, nnz(A) = 252 241 and nnz(B) = n.

Venkovic Implementations of LOBPCG April 2025 54 / 65

New generalized stability experiments (Python)
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5.
Results obtained with implicit product updates:

Matrix pencil Basic BLOPEX SciPy Ortho Skip_ortho
(bcsstk12, bcsstm12)∗ ✓ ✓ ✓◦ ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ ✘ ◦ ✗ ✘

Results obtained with explicit product updates:
Matrix pencil Basic BLOPEX SciPy Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✓ ✓ N.A. ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ N.A. ✗ ✘

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the Gram matrix V TBV .
✗ : fails in the (implicit) B-orthogonalization of P against X.
✘ : does not converge with wanted accuracy. ✓: converges to wanted eigen-pairs.
◦: SciPy does not allow for the specification of some nev < m.

To work around this implementation choice, we need to monitor convergence ourselves.
∗: SuiteSparse matrices from Boeing with n = 1473, nnz(A) = 34 241 and nnz(B) = 19659.
†: SuiteSparse matrices from Boeing with n = 15 439, nnz(A) = 252 241 and nnz(B) = n.

Venkovic Implementations of LOBPCG April 2025 55 / 65

New generalized stability experiments (Python), cont’d
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−6.
Results obtained with implicit product updates:

Matrix pencil Basic BLOPEX SciPy Ortho Skip_ortho
(bcsstk12, bcsstm12)∗ ✗ ✗ ✘ ◦ ✓ ✔

(bcsstk25, bcsstm25)† ✗ ✗ ✘ ◦ ✗ ✘

Results obtained with explicit product updates:
Matrix pencil Basic BLOPEX SciPy Ortho Skip_ortho

(bcsstk12, bcsstm12)∗ ✗ ✓ N.A. ✓ ✓

(bcsstk25, bcsstm25)† ✗ ✗ N.A. ✗ ✘

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the Gram matrix V TBV .
✘ : does not converge with wanted accuracy. ✓: converges with wanted accuracy.
✔: converges with wanted accuracy, but requires significantly more iterations.
◦: SciPy does not allow for the specification of some nev < m.

To work around this implementation choice, we need to monitor convergence ourselves.
∗: SuiteSparse matrices from Boeing with n = 1473, nnz(A) = 34 241 and nnz(B) = 19659.
†: SuiteSparse matrices from Boeing with n = 15 439, nnz(A) = 252 241 and nnz(B) = n.

Venkovic Implementations of LOBPCG April 2025 56 / 65

New generalized performance experiments (Julia)
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5 and num_threads := 6.
Runtimes to reach convergence with implicit product updates:
Matrix pencil Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

Poisson8† 16 s
27 it

16 s
27 it

26 s ◦

28 it
29 s
27 it

23 s
27 it

Poisson16† ✗ 36 s
42 it

57 s ◦

42 it
73 s
41 it

48 s
41 it

Poisson32† ✗ 82 s
55 it

132 s ◦

55 it
188 s
54 it

108 s
54 it

Poisson64† ✗ 249 s
89 it

423 s ◦

89 it
640 s
88 it

378 s
88 it

Poisson128† 628 s
102 it

761 s
102 it

1253 s ◦

103 it
2038 s
102 it

1199 s
102 it

Experiences done on an Intel CPU 12th Gen Core i7-1255U.
†: PoissonX refers to a matrix pencil from the unstructured FE discretization of a 2D Poisson

PDE with a random variable coefficient s.t. n(A) ≈ X× 1000.
◦: If nev is specified, IterativeSolvers.jl discards X0[:, nev + 1 : m], and then sets

m := nev. To work around this implementation error, we need not specify nev, and
monitor convergence ourselves.

Venkovic Implementations of LOBPCG April 2025 57 / 65

New generalized performance experiments (Python)
▶ The following tests are run for generalized eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5 and num_threads := 6.
Runtimes to reach convergence with implicit product updates:

Matrix pencil Basic BLOPEX SciPy Ortho Skip_ortho

Poisson8† 15 s
27 it

18 s
27 it

14 s ◦

27 it
24 s
27 it

24 s
27 it

Poisson16† ✗ 54 s
42 it

48 s ◦

42 it
83 s
41 it

69 s
41 it

Poisson32† ✗ 161 s
55 it

157 s ◦

55 it
268 s
54 it

197 s
54 it

Poisson64† ✗ ✗ 508 s ◦

88 it
807 s
88 it

628 s
88 it

Poisson128† 971 s
102 it

1105 s
103 it

1212 s ◦

102 it
1782 s
102 it

1465 s
102 it

Experiences done on an Intel CPU 12th Gen Core i7-1255U.
†: PoissonX refers to a matrix pencil from the unstructured FE discretization of a 2D Poisson

PDE with a random variable coefficient s.t. n(A) ≈ X× 1000.
◦: SciPy does not allow for the specification of some nev < m.

To work around this implementation choice, we need to monitor convergence ourselves.

Venkovic Implementations of LOBPCG April 2025 58 / 65

New standard stability experiments (Julia)
▶ The following tests are run for standard eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5.
Results obtained with implicit product updates:

Matrix Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho
bcsstk151 ✗ ✗ ✗ ◦ ✓ ✓

bcsstk212 ✗ ✗ ✗ ◦ ✓ ✓

bodyy63 ✗ ✗ ✗ ◦ ✓ ✓

tmt_sym4 ✗ ✓ ✘ ◦ ✓ ✓

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the cross-product matrix V TV .
✓: converges to wanted eigen-pairs.
◦: If nev is specified, IterativeSolvers.jl discards X0[:, nev + 1 : m], and then sets

m := nev. To work around this implementation error, we need not specify nev, and
monitor convergence ourselves.

1: SuiteSparse matrices from Boeing with n = 3948 and nnz(A) = 117 816.
2: SuiteSparse matrices from Boeing with n = 3600 and nnz(A) = 26 600.
3: SuiteSparse matrices from NASA with n = 19 366 and nnz(A) = 134 208.
4: SuiteSparse matrices from CEMW with n = 726 713 and nnz(A) = 5 080 961.

Venkovic Implementations of LOBPCG April 2025 59 / 65

New standard stability experiments (Python)
▶ The following tests are run for standard eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5.
Results obtained with implicit product updates:

Matrix Basic BLOPEX SciPy Ortho Skip_ortho
bcsstk151 ✗ ✗ ✘ ◦ ✓ ✓

bcsstk212 ✗ ✗ ✓◦ ✓ ✓

bodyy63 ✗ ✗ ✘ ◦ ✓ ✓

tmt_sym4 ✗ ✓ ✘ ◦ ✓ ✓

✗ : fails in the Rayleigh-Ritz procedure when trying to factorize the cross-product matrix V TV .
✘ : does not converge with wanted accuracy.
✓: converges with wanted accuracy.
◦: SciPy does not allow for the specification of some nev < m.

To work around this implementation choice, we need to monitor convergence ourselves.
1: SuiteSparse matrices from Boeing with n = 3948 and nnz(A) = 117 816.
2: SuiteSparse matrices from Boeing with n = 3600 and nnz(A) = 26 600.
3: SuiteSparse matrices from NASA with n = 19 366 and nnz(A) = 134 208.
4: SuiteSparse matrices from CEMW with n = 726 713 and nnz(A) = 5 080 961.

Venkovic Implementations of LOBPCG April 2025 60 / 65

New standard performance experiments (Julia)
▶ The following tests are run for standard eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5 and num_threads := 6.
Runtimes to reach convergence with implicit product updates:

Matrix Basic BLOPEX IterativeSolvers.jl Ortho Skip_ortho

Poisson8_k† ✗ 31 s
36 it

✗ ◦ 50 s
36 it

39 s
36 it

Poisson16_k† ✗ 59 s
54 it

✘ ◦ 104 s
54 it

67 s
54 it

Poisson32_k† ✗ 121 s
73 it

✘ ◦ 240 s
73 it

134 s
73 it

Poisson64_k† ✗ ✗ ✗ ◦ 674 s
116 it

593 s
116 it

Poisson128_k† ✗ 693 s
140 it

✘ ◦ 1484 s
140 it

1165 s
140 it

Experiences done on an Intel CPU 12th Gen Core i7-1255U.
†: PoissonX_k refers to a stiffness matrix from the unstructured FE discretization of a 2D

Poisson PDE with a random variable coefficient s.t. n(A) ≈ X× 1000.
◦: If nev is specified, IterativeSolvers.jl discards X0[:, nev + 1 : m], and then sets

m := nev. To work around this implementation error, we need not specify nev, and
monitor convergence ourselves.

Venkovic Implementations of LOBPCG April 2025 61 / 65

New standard performance experiments (Python)
▶ The following tests are run for standard eigenvalue problems.

T := block Jacobi with Cholesky factors of 10 diagonal blocks of A.
nev := 10, m := 200, τ := 10−5 and num_threads := 6.
Runtimes to reach convergence with implicit product updates:

Matrix Basic BLOPEX SciPy Ortho Skip_ortho

Poisson8_k† ✗ 20 s
37 it

✘ ◦ 25 s
36 it

26 s
36 it

Poisson16_k† ✗ ✗ ✘ ◦ 86 s
54 it

76 s
54 it

Poisson32_k† ✗ 174 s
76 it

✘ ◦ 251 s
73 it

208 s
73 it

Poisson64_k† ✗ ✗ ✘ ◦ 825 s
116 it

740 s
116 it

Poisson128_k† ✗ ✗ ✘ ◦ 1949 s
140 it

1940 s
140 it

Experiences done on an Intel CPU 12th Gen Core i7-1255U.
†: PoissonX_k refers to a stiffness matrix from the unstructured FE discretization of a 2D

Poisson PDE with a random variable coefficient s.t. n(A) ≈ X× 1000.
◦: SciPy does not allow for the specification of some nev < m.

To work around this implementation choice, we need to monitor convergence ourselves.

Venkovic Implementations of LOBPCG April 2025 62 / 65

Conclusion
▶ Stability issues are prevalent when deploying LOBPCG implementations.

This is especially the case for the Basic iterations of Knyazev (2001):
The core of the issue lies in the poor conditioning of V := [X,Z, P], the
difficulty to factorize the Gram matrix V TBV in the Rayleigh-Ritz procedure,
and the round-off error accumulated by subsequent triangular solves.
Instabilities occur irrespective of the conditioning of B, i.e., even for B = In.

▶ Knyazev et al. (2007) introduce BLOPEX iterations, in which blocks of V
are B-orthogonalized, independently from each other:

More stable than Basic iterations, but still unstable.
▶ Hetmaniuk & Lehoucq (2006) introduce Ortho iterations, where V is

consistently B-orthogonalized:
Most stable iterations, but also computationally most expensive to deploy.

▶ Duersch et al. (2018) suggest improvements to LOBPCG implementations,
with a criterion to skip the most expensive parts of the B-orthogonalization
of V , leading to robust and efficient Skip_ortho iterations.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 63 / 65

Conclusion, cont’d1
▶ We implement the following types of preconditioned LOBPCG iterations,

in Julia and Python, for both standard and generalized problems:
Basic_LOBPCG as in Knyazev (2001), with in-order soft locking.
BLOPEX_LOBPCG as in Knyazev et al. (2007), but without locking.
Ortho_LOBPCG as in Hetmaniuk & Lehoucq (2006), without locking.
Skip_ortho_LOBPCG partly as in Duersch et al. (2018), skipping costly steps
of B-orthogonalization when possible, without locking.

▶ Our implementations allow for implicit or explicit matrix-products updates:
As pointed out by Duersch et al. (2018), some generalized problems require
explicit product updates for a better stability, and faster convergence.

▶ In Julia, our numerical experiments show that:
IterativeSolvers.jl’s LOBPCG, which is based on BLOPEX, is 40%
slower on average than our BLOPEX_LOBPCG implementation.
Our implementation of Skip_ortho_LOBPCG is nearly as stable as
Ortho_LOBPCG, while being as fast as IterativeSolvers.jl’s LOBPCG.

Knyazev, A. V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM journal on scientific computing, 23(2), 517-541.
Knyazev, A. V., Argentati, M. E., Lashuk, I., & Ovtchinnikov, E. E. (2007). Block locally optimal preconditioned
eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing, 29(5), 2224-2239.
Hetmaniuk, U., & Lehoucq, R. (2006). Basis selection in LOBPCG. Journal of Computational Physics, 218(1), 324-332.
Duersch, J. A., Shao, M., Yang, C., & Gu, M. (2018). A robust and efficient implementation of LOBPCG. SIAM
Journal on Scientific Computing, 40(5), C655-C676.

Venkovic Implementations of LOBPCG April 2025 64 / 65

Conclusion, cont’d2
▶ In Python, our numerical experiments show that:

SciPy’s implementation of LOBPCG iterations never seem to fail, per se.
Instead, checks are made on the definiteness of Gram matrices, and
Rayleigh-Ritz performed accordingly, leading to stagnation of iterates.
Our implementation of BLOPEX_LOBPCG is not consistently faster than
SciPy’s LOBPCG iterations.
Our implementation of Skip_ortho_LOBPCG is nearly as stable as
Ortho_LOBPCG and significantly more stable than SciPy’s LOBPCG.¨

▶ While LOBPCG iterations are faster for larger problems in Julia, they are
faster in Python for smaller problems.

▶ To consider:
Enabling computation of approximate largest eigenpairs in methods
implemented (need better preconditioners).
Implementing better basis selection for the implicit B-orthonormalization of
[X,P] when [X,Z, P]’s B-orgonolization is skipped in Skip_ortho.
Implementing mixed-precision.
Implementing randomization, and investigate performance, accuracy and
stability.

Venkovic Implementations of LOBPCG April 2025 65 / 65

	Methods based on optimization
	Early development of LOBPCG iterations
	Basic_LOBPCG iterations (Knyazev, 2001)
	Ortho_LOBPCG iterations (Hetmaniuk and Lehoucq, 2006)
	BLOPEX_LOBPCG iterations (Knyazev et al., 2007)
	Skip_ortho_LOBPCG iterations (Duersch et al., 2018)
	Monitoring and handling convergence
	Landscape of existing software
	Our implementations
	Numerical experiments
	Conclusion

