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The "What?", the "Why?" and the "How?"
▶ Given a sparse matrix A ∈ Rn×n, we seek a sparse matrix M ∈ Rn×n such

that In −AM is small in some sense:
We say that M is a right sparse approximate inverse (SPAI) of A.

▶ In this talk, we aim at minimizing the Frobenius residual norm:

Find a sparse M ∈ Rn×n s.t. f(M) := ∥In −AM∥2F is minimized

▶ SPAIs are good candidates to precondition the iterative solve of linear
systems.

▶ Existing methods to find SPAIs include:
- Method of Hotelling and Bodewig,
- Steepest descent (SD) method,
- Minimal residual (MR) method.
To which non-zero dropping strategies are added.

▶ Our experiments show that, even without dropping strategy deployed,
some of these methods struggle to achieve symmetric positive definite
(SPD) spectra for M when A is SPD.
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One-dimensional descent methods

Venkovic & Anzt (2025) GAMM ANLA25 October 23, 2025



One-dimensional descent methods
▶ For this problem, it is standard to consider the Frobenius inner product

(X,Y )F := tr(XTY ) with induced norm ∥X∥F := (X,X)
1/2
F .

▶ In this work:
- We look into descent methods as projections with carefully defined

orthogonality constraints.

- Orthogonality: Rm×n ∋ X ⊥ S ⊂ Rm×n ⇐⇒ (X,Y )F = 0 ∀Y ∈ S .

Definition (One dimensional descent methods)

- Given A ∈ Rn×n and M0 ∈ Rn×n a sequence of one-dimensional descent
iterates with search directions Pi ∈ Rn×n is defined by:

Mi+1 ∈ Mi + span{Pi} s.t. Ri+1 := In −AMi+1 ⊥ A span{Pi}
for i = 0, 1, . . . .

- This leads to the update formula:

Mi+1 = Mi + αiPi where αi =
(Ri, APi)F
∥APi∥2F

for i = 0, 1, . . . .
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Steepest descent method
▶ Of particular interest for the definition of a search direction in a descent

method is the gradient given by:

∇Mf(M) = −2AR = −2(In −AM)

▶ The steepest descent (SD) method is obtained by setting the search
direction opposed to the gradient direction:

Pi := ARi for i = 0, 1, . . . .

The resulting algorithm is given by:

Algorithm 1 SD(A, M0)

1: R0 := In −AM0

2: P0 := AR0

3: for i = 0, 1, . . . do
4: αi := (Ri, APi)F /∥APi∥2F
5: Mi+1 := Mi + αiPi

6: Ri+1 := Ri − αiAPi

7: Pi+1 := ARi+1
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Minimal residual method
▶ Alternatively, the minimal residual (MR) method (Chow and Saad, 1998)

is formed by setting the search direction to the residual:

Pi := Ri for i = 0, 1, . . . .

The resulting algorithm is given by:

Algorithm 2 MR(A, M0)

1: R0 := In −AM0

2: for i = 0, 1, . . . do
3: αi := (Ri, ARi)F /∥ARi∥2F
4: Mi+1 := Mi + αiRi

5: Ri+1 := Ri − αiARi

▶ Both the SD and MR methods are optimal in the sense that:

∥In −AMi+1∥F = min
M∈Mi+span{Pi}

∥In −AM∥F for i = 0, 1, . . . .

Chow, E., & Saad, Y. (1998). Approximate inverse preconditioners via sparse-sparse iterations. SIAM Journal on
Scientific Computing, 19(3), 995-1023.
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Locally optimal variants
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Local optimality
▶ The term "locally optimal" was coined by Andrew Knyazev (2001) to refer

to the enrichment with previous search directions of the search space used
for the subspace optimization of Rayleigh quotients of symmetric matrices.

▶ To apply local optimality to the subspace minimization of f(M), we stress
that the MR search directions constitute a trivial case of:

Pi ∈ span{Pi−1, Ri}. (1)

Theorem (Local optimality)

Given A ∈ Rn×n and M0 ∈ Rn×n with search directions satisfying Eq. (1)
and P−1 := 0n×n, we have:

min
M∈Mi+span{Pi−1,Ri}

f(M) ≤ min
M∈Mi+span{Ri}

f(M)

▶ Similarly, local optimality can be stated with respect to SD-like iterates.
Andrew Knyazev (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541.
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Local optimal minimal residual method
▶ Upon deploying a locally optimal iteration in the context of the MR

approach, we obtain the following locally optimal minimal residual
(LOMR) method:

Definition (LOMR)

- Given A ∈ Rn×n and M0 ∈ Rn×n, a sequence of LOMR iterates is defined
by:

Mi+1 := arg min
M∈Mi+span{Pi−1,Ri}

∥In −AM∥F for i = 0, 1, . . . .

- The main iterates are given by:

Mi+1 := Mi + δiRi + γiPi−1 for i = 0, 1, . . .

where the optimal step sizes δi and γi depend on:

(Ri, ARi)F , ∥ARi∥2F , ∥APi−1∥2F , (ARi, APi)F , (Ri, APi)F .
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Conjugate gradient methods
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Nonlinear conjugate gradient method
▶ We introduce the nonlinear conjugate gradient (NCG) method as follows:

Definition (NCG)

- Given A ∈ Rn×n and M0 ∈ Rn×n, a sequence of NCG iterates is defined
by:

Mi+1 ∈ Mi + span{Pi} s.t. Ri+1 := In −AMi+1 ⊥ span{Pi}

for i = 0, 1, . . . , with search direction Pi ∈ Rn×n defined as

Pi ∈ −Gi + span{Pi−1} s.t. Pi ⊥ A span{Pi−1} for i = 1, 2, . . .

with P0 := −G0 and Gi := −ARi, where Gi denotes the gradient
direction of f(M) at Mi.
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Nonlinear conjugate gradient method, con’d
▶ We introduce the nonlinear conjugate gradient (NCG) method as follows:

Definition (NCG, cont’d)
- The iterates of the NCG method are given by:

Mi+1 := Mi + αiPi where αi := − (Ri, Gi)F
(Pi, APi)F

and Gi := −ARi

for i = 0, 1, . . . , in which the search direction is updated as follows:

Pi := −Gi + βiPi−1 where βi :=
(Ri, Gi)F

(Ri−1, Gi−1)F
for i = 1, 2, . . . .
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Nonlinear conjugate gradient method, con’d
▶ The NCG method can be seen as a Krylov method:

Theorem (Global optimality of NCG iterates)
The NCG iterates are equivalently given by

Mi ∈ M0 +Ki(A
2, G0) s.t. Ri := In −AMi ⊥ K(A2, G0) for i = 1, 2, . . .

and the right-approximate inverse M−1
i is optimal in the sense that

∥A−1 −Mi∥F,A = min
M∈M0+Ki(A2,G0)

∥A−1 −M∥F,A for i = 1, 2, . . . .

That is, the NCG iterate minimizes the Frobenius A-norm of the error
E := A−1 −M over the affine Krylov subspace of A2 generated by the initial
gradient G0 := −AR0.
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Conjugate gradient method
▶ Lastly, we implement a conjugate gradient (CG) method which

corresponds to the standard conjugate gradient algorithm with matrix
iterates and Frobenius inner products:

Definition (CG)

- Given A ∈ Rn×n and M0 ∈ Rn×n, a sequence of CG iterates is defined by:

Mi+1 ∈ Mi + span{Pi} s.t. Ri+1 := In −AMi+1 ⊥ span{Pi}

for i = 0, 1, . . . , with search direction Pi ∈ Rn×n defined as

Pi ∈ Ri + span{Pi−1} s.t. Pi ⊥ A span{Pi−1} for i = 1, 2, . . .

with P0 := R0.
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Non-zero dropping strategies
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Non-zero dropping strategy — main iterate
▶ Non-zero values are dropped in the main iterate, M 7→ M̂ , to try and

decrease the residual norm achieved after dropping, i.e., ∥R̂∥F < ∥R∥F :
1 Symmetrize M : M̂ :=

(
M +MT

)
/2.

2 Drop insignificant non-diagonal components:
m̂kℓ := 0 ∀ |m̂kℓ| < u with k ̸= ℓ, where u denotes the unit round-off.

3 If |NNZ(M̂)| > nnz:

For (k, ℓ) ∈ D = arg
S⊂NNZ(M̂)\{(k,k), k=1,...,n}

|NNZ(M̂)|−|S|=nnz

min

 ∑
(k,ℓ)∈S

m̂2
kℓ∥Aek∥22

+2
∑

(k,ℓ)∈S

m̂kℓ · (AR)kℓ

 ,

set m̂kℓ := 0.
- The matrix AR is already formed at each iteration.
- The dot products ∥Ae1∥22, . . . , ∥Aen∥22 need be computed only once, at

the start of the algorithm.
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Non-zero dropping strategy — search direction
▶ Similarly, we drop non-zero values in the search direction iterate, P 7→ P̂ ,

although without sophistication:
1 If |NNZ(P )| > nnz:

For (k, ℓ) ∈ DP = arg
S⊂NNZ(P )

|NNZ(P )|−|S|=m

min

 ∑
(k,ℓ)∈S

|pkℓ|

 ,

set p̂kℓ := 0, otherwise p̂kℓ := pkℓ.
2 Otherwise, P̂ := P .
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Summary of methods
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Summary of computing cost per iteration
▶ The main computing effort of the methods presented is decomposed into:

- Multiplication between sparse matrices (SpGEMM),
- Frobenius inner products of sparse matrices.

▶ In detail, the operation count per iteration of the methods is as follows:

Method Operation count per iteration
MR 1 SpGEMM + 2 sparse inner products
SD 2 SpGEMMs + 2 sparse inner products

LOMR 2 SpGEMMs + 5 sparse inner products
CG1 2 SpGEMMs + 4 sparse inner products
CG2 1 SpGEMM + 4 sparse inner products

▶ A substantial added cost is that of dropping zeros and changing the data
structures of the sparse iterates.
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Numerical experiments

Venkovic & Anzt (2025) GAMM ANLA25 October 23, 2025



Dropping-free experiments
▶ bcsstk21 matrix (from SuiteSparse Collection), with Jacobi preconditioner:
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Dropping-free experiments, cont’d
▶ msc04515 matrix (from SuiteSparse Collection), with Jacobi

preconditioner:
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With dropping experiments
▶ bundle1 matrix (from SuiteSparse Collection) with Jacobi preconditioner,

and 3% density:
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With dropping experiments, cont’d
▶ rand20k matrix (github.com/venkovic/matrix-market) with Jacobi

preconditioner,
and 3% density:
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Closing remarks
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Conclusion
▶ Findings:

Global iterative methods were introduced for the approximation of SPAIs
of SPD matrices:
- SD, MR and NCG all fail to yield SPAIs with SPD spectra for SPD

matrices, even without dropping.
- LOMR and CG both consistently yield SPAIs with SPD spectra for SPD

matrices, without dropping.
- LOMR achieves better SPAIs, with dropping, than CG.

▶ Dissemination:
- Preprint:

Venkovic & Anzt (2025). Global iterative methods for sparse approximate inverses of
symmetric positive-definite matrices.

- Repository allowing reproducible experiments:
github.com/venkovic/julia-global-spd-spai

- Find this presentation at:
venkovic.github.io/research
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Related ongoing and future work
▶ Global iterative methods for the approximation of SPAIs of general

matrices:
Venkovic & Anzt (2025). Global iteration methods for sparse approximate inverses of
general matrices.

github.com/venkovic/julia-global-general-spai

▶ Randomized short-recurrence iterative methods for approximate low-rank
matrix factorizations:
Venkovic & Anzt (2025). Randomized first-order short-recurrence subspace iterative meth-
ods for approximate low-rank matrix factorizations.

github.com/venkovic/julia-iterative-low-rank

▶ Related future works:
• SPAIs:

- Parallelization.
• Low-rank approximation:

- Application to matrix recovery (completion and sensing problems).
- Non-negative matrix factorizations.
- Tensor factorizations.
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