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The "What?", the "Why?" and the "How?"

» Given a sparse matrix A € R™*", we seek a sparse matrix M € R™*" such
that I,, — AM is small in some sense:

We say that M is a right sparse approximate inverse (SPAI) of A.
» In this talk, we aim at minimizing the Frobenius residual norm:

Find a sparse M € R"*" sit. f(M) := ||I, — AM||% is minimized

» SPAIs are good candidates to precondition the iterative solve of linear
systems.

» Existing methods to find SPAIs include:
- Method of Hotelling and Bodewig,
- Steepest descent (SD) method,
- Minimal residual (MR) method.
To which non-zero dropping strategies are added.

» Our experiments show that, even without dropping strategy deployed,
some of these methods struggle to achieve symmetric positive definite
(SPD) spectra for M when A is SPD.
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One-dimensional descent methods
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One-dimensional descent methods

» For this problem, it is standard to consider the Frobenius inner product
(X,Y)p = tr(XTY) with induced norm || X || := (X, X)}/*.
» In this work:
- We look into descent methods as projections with carefully defined
orthogonality constraints.

- Orthogonality: |[R™*" 3> X | SCR™" «<— (X,Y)p=0VY €S8]|.

Definition (One dimensional descent methods)

- Given A € R™"™ and My € R™ "™ a sequence of one-dimensional descent
iterates with search directions P; € R™*" is defined by:

M1 € M; +span{P,;} sit. Ri11:=1,— AM;1; L Aspan{P;}
fori=0,1,....
- This leads to the update formula:

(Ri, AP)F )
W AR e T
|AP;||%
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M1 = M; + o B where o; =




Steepest descent method
» Of particular interest for the definition of a search direction in a descent
method is the gradient given by:
Varf(M) = —2AR = —2(I, — AM)

» The steepest descent (SD) method is obtained by setting the search
direction opposed to the gradient direction:
P;:= AR; for i=0,1,....
The resulting algorithm is given by:
Algorithm 1 SD(A, M)
1: R() = In - AMO
2: PO = ARO
3: fori=0,1,... do
a; = (R;, AP))p /| AP %
M1 = M; + o P;
Rii1 = R; — a; AP
Pi+1 = ARH-I
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Minimal residual method
> Alternatively, the minimal residual (MR) method (Chow and Saad, 1998)
is formed by setting the search direction to the residual:
P, =R, for 1=0,1,....
The resulting algorithm is given by:
Algorithm 2 MR(A, M)

1: RO = In - AMQ

2: fori=0,1,... do

3 ;= (Ri, AR;)r /| ARi|%
M1 :=M; + o R;

Ri+1 = Ri — OéiARi

4:
5.

» Both the SD and MR methods are optimal in the sense that:
HIn_AMH—lHF: min ”In_AM”F for ZZO,I,
MeM;+span{P;}

Chow, E., & Saad, Y. (1998). Approximate inverse preconditioners via sparse-sparse iterations. SIAM Journal on
Scientific Computing, 19(3), 995-1023.
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Locally optimal variants
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Local optimality

» The term "locally optimal" was coined by Andrew Knyazev (2001) to refer
to the enrichment with previous search directions of the search space used
for the subspace optimization of Rayleigh quotients of symmetric matrices.

» To apply local optimality to the subspace minimization of f(M), we stress
that the MR search directions constitute a trivial case of:

P e span{Pi_l,Ri}. (1)

Theorem (Local optimality)
Given A € R™*™ and My € R™*™ with search directions satisfying Eq. (1)
and P_1 := 0,,xn,, we have:

min f(M) < min f(M)
MEMZ‘#’SPQH{PZ‘,LR»;} M€M¢+span{Ri}

» Similarly, local optimality can be stated with respect to SD-like iterates.

Andrew Knyazev (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM journal on scientific computing, 23(2):517-541.
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Local optimal minimal residual method

» Upon deploying a locally optimal iteration in the context of the MR
approach, we obtain the following locally optimal minimal residual
(LOMR) method:

Definition (LOMR)

- Given A € R™ ™ and My € R™*", a sequence of LOMR iterates is defined
by:

Mt = arg I, — AM||p for ¢ =0,1,....

MeMi+sIrginr%Pi,1,Ri}
- The main iterates are given by:
My := M; + 6;R; +v;P,—1 for i =0,1,...
where the optimal step sizes ¢; and +; depend on:

(Ri, AR)F, | ARi||%, |APi—1||%, (AR;, AP)F, (Ri, AP) .
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Conjugate gradient methods
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Nonlinear conjugate gradient method

» We introduce the nonlinear conjugate gradient (NCG) method as follows:

Definition (NCG)

- Given A € R™"™ and My € R™*", a sequence of NCG iterates is defined
by:

M1 € M; + span{P;} sit. Ri11:=1,— AM;; L span{P;}
fori =0,1,..., with search direction P, € R"*" defined as
P, e —G; +span{P,_1} st. P, L Aspan{P,_1} for i=1,2,...

with Py := —Gy and G; := —AR;, where G; denotes the gradient
direction of f(M) at M;.
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Nonlinear conjugate gradient method, con'd
» We introduce the nonlinear conjugate gradient (NCG) method as follows:

Definition (NCG, cont'd)
- The iterates of the NCG method are given by:

R, Gi)r
My = M; + o B where «; 1= —m and G; := —AR;
for i =0,1,..., in which the search direction is updated as follows:
(Ri, Gi)r .
P, .= —G; + B;P,_1 where 8; ;== ——"—~—— for i=1,2,....
P P (Ri—1,Gi-1)F
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Nonlinear conjugate gradient method, con'd

» The NCG method can be seen as a Krylov method:

Theorem (Global optimality of NCG iterates)
The NCG iterates are equivalently given by

M; € My + K;(A%,Go) s.t. R;:=1I,— AM; L K(A% Gy) for i=1,2,...
and the right-approximate inverse M[l is optimal in the sense that

|A™Y — M;||Fpa = min A~ — M||pa for i=1,2,....
MeMy+K;(A2,Go)
That is, the NCG iterate minimizes the Frobenius A-norm of the error

E := A=! — M over the affine Krylov subspace of A? generated by the initial
gradient Gy := —AR,.

W

Venkovic & Anzt (2025) GAMM ANLA25 October 23, 2025 9/19



Conjugate gradient method

» Lastly, we implement a conjugate gradient (CG) method which
corresponds to the standard conjugate gradient algorithm with matrix
iterates and Frobenius inner products:

Definition (CG)
- Given A € R™™ and M,y € R™*", a sequence of CG iterates is defined by:

M1 € M; + span{P;} sit. Ri11:=1,— AM;; L span{P;}
for i =0,1,..., with search direction P, € R™"*" defined as
P, e R; +span{P;_1} st. P, L Aspan{P,_1} for i=1,2,...

with Py := Ry.
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Non-zero dropping strategies
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Non-zero dropping strategy — main iterate
» Non-zero values are dropped in the main iterate, M +— ]\/Z,Ato try and
decrease the residual norm achieved after dropping, i.e., |R||r < ||R]||F:
© Symmetrize M: M= (M +MT) /2.
@ Drop insignificant non-diagonal components:
mge := 0V |mge| < u with k # £, where u denotes the unit round-off.

0 If INNZ(M)| > nnz:

For (k,0) e D= arg min Z mi,||Aeg||3
SCNNZM\{(k,k), k=1,....;n} (k,0)ES
INNZ(M)|—|S|=nnz

+2 ) e (AR p s
(k,0)eS
set My := 0.
- The matrix AR is already formed at each iteration.
- The dot products ||Ae1||3,. .., ||Aen||? need be computed only once, at
the start of the algorithm.
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Non-zero dropping strategy — search direction

» Similarly, we drop non-zero values in the search direction iterate, P P,
although without sophistication:

Q If INNZ(P)| > nnz:

For (k,¢) € Dp = arg min Z |prel ¢ s
SCNNZE(P) (hDes
INNZ(P)|—|S|=m ?

set ﬁké =0, otherwise f’)\kz 1= Dke-
@ Otherwise, P := P.
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Summary of methods
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Summary of computing cost per iteration
» The main computing effort of the methods presented is decomposed into:

- Multiplication between sparse matrices (SpGEMM),
- Frobenius inner products of sparse matrices.
» In detail, the operation count per iteration of the methods is as follows:

Method | Operation count per iteration
MR | 1 SpGEMM + 2 sparse inner products
SD | 2 SpGEMMSs + 2 sparse inner products
LOMR | 2 SpGEMMs + 5 sparse inner products
CG1 | 2 SpGEMMs + 4 sparse inner products
CG2 | 1 SpGEMM + 4 sparse inner products

» A substantial added cost is that of dropping zeros and changing the data
structures of the sparse iterates.
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Numerical experiments
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Dropping-free experiments

» bcsstk21 matrix (from SuiteSparse Collection), with Jacobi preconditioner:

besstk21
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Dropping-free experiments, cont'd
» msc04515 matrix (from SuiteSparse Collection), with Jacobi

preconditioner: msc1515
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With dropping experiments

» bundlel matrix (from SuiteSparse Collection) with Jacobi preconditioner,

and 3% density:
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With dropping experiments, cont'd

» rand20k matrix (github.com/venkovic/matrix-market) with Jacobi

preconditioner,
and 3% density:
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ackward error
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Closing remarks
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Conclusion

» Findings:

Global iterative methods were introduced for the approximation of SPAIs
of SPD matrices:

- SD, MR and NCG all fail to yield SPAls with SPD spectra for SPD
matrices, even without dropping.
- LOMR and CG both consistently yield SPAls with SPD spectra for SPD
matrices, without dropping.
- LOMR achieves better SPAIs, with dropping, than CG.
» Dissemination:
- Preprint:

Venkovic & Anzt (2025). Global iterative methods for sparse approximate inverses of
symmetric positive-definite matrices.

- Repository allowing reproducible experiments:
github.com/venkovic/julia-global-spd-spai
- Find this presentation at:
venkovic.github.io/research
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https://www.github.com/venkovic/julia-global-spd-spai/
https://www.venkovic.github.io/research/

Related ongoing and future work

» Global iterative methods for the approximation of SPAls of general
matrices:

Venkovic & Anzt (2025). Global iteration methods for sparse approximate inverses of
general matrices.

github.com /venkovic/julia-global-general-spai

» Randomized short-recurrence iterative methods for approximate low-rank
matrix factorizations:

Venkovic & Anzt (2025). Randomized first-order short-recurrence subspace iterative meth-
ods for approximate low-rank matrix factorizations.

github.com/venkovic/julia-iterative-low-rank

> Related future works:
e SPAlIs:
- Parallelization.
e Low-rank approximation:
- Application to matrix recovery (completion and sensing problems).
- Non-negative matrix factorizations.
- Tensor factorizations.
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