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Low-rank matrix approximation — the "What?"
▶ Given a matrix X ∈ Rm×n, we seek some factor matrices U ∈ Rm×r and

V ∈ Rn×r, with r ≤ min(m,n), s.t. X − UV T is small in some sense:

▶ In practice, we often have r ≪ min(m,n).
▶ In this talk, we aim at minimizing the Frobenius residual norm:

Find (U, V ) ∈ Rm×r × Rn×r s.t. f(U, V ) := ∥X − UV T ∥2F is minimized

- non-convex problem (global minima & saddle points).
- f is invariant under orthogonal transformation, i.e., f(UQ, V Q)=f(U, V ).
- regularization terms can be added to f to promote sparsity, orthogonality,

balanced norms, or else, in the factors; making the problem convex, ...
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Low-rank matrix approximation — the "Why?"
▶ Low-rank approximation allows:

- Data compression:
r(m+ n) entries for (U, V ) vs mn entries for X.

- Fast approximation:
E.g., 2r(m+ n) FLOPs for x 7→ U(V Tx) vs 2mn FLOPs for x 7→ Xx.

▶ Low-rank approximation problems in disguise:
- Matrix recovery:
• Matrix completion ("Netflix problem"): retrieve X from partial

knowledge of components.
• Matrix sensing: retrieve X from (possibly noisy) linear measurements.

- Model order reduction: PCA, truncated KL expansion, POD, ...
- Regularization of ill-posed problems: reduce high sensitivity of model

output to small input variations.
▶ Applications in multiple fields:

- Pre-training of LLMs, recommendation systems, regularization of DNNs,
pattern (e.g., face or signal) recognition, preconditioning of challenging
numerical problems, approximating dynamical systems, ...
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Low-rank matrix approximation — the "How?"
▶ The Eckart-Young theorem states that truncated singular value

decompositions (SVDs) offer optimal low-rank matrix approximations.
▶ Methods for computing SVDs are well-developed:

- Krylov solvers, QR factorization with column pivoting (CPQR),
interpolative decomposition (ID).

▶ State-of-the-art SVD computing methods are not well-equipped to address
the following cases:
- X is only accessible through incomplete (possibly noisy) linear

measurement (matrix recovery problems);
- The low-rank factors need satisfy certain structural constraints, e.g.,

non-negativity (NMF matrix factorization), sparsity;
- Non-standard problem regularization, e.g., convex relaxation, promoting

factor sparsity, discouraging factor imbalance, enhancing stability, ...
▶ In those cases, gradient descent algorithms and other first-order iterative

methods are often the best alternative.
▶ In this work, we propose enhanced gradient descent algorithms for the

computation of approximate low-rank matrix factorizations.
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Gradient descent algorithms
▶ Gradient descent algorithms are defined upon setting search directions of a

block coordinate descent along the gradients of the objective function:

∇Uf(U, V ) = −2RV and ∇V f(U, V ) = −2RTU where R := X − UV.

Given a pair of initial approximate low-rank factors U0 ∈ Rm×r and
V0 ∈ Rn×r, 2-block gradient descent (2BGD) iterates are defined as follows:

Algorithm 1 2BGD(X,U0, V0)

1: R0 := X − U0V
T
0

2: for t = 0, 1, . . . do
3: Pt := −RtVt

4: Qt := −RT
t Ut

5: Ut+1 := Ut + ηtPt ▷ ηt ∈ (0,∞) is learning rate
6: Vt+1 := Vt + ηtQt

7: Rt+1 := X − Ut+1V
T
t+1

Properly decreasing learning rates guarantee convergence to stationary
points of f , but we want to try and achieve faster convergence.
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Alternating 2-block subspace coordinate
descent methods
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Alternating 2-block subspace coordinate descent methods
▶ Consider the Frobenius inner product (X,Y )F := tr(XTY ) with induced

norm ∥X∥F := (X,X)
1/2
F .

▶ In this work:
- Subspace block coordinate descent methods introduced as projections

with carefully defined orthogonality constraints.

- Orthogonality: Rm×n ∋ X ⊥ S ⊂ Rm×n ⇐⇒ (X,Y )F = 0 ∀Y ∈ S .

Definition (A2BSCD methods)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of A2BSCD with search directions Pt ∈ Rm×r and Qt ∈ Rn×r is defined by:{
Ut+1 ∈ Ut + span{Pt} s.t. ∇Uf(U, Vt)|Ut+1

∝̃RtVt ⊥ span{Pt}
Vt+1 ∈ Vt + span{Qt} s.t. ∇V f(Ut+1, V )|Vt+1

∝RT
t+1Ut+1 ⊥ span{Qt}

where R̃t := X − Ut+1V
T
t and Rt+1 := X − Ut+1V

T
t+1.

- Proper descent algorithms are s.t. f(Ut+1, Vt+1)≤f(Ut+1, Vt)≤f(Ut, Vt).
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Optimality of A2BSCD iterates
▶ Particular A2BSCD methods are instantiated by the definition of update

formulae for the search directions (Pt, Qt) ∈ Rm×r × Rn×r for the iterates
Ut+1 and Vt+1, respectively, for t = 0, 1, . . .

▶ All A2BSCD iterates are characterized as follows:

Theorem (Optimality of A2BSCD iterates)

Irrespective of the choice of search directions (Pt, Qt) ∈ Rm×r × Rn×r:

- all A2BSCD iterates are optimal in the sense that:

Ut+1 = arg min
U∈Ut+span{Pt}

f(U, Vt) and Vt+1 = arg min
V ∈Vt+span{Qt}

f(Ut+1, V ).

- all non-trivial A2BSCD methods are proper block descent algorithms, i.e.,
s.t. f(Ut+1, Vt+1) ≤ f(Ut, Vt), and converge to stationary points of f .

Proof.
Based on the theorem of orthogonal projections.
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Alternating 2-block subspace gradient descent
▶ A natural instance of A2BSCD method is obtained by setting the search

directions Pt and Qt along gradient directions of f :

Definition (A2BSGD method and iterates)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of alternating 2-block subspace gradient descent (A2BSGD) iterates is
defined by setting the search directions of the A2BSCD algorithm to:

Pt := RtVt ∝ ∇Uf(U, Vt)|Ut
and Qt := R̃T

t Ut+1 ∝ ∇V f(Ut+1, V )|Vt
.

- The main iterates of the A2BSGD method are given by:

Ut+1 := Ut + αtPt and Vt+1 := Vt + γtQt

for t = 0, 1, . . . , in which the optimal step sizes αt, γt ∈ R are:

αt :=
∥Pt∥2F

(PtV T
t Vt, Pt)F

and γt :=
∥Qt∥2F

(QtUT
t+1Ut+1, Qt)F

.
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Alternating local optimality
▶ The term "locally optimal" was coined by Andrew Knyazev (2001) to refer

to the enrichment with previous search directions of the search space used
for the subspace optimization of Rayleigh quotients of symmetric matrices.

▶ To apply local optimality to the subspace minimization of f(U, V ), we
stress that the A2BSGD search directions constitute a trivial case of:

Pt ∈ span{Pt−1, RtVt} and Qt ∈ span{Qt−1, R̃
T
t Ut+1}. (1)

Theorem (Alternating local optimality)

Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r, and r ≤ min(m,n), with search
directions satisfying Eq. (1), P−1 := 0m×r and Q−1 := 0n×r, we have:

min
U∈Ut+span{Pt−1,RtVt}

f(U, Vt) ≤ min
U∈Ut+span{RtVt}

f(U, Vt)

min
V ∈Vt+span{Qt−1,R̃T

t Ut+1}
f(Ut+1, V ) ≤ min

V ∈Vt+span{R̃T
t Ut+1}

f(Ut+1, V )

for t = 0, 1, . . . .
Andrew Knyazev (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541.
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Alternating 2-block subspace locally optimal gradient descent
Definition (A2BSLOGD method and iterates)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of A2BSLOGD iterates is defined by:
Ut+1 := arg min

U∈Ut+span{RtVt,Pt−1}
∥X − UV T

t ∥F

Vt+1 := arg min
V ∈Vt+span{R̃T

t Ut+1,Qt−1}
∥X − Ut+1V

T ∥F
for t = 0, 1, . . .

- The main left iterates are given by:
Ut+1 := Ut + αtRtVt + βtPt−1 for t = 0, 1, . . .

where the optimal step sizes αt and βt depend on:

∥RtVt∥2F , (RtVtV
T
t Vt, RtVt)F ,

(Pt−1V
T
t Vt, Pt−1)F , (RtVtV

T
t Vt, Pt−1)F , (RtVt, Pt−1)F

and the corresponding search direction is updated by:
Pt := RtVt + (βt/αt)Pt−1 for t = 0, 1, . . .
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Alternating 2-block subspace locally optimal gradient descent
Definition (A2BSLOGD method and iterates, cont’d)
- The main right iterates of the A2BSLOGD method are given by:

Vt+1 := Vt + γtR̃
T
t Ut+1 + ωtQt−1 for t = 0, 1, . . .

where the optimal step sizes γt and ωt depend on:

∥R̃T
t Ut+1∥2F , (R̃T

t Ut+1U
T
t+1Ut+1, R̃

T
t Ut+1)F

(Qt−1U
T
t+1Ut+1, Qt−1)F , (R̃

T
t Ut+1U

T
t+1Ut+1, Qt−1)F , (R̃

T
t Ut+1, Qt−1)F

and the corresponding search direction is updated by:
Qt := R̃T

t Ut+1 + (ωt/γt)Qt−1 for t = 0, 1, . . .
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Simultaneous 2-block subspace coordinate
descent methods
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Simultaneous 2-block subspace coordinate descent methods
▶ Until now, we attempted to find stationary points of f(U, V ) by

alternating between fixing one factor and minimizing the (convex) function
in terms of the other factor.

▶ Now, we intend to simultaneously produce pairs of new left and right
iterates. We refer to those approaches as simultaneous 2-block subspace
coordinate descent (S2BSCD) methods:

Definition (S2BSCD methods)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of simultaneous 2-block subspace coordinate descent iterates is defined by:{

Ut+1 ∈ Ut + span{Pt}
Vt+1 ∈ Vt + span{Qt}

s.t.

{
Rt+1Vt ⊥ span{Pt}
RT

t+1Ut ⊥ span{Qt}

where Pt ∈ Rm×r and Qt ∈ Rn×r are given search directions.
- Proper descent algorithms are s.t. f(Ut+1, Vt+1) ≤ f(Ut, Vt).
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Simultaneous 2-block subspace gradient descent
▶ A natural instance of S2BSCD method is obtained by setting the search

directions Pt and Qt along gradient directions of f :

Definition (S2BSGD method and iterates)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of simultaneous 2-block subspace gradient descent (S2BSGD) iterates is
defined by setting the search directions of the S2BSCD algorithm to:

Pt := RtVt ∝ ∇Uf(U, Vt)|Ut
and Qt := RT

t Ut ∝ ∇V f(Ut, V )|Vt
.

- The main iterates of the S2BSGD method are given by:

Ut+1 := Ut + αtPt and Vt+1 := Vt + γtQt

for t = 0, 1, . . . , in which the optimal step sizes αt, γt ∈ R depend on:

∥Pt∥2F , (PtV
T
t Vt, Pt)F , (UtQ

T
t Vt, Pt)F , (PtQ

T
t Vt, Pt)F ,

∥Qt∥2F , (VtP
T
t Ut, Qt)F , (QtU

T
t Ut, Qt)F , (QtP

T
t Ut, Qt)F .
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Simultaneous 2-block subspace locally optimal gradient descent
Definition (S2BSLOGD method and iterates)

- Given X ∈ Rm×n, U0 ∈ Rm×r, V0 ∈ Rn×r and r ≤ min(m,n), a sequence
of S2BSLOGD iterates is defined by:{
Ut+1 ∈ Ut + span{RtVt, Pt−1}
Vt+1 ∈ Vt + span{RT

t Ut, Qt−1}
s.t.

{
Rt+1Vt ⊥ span{RtVt, Pt−1}
RT

t+1Ut ⊥ span{RT
t Ut, Qt−1}

for t = 0, 1, . . .

- The main left iterates are given by:{
Ut+1 := Ut + αtRtVt + βtPt−1

Vt+1 := Vt + γtR̃
T
t Ut+1 + ωtQt−1

for t = 0, 1, . . .

and the corresponding search directions are updated by:{
Pt := RtVt + (βt/αt)Pt−1

Qt := R̃T
t Ut+1 + (ωt/γt)Qt−1

for t = 0, 1, . . .
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Simultaneous 2-block subspace locally optimal gradient descent
Definition (S2BSLOGD method and iterates, cont’d)
- The optimal step sizes γt, βt, γt and ωt depend on:

∥RtVt∥2F , (RtVt, Pt−1)F , (RtVtV
T
t Vt, RtVt)F , (RtVtV

T
t Vt, Pt−1)F ,

(Pt−1V
T
t Vt, RtVt)F , (Pt−1V

T
t Vt, Pt−1)F , (UtU

T
t RtVt, RtVt)F ,

(UtU
T
t RtVt, Pt−1)F , (UtQ

T
t−1Vt, RtVt)F , (UtQ

T
t−1Vt, Pt−1)F ,

(RtVtU
T
t RtVt, RtVt)F , (RtVtU

T
t RtVt, Pt−1)F , (RtVtQ

T
t−1Vt, RtVt)F ,

(RtVtQ
T
t−1Vt, Pt−1)F , (Pt−1U

T
t RtVt, RtVt)F , (Pt−1U

T
t RtVt, Pt−1)F ,

(Pt−1Q
T
t−1Vt, RtVt)F , (Pt−1Q

T
t−1Vt, Pt−1)F , ∥RT

t Ut∥2F , (RT
t Ut, Qt−1)F ,

(VtV
T
t RT

t Ut, R
T
t Ut)F , (VtV

T
t RT

t Ut, Qt−1)F (VtP
T
t−1Ut, R

T
t Ut)F ,

(VtP
T
t−1Ut, Qt−1)F , (R

T
t UtU

T
t Ut, R

T
t Ut)F , (R

T
t UtU

T
t Ut, Qt−1)F ,

(Qt−1U
T
t Ut, R

T
t Ut)F , (Qt−1U

T
t Ut, Qt−1)F , (R

T
t UtV

T
t RT

t Ut, R
T
t Ut)F ,

(RT
t UtV

T
t RT

t Ut, Qt−1)F , (Qt−1V
T
t RT

t Ut)F , (Qt−1V
T
t RT

t Ut, Qt−1)F ,

(RT
t UtP

T
t−1Ut, R

T
t Ut)F , (R

T
t UtP

T
t−1Ut, Qt−1)F , (Qt−1P

T
t−1Ut, R

T
t Ut)F ,

(Qt−1P
T
t−1Ut, Qt−1)F .
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Randomization
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Random subspace embeddings
▶ The main building block of randomization is subspace embedding:

Definition ((ε, δ, d)-oblivious embedding)

A random linear map x ∈ Rn 7→ Θx ∈ Rk is an (ε, δ, d)-oblivious subspace
embedding (OSE) of dimension k < n with some δ ∈ (0, 1) if, for any
d-dimensional subspace S ⊂ Rn, we have:

Pr {(1− ε)∥x∥2 ≤ ∥Θx∥2 ≤ (1 + ε)∥x∥2} ≥ 1− δ ∀ x ∈ S.

Random subspace embeddings can be used to reduce problem dimension,
FLOP counts and data movement.

▶ The practicality of randomization lies in finding subspace embeddings s.t.:
- The embedding dimension k is sufficiently smaller than n, and
- Sketching, i.e., the linear map x 7→ Θx, can be applied efficiently.

▶ Common sketching strategies include:
- CountSketch, scaled random Gaussian matrices, sub-sampled fast

transforms, random sign matrices.
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Randomization of simultaneous 2-block coordinate descent
▶ All the block subspace coordinate descent algorithms presented thus far

may be recast to make use of randomization in order to reduce FLOP
counts and data movement while minimally impacting convergence.

▶ For example, we have:

Definition (RS2BSCD methods)

Given a matrix X ∈ Rm×n with approximate factors U0 ∈ Rm×r, V0 ∈ Rn×r

of rank r ≤ min(m,n), and two random subspace embeddings:

x ∈ Rm 7→ Θ1x ∈ Rk and y ∈ Rn 7→ Θ2y ∈ Rℓ,

a sequence of randomized simultaneous 2-block subspace coordinate descent
(RS2BSCD) iterates is defined by:{

Ut+1 ∈ Ut + span{Pt}
Vt+1 ∈ Vt + span{Qt}

s.t.

{
Θ1(Rt+1Vt) ⊥ span{Θ1Pt}
Θ2(R

T
t+1Ut) ⊥ span{Θ2Qt}

where Pt ∈ Rm×r and Qt ∈ Rn×r are given search directions.
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Summary of methods

Venkovic & Anzt (2025) GAMM COMinDS25 October 17, 2025



Summary of FLOPs per iteration
- Methods for general matrices:

Method FLOPs per iteration (dense X)
2BGD ( 6r + 3)mn+ 2r·(m+ n)

A2BSGD ( 8r + 4)mn+ ( 4r2 + 6r)(m+ n)
RA2BSGD ( 8r + 4)mn+ ( 2r2 + 2r)(m+ n) + ( 2r2 + 4r)(k + ℓ)

A2BSLOGD ( 8r + 4)mn+ ( 6r2 + 16r)(m+ n)
RA2BSLOGD ( 8r + 4)mn+ ( 2r2 + 6r)(m+ n) + ( 4r2 + 10r)(k + ℓ)

S2BSGD ( 6r + 3)mn+ (10r2 + 10r)(m+ n)
RS2BSGD ( 6r + 3)mn+ ( 4r2 + 2r)(m+ n) + ( 6r2 + 8r)(k + ℓ)

S2BSLOGD ( 6r + 3)mn+ (22r2 + 42r)(m+ n)
RS2BSLOGD ( 6r + 3)mn+ ( 6r2 + 6r)(m+ n) + (16r2 + 36r)(k + ℓ)

- Methods for symmetric positive semi-definite matrices:
Method FLOPs per iteration (dense X)

1BGD (4r + 3)n2 + 2r·n
S1BSGD (4r + 3)n2 + (10r2 + 9r)n

RS1BSGD (4r + 3)n2 + ( 4r2 + 2r)n+ ( 6r2 + 7r)k
S1BSLOGD (4r + 3)n2 + (22r2 + 33r)n

RS1BSLOGD (4r + 3)n2 + ( 6r2 + 6r)n+ (16r2 + 27r)k
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Numerical experiments
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Toy example
▶ Rank-100 approximation of a

800-by-1,200 grayscale image:

▶ Low-rank approximations achieved in 5 seconds:

▶ We observe that:
- Simultaneous schemes converge faster than alternating ones,
- Local optimality accelerates convergence,
- Randomization minimally impacts convergence.
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Closing remarks
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Conclusion
▶ Findings:

First-order short-recurrence iterations are introduced for the approximation
of low-rank matrix factorizations based on Galerkin projections:
- Simultaneous methods converge slightly faster than alternating schemes.
- Local optimality, i.e., enriching the search and orthogonality spaces with

previous search directions, achieves the fastest convergence behaviors.
- Extra FLOPs/iteration due to the evaluation of optimal step sizes,

though already moderate, are reduced using random embeddings.
- Convergence behaviors are minimally impacted by randomization.

▶ Dissemination:
- Preprint to be submitted at the Journal of Machine Learning Research:

Venkovic & Anzt (2025). Randomized first-order short-recurrence subspace itera-
tive methods for approximate low-rank matrix factorizations.

- Repository allowing reproducible experiments:
github.com/venkovic/julia-iterative-low-rank

- Find this presentation at:
venkovic.github.io/research
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Related ongoing and future work
▶ Locally optimal sort-recurrence iterative methods for sparse approximate

for sparse approximate inverses (SPAIs) of SPD matrices:
Venkovic & Anzt (2025). Global iterative methods for sparse approximate inverses
of symmetric positive-definite matrices.

github.com/venkovic/julia-global-spd-spai

▶ Related ongoing work:
- Locally optimal short-recurrence iterative methods for SPAIs of general

matrices.

▶ Related future works:
- SPAIs:
• Parallelization.

- Low-rank approximation:
• Application to matrix recovery (completion and sensing problems).
• Non-negative matrix factorizations.
• Tensor factorizations.
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